首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Background

The neurotransmitter serotonin (5-HT) has been linked to the underlying neurobiology of aggressive behavior, particularly with evidence from studies in animals and humans. However, the underlying neurobiology of aggression remains unclear in the context of attention-deficit/hyperactivity disorder (ADHD), a disorder known to be associated with aggression and impulsivity. We investigated the effects of acute tryptophan depletion (ATD), and the resulting diminished central nervous serotonergic neurotransmission, on reactive aggression in healthy controls and adults with ADHD.

Methodology/Principal Findings

Twenty male patients with ADHD and twenty healthy male controls were subjected to ATD with an amino acid (AA) beverage that lacked tryptophan (TRP, the physiological precursor of 5-HT) and a TRP-balanced AA beverage (BAL) in a double-blind, within-subject crossover-study over two study days. We assessed reactive aggression 3.25 hours after ATD/BAL intake using a point-subtraction aggression game (PSAG) in which participants played for points against a fictitious opponent. Point subtraction was taken as a measure for reactive aggression. Lowered rates of reactive aggression were found in the ADHD group under ATD after low provocation (LP), with controls showing the opposite effect. In patients with ADHD, trait-impulsivity was negatively correlated with the ATD effect on reactive aggression after LP. Statistical power was limited due to large standard deviations observed in the data on point subtraction, which may limit the use of this particular paradigm in adults with ADHD.

Conclusions/Significance

Together with previous findings, the data provide preliminary evidence of an inverse association between trait-impulsivity and the ATD effect on reactive aggression after LP (as assessed by the PSAG) in patients with ADHD and that this relationship can be found in both adolescents and adults. Because of limited statistical power larger sample sizes are needed to find main effects of ATD/BAL administration on reactive aggression in adults with ADHD.  相似文献   

2.
Stress is one of the most important promoters of aggression. Human and animal studies have found associations between basal and acute levels of the stress hormone cortisol and (abnormal) aggression. Irrespective of the direction of these changes - i.e., increased or decreased aggressive behavior - the results of these studies suggest dramatic alterations in the processing of threat-related social information. Therefore, the effects of cortisol and provocation on social information processing were addressed by the present study. After a placebo-controlled pharmacological manipulation of acute cortisol levels, we exposed healthy individuals to high or low levels of provocation in a competitive aggression paradigm. Influences of cortisol and provocation on emotional face processing were then investigated with reaction times and event-related potentials (ERPs) in an emotional Stroop task. In line with previous results, enhanced early and later positive, posterior ERP components indicated a provocation-induced enhanced relevance for all kinds of social information. Cortisol, however, reduced an early frontocentral bias for angry faces and - despite the provocation-enhancing relevance - led to faster reactions for all facial expressions in highly provoked participants. The results thus support the moderating role of social information processing in the ‘vicious circle of stress and aggression’.  相似文献   

3.
攻击行为神经机制的研究进展   总被引:1,自引:0,他引:1       下载免费PDF全文
由于攻击行为与人类犯罪暴力行为密切相关,对其神经生物学机制的研究日益受到广泛关注。本文综述了研究攻击行为所采用的一般模型、与攻击行为相关的脑区及神经递质和激素。尽管与攻击行为相关的化学物质种类很多,但是五羟色胺(serotonin,5-HT)是雄性之间攻击行为发生的决定因素,其他化学物质通过5-HT起作用。  相似文献   

4.
The neuromodulator serotonin is an important regulator of aggressive behavior in vertebrates. Experimentally increasing synaptic levels of serotonin with fluoxetine, a selective serotonin reuptake inhibitor, has been shown to reliably decrease the expression of aggressive behavior. Here, we describe a method by which fluoxetine can be noninvasively administered to male Betta splendens (an attractive model for the study of aggressive behavior) and describe a simple laboratory exercise that allows students to experimentally investigate the physiological mechanisms of aggressive behavior. We demonstrate that relatively short-term exposure (3 h) of male bettas to as little as 3 microg/ml of fluoxetine-treated aquarium water is sufficient to reduce the expression of specific aggressive behaviors. We emphasize the physiological concepts that can be addressed with this exercise, including the role of the serotonergic system in regulating aggression, and the interplay of environmental contaminants and physiology in regulating the expression of behavior. We also highlight important aspects of experimental design. This exercise can be flexibly altered to accommodate one or several laboratory periods. It is also low cost, is low impact to the animals, and requires minimal preparation time for instructors.  相似文献   

5.
In many bird species, males exhibit territorial aggression outside the breeding season, when testosterone concentrations are low and may not regulate territorial behaviors. The hormonal regulation of aggression at this time of year has only been studied in passerine birds. Here, we investigated the role of testosterone in the regulation of aggression in a non-passerine bird, the red grouse Lagopus lagopus scoticus. Male red grouse are aggressive in early spring when breeding starts, in autumn when they establish territories, and sporadically through much of the winter. We first describe seasonal variations in plasma testosterone concentrations and in the size of males' sexual ornaments, their red combs, which relates to aggressiveness. Testosterone concentrations and comb size were correlated. Both increased in autumn to a peak in October, and then increased again in spring, to a greater peak in early April. Secondly, we experimentally investigated the effects of testosterone, and of an anti-androgen (flutamide) used in combination with an aromatase inhibitor (ATD), on autumn territorial behavior. Males were treated with either empty implants, as controls (C-males), testosterone implants (T-males), or with flutamide and ATD implants (FA-males). One month after implanting, both T- and FA-males had higher concentrations of testosterone than C-males. Comb size, aggressive call rate, and response to playbacks of territorial call all significantly increased in T-males. However, the increase in testosterone in FA-males did not increase comb size or aggressive behavior. In the following spring, after the content of implants was used, FA-males had significantly lower testosterone than C-males, and had a reduced seasonal increase in comb size. The results suggest that testosterone plays a significant role in regulating red grouse aggressive behavior in autumn. However, the observation that flutamide and ATD treatment did not reduce territorial behavior, suggests that estradiol may also be involved in the regulation of non-breeding aggression.  相似文献   

6.
Human studies suggest that anabolic androgenic steroid (AAS) users are aggressive towards women. This study used a rat model to evaluate whether AAS potentiated aggression towards females and the conditions under which this occurs. Gonadally intact pubertal male rats received one of the following AAS treatments (5 mg/kg s.c. 5 days/week for nine weeks): testosterone (T), stanozolol (S), testosterone + stanozolol (T + S), or vehicle control. Each rat was tested with 3 conspecific stimuli: ovariectomized females (OVX), estrogen only females (E), and estrogen + progesterone females (E + P). The response to physical provocation was tested under three conditions: without physical provocation, provocation of the experimental male, and provocation of the conspecific female. Provocation was a mild tail pinch. Both aggressive and sexual behaviors were measured during each test. In the absence of physical provocation, AAS males were not aggressive towards females. However, provocation significantly increased aggression in males treated with testosterone but only towards OVX females. In the presence of E or E + P females, all animals displayed sex behavior, not aggression. Thus, factors such as the nature of the AAS and the hormonal status of the females are important in determining whether male rats will be aggressive towards females. However, the most salient factor determining aggression towards females is the presence of provocation in combination with high levels of testosterone.  相似文献   

7.
Human aggression/impulsivity-related traits have a complex background that is greatly influenced by genetic and non-genetic factors. The relationship between aggression and anxiety is regulated by highly conserved brain regions including amygdala, which controls neural circuits triggering defensive, aggressive, or avoidant behavioral models. The dysfunction of neural circuits responsible for emotional control was shown to represent an etiological factor of violent behavior. In addition to the amygdala, these circuits also involve the anterior cingulated cortex and regions of the prefrontal cortex. Excessive reactivity in the amygdala coupled with inadequate prefrontal regulation serves to increase the likelihood of aggressive behavior. Developmental alterations in prefrontal-subcortical circuitry as well as neuromodulatory and hormonal abnormality appear to play a role. Imbalance in testosterone/serotonin and testosterone/cortisol ratios (e.g., increased testosterone levels and reduced cortisol levels) increases the propensity toward aggression because of reduced activation of the neural circuitry of impulse control and self-regulation. Serotonin facilitates prefrontal inhibition, and thus insufficient serotonergic activity can enhance aggression. Genetic predisposition to aggression appears to be deeply affected by the polymorphic genetic variants of the serotoninergic system that influences serotonin levels in the central and peripheral nervous system, biological effects of this hormone, and rate of serotonin production, synaptic release and degradation. Among these variants, functional polymorphisms in the monoamine oxidase A (MAOA) and serotonin transporter (5-HTT) may be of particular importance due to the relationship between these polymorphic variants and anatomical changes in the limbic system of aggressive people. Furthermore, functional variants of MAOA and 5-HTT are capable of mediating the influence of environmental factors on aggression-related traits. In this review, we consider genetic determinants of human aggression, with special emphasis on genes involved in serotonin and dopamine metabolism and function.  相似文献   

8.
In humans and other primates, violent actions performed by victims of aggression are often directed toward an individual or object that is not the source of provocation. This psychological phenomenon is often called displaced aggression. We demonstrate that displaced aggression is either rooted in evolutionarily conserved behavioral and neuroendocrine mechanisms, or represent a convergent pattern that has arisen independently in fish and mammals. Rainbow trout that briefly encountered large, aggressive fish reacted with increased aggression toward smaller individuals. There was a strong negative correlation between received aggression and behavioral change: Individuals subjected to intense aggression were subdued, while moderate assaults induced strong agitation. Patterns of forebrain serotonin turnover and plasma cortisol suggest that the presence of socially subordinate fish had an inhibitory effect on neuroendocrine stress responses. Thus, subordinate individuals may serve as stress-reducing means of aggressive outlet, and displaced aggression toward such individuals appears to be a behavioral stress coping strategy in fishes.  相似文献   

9.
Aggressive behavior is not a unitary trait, and different stimuli/situations elicit different kinds of aggressive behavior. According to numerous data the genotype plays a significant role in the expression of aggressive behavior. However, it remains unclear how genetic predisposition to one kind of aggression is linked with other kinds of aggressive behavior, especially pathological aggression (infanticide). Here, we report on our investigation of the expression of defensive, offensive, predatory and asocial aggression in wild rats selectively bred for 85 generations for either a high level or a lack of aggression towards humans. We found that those rats genetically predisposed to a high level of defensive aggression showed decreased social behavior and increased pathological aggressive behavior towards juvenile males. The highly aggressive rates showed a reduced latency time of attack and an increased latency time of the first social contact. Rats genetically predisposed to defensive aggression demonstrated increased predatory aggression—latency time of muricide was shorter in highly aggressive than in tame animals. At the same time, both lines of rats did not differ significantly in intermale aggression. We conclude that the data indicate a close relation between defensive, predatory and pathological aggressive behavior that allows us to suggest that similar genetic mechanisms underlie these types of aggressive behavior.  相似文献   

10.
Recent evidence indicates that aromatizable androgens are more effective than nonaromatizable androgens in restoring normal levels of sexual behavior in castrated male zebra finches (Poephila guttata). To determine whether the efficacy of treatment with aromatizable androgens, is in part due to their conversion to estrogens, castrated male finches were treated with androstenedione (AE), an aromatizable androgen, and their sexual and aggressive behavior was compared with that of castrates treated with AE plus 1,4,6-androstatriene-3,17-dione (ATD), an aromatization inhibitor. Males treated with AE + ATD showed less courtship activity and less copulatory behavior than AE-treated males, and were unlikely to have nests. Estradiol (E), when given concurrently with AE + ATD, reversed the inhibitory effects of ATD and restored levels of courtship and copulation to those observed in AE-treated males. Only AE- and AE + ATD + E-treated males displayed aggressive behaviors, but the frequency of such behaviors was so low that there were no significant differences across groups. These data affirm the importance of estrogen in the control of reproductive activities in male zebra finches and indicate that aromatization may be an obligatory step for maintaining normal levels of sexual and aggressive behavior.  相似文献   

11.
Considerable public attention has been focused on the issue of youth violence, particularly that associated with drug use. It is documented that anabolic steroid use by teenagers is associated with a higher incidence of aggressive behavior and serious violence, yet little is known about how these drugs produce the aggressive phenotype. Here we discuss work from our laboratory on the relationship between the development and activity of select neurotransmitter systems in the anterior hypothalamus and anabolic steroid-induced offensive aggression using pubertal male Syrian hamsters (Mesocricetus auratus) as an adolescent animal model, with the express goal of synthesizing these data into an cogent neural model of the developmental adaptations that may underlie anabolic steroid-induced aggressive behavior. Notably, alterations in each of the neural systems identified as important components of the anabolic steroid-induced aggressive response occurred in a sub-division of the anterior hypothalamic brain region we identified as the hamster equivalent of the latero-anterior hypothalamus, indicating that this sub-region of the hypothalamus is an important site of convergence for anabolic steroid-induced neural adaptations that precipitate offensive aggression. Based on these findings we present in this review a neural model to explain the neurochemical regulation of anabolic steroid-induced offensive aggression showing the hypothetical interaction between the arginine vasopressin, serotonin, dopamine, γ-aminobutyric acid, and glutamate neural systems in the anterior hypothalamic brain region.  相似文献   

12.
Domestication of wild animals alters the aggression towards humans, brain monoamines and coat pigmentation. Our aim is the interplay between aggression, brain monoamines and depigmentation. The Hedlund white mutation in the American mink is an extreme case of depigmentation observed in domesticated animals. The aggressive (?2.06 ± 0.03) and tame (+3.5 ± 0.1) populations of wild‐type dark brown color (standard) minks were bred during 17 successive generations for aggressive or tame reaction towards humans, respectively. The Hedlund mutation was transferred to the aggressive and tame backgrounds to generate aggressive (?1.2 ± 0.1) and tame (+3.0 ± 0.2) Hedlund minks. Four groups of 10 males with equal expression of aggressive (?2) or tame (+5) behavior, standard or with the Hedlund mutation, were selected to study biogenic amines in the brain. Decreased levels of noradrenaline in the hypothalamus, but increased concentrations of the serotonin metabolite, 5‐hydroxyindoleacetic acid and dopamine metabolite, homovanillic acid, in the striatum were measured in the tame compared with the aggressive standard minks. The Hedlund mutation increased noradrenaline level in the hypothalamus and substantia nigra, serotonin level in the substantia nigra and striatum and decreased dopamine concentration in the hypothalamus and striatum. Significant interaction effects were found between the Hedlund mutation and aggressive behavior on serotonin metabolism in the substantia nigra (P < 0.001), dopamine level in the midbrain (P < 0.01) and its metabolism in the striatum (P < 0.05). These results provide the first experimental evidence of the interplay between aggression, brain monoamines and the Hedlund mutation in the American minks.  相似文献   

13.
《Journal of Physiology》2013,107(4):327-334
The relationships between biological rhythms and human aggressive behavior are addressed and discussed in this article: First, circadian rhythms and aggression are considered. Studies of sleep/waking cycle disturbances in aggression are reported. Severe aggression is associated with profound changes in sleep architecture. Causal link is difficult to establish given that sleep disturbance and aggressive behavior could be the symptoms of the same disorder. Specific aggressive behavior developed during sleep is also described. In addition, hormonal circadian rhythm studies are reported. Thus, low cortisol levels, in particular low cortisol variability, are associated with aggressive behavior, suggesting an inhibitory role of cortisol. Testosterone has daily and seasonal fluctuations, but no link with aggression has been established. Neurophysiological underlying mechanisms are discussed in the last part of this article, with a focus on the relationship between brain rhythm and aggression. Increase of slow-wave EEG activities is observed in individuals with aggressive behavior. Epilepsy, as a disease of brain rhythm could be associated with aggressive behavior, in pre, post and inter ictal periodes. Incidence of aggression is not likely more prevalent in epileptic individuals compared to those with other neurological conditions. Ictal changes take the form of profound behavioral changes, including aggressive behavior which has been interpreted as the emergence of “archeical” or innate motor patterns. In this multidisciplinary approach, the main difficulty is the categorization of the differents types of aggression. Finally, taken together, these studies suggest that biological rhythms, especially circadian rhythms, could provide therapeutic benefits to human aggressive behavior. Biological rhythymicity seems to be a necessary permanent training offering interesting perspectives for the adaptation to changes in the field of aggression.  相似文献   

14.
The sex hormone testosterone and the neurotransmitter serotonin exert opposite effects on several aspects of behavior including territorial aggression. It is however not settled if testosterone exerts its pro-aggressive effects by reducing serotonin transmission and/or if the anti-aggressive effect of serotonin requires the presence of the androgen. Using the resident intruder test, we now show that administration of the serotonin synthesis inhibitor para-chlorophenylalanine (300 mg/kg x 3 days) increases the total time of attack as well as the percentage amount of social behavior spent on attack but not that spent on threat – i.e. that it induces a pattern of unrestricted, maladaptive aggression – in gonadectomized C57Bl/6 male mice receiving testosterone replacement; in contrast, it failed to reinstate aggression in those not given testosterone. Whereas these results suggest the pro-aggressive effect of testosterone to be independent of serotonin, and not caused by an inhibition of serotonergic activity, the pCPA-induced induction of maladaptive aggression appears to require the presence of the hormone. In line with these findings, pCPA enhanced the total time of attack as well the relative time spent on attacks but not threats also in wild-type gonadally intact male C57Bl/6 mice, but failed to reinstate aggression in mice rendered hypo-aggressive by early knock-out of androgen receptors in the brain (ARNesDel mice). We conclude that androgenic deficiency does not dampen aggression by unleashing an anti-aggressive serotonergic influence; instead serotonin seems to modulate aggressive behavior by exerting a parallel-coupled inhibitory role on androgen-driven aggression, which is irrelevant in the absence of the hormone, and the arresting of which leads to enhanced maladaptive aggression.  相似文献   

15.
In birds, territorial aggression during the breeding season is regulated by testosterone (T). However, many bird species also express aggressive behavior during the nonbreeding season, when plasma levels of T are low. It has been suggested that during this period estrogens might play a major role in regulating territorial aggression. In the present study we compared the effects of simultaneous blockage of androgenic and estrogenic actions on territorial aggression during the breeding and nonbreeding seasons in free-living male European stonechats (Saxicola torquata rubicola). European stonechats are of particular interest since they establish territories and form pairs during both the breeding and the nonbreeding seasons. Thus territorial aggression and its endocrine control can be compared between reproductive and non-reproductive contexts. Inhibition of androgenic and estrogenic actions by simultaneous application of Flutamide and ATD reduced territorial aggression during the breeding season, but not during the nonbreeding season. Our results show that androgens and/or estrogens are involved in the endocrine control of territorial aggression in stonechats only in a reproductive context, but not in a non-reproductive one.  相似文献   

16.
Exogenous serotonin has been shown to induce an elevated, flexed posture in crustaceans and has also been hypothesized to enhance aggressive behavior. We conducted three experiments to further investigate the effects of serotonin and serotonin analogs on posture and agonistic behavior in the crayfish Procambarus clarkii. In the first experiment, we recorded behavioral responses to five different concentrations of serotonin injected into the ventral hemolymph sinus. The amine elicited a series of behaviors including the characteristic high, flexed posture, but none were clearly associated with aggression. In our second experiment, we tested serotonin and four serotonin receptor agonists [1-(3-chlorophenyl)piperazine dihydrochloride, 2-methyl-5-hydroxytryptamine maleate, 5-carboxamidotryptamine maleate and alpha-methyl-5-hydroxytryptamine maleate] and measured the ability of each agonist to mimic the actions of the amine. High concentrations of 1-(3-chlorophenyl)piperazine dihydrochloride most closely mimicked the actions of serotonin; 5-carboxamidotryptamine maleate induced a high stance, but did not otherwise induce effects similar to serotonin. In our third experiment, we conducted an analysis of fighting behavior between pairs of crayfish that had received injections of control saline, serotonin, or 5-carboxamidotryptamine maleate. Serotonin generally reduced the level of aggression between opponents, whereas 5-carboxamidotryptamine maleate enhanced the performance of several agonistic behaviors.  相似文献   

17.
Experimental research in a wide range of mammals has documented powerful influences of androgen during early development on brain systems and behaviors that show sex differences. Clinical research in humans suggests similar influences of early androgen concentrations on some behaviors, including childhood play behavior and adult sexual orientation. However, findings have been inconsistent for some other behaviors that show sex differences, including aggression and activity level in children. This inconsistency may reflect small sample sizes and assessment limitations. In the present study, we assessed aggression and activity level in 3- to 11-year-old children with CAH (38 girls, 29 boys) and in their unaffected siblings (25 girls, 21 boys) using a questionnaire that mothers completed to indicate current aggressive behavior and activity level in their children. Data supported the hypotheses that: (1) unaffected boys are more aggressive and active than unaffected girls; (2) girls with CAH are more aggressive and active than their unaffected sisters; and (3) boys with and without CAH are similar to one another in aggression and activity level. These data suggest that early androgens have a masculinizing effect on both aggressive behavior and activity level in girls.  相似文献   

18.
Goerss AL  Wagner GC  Hill WL 《Life sciences》2000,67(11):1325-1329
The inverse relationship between serotonin and aggression was investigated in rats treated with aspartame, a sweetener thought to interfere with the synthesis of this neurotransmitter. Eleven adult, male Long-Evans rats received either aspartame (200-800 mg/kg, IP) or the vehicle prior to testing in a standard resident-intruder paradigm. Contrary to our hypothesis, aspartame significantly decreased aggression as shown by increased latencies to the first attack and decreased number of bites per session. Corresponding with the effects on aggression, aspartame significantly increased striatal levels of serotonin. It was concluded that high doses of aspartame reduced aggressive attack via a serotonergic mechanism while the lower dose was without effect on either variable.  相似文献   

19.
Norway rats have been selected during 20 generations by the absence of aggressive reaction to man (tamed rats). From 7 up to 20th generations of selection, different forms of aggressive behaviour (reaction to glove, intermale, shock-induced aggression and predatory aggression) were studied, and the level of noradrenaline, serotonin and its metabolite 5-hydroxyindoleacetic acid was determined in the brain. In the absence of aggressive reaction to glove in tamed rats, the shock-induced aggression considerably decreased while the predatory aggressiveness (mouse-killing behaviour) and intermale aggressiveness did not change. Beginning from 15-16th generation of selection, a higher level of the 5-hydroxyindoleacetic acid in the hypothalamus was established, in the 20th generation an increased content of serotonin was revealed in the hypothalamus and the midbrain. In some generations of selection an increased level of noradrenaline in the hypothalamus in comparison to wild rats was observed. A conclusion is made that the selection of animals by taming unequally influences different kinds of aggressiveness and is accompanied by inherited consolidated reorganization of the monoamine brain systems.  相似文献   

20.
The role of genetic and environmental factors as well as brain neurochemistry in regulating aggressive and submissive behaviors in animals are considered. We present a review of data on changes in brain monoaminergic activity (synthesis, catabolism, receptors) and on the expression of monoaminergic genes under repeated daily agonistic confrontations in male mice. A repeated experience of aggression was shown to result in the total activation of the dopaminergic systems and the inhibition of the serotonergic one. This was accompanied by a decrease in the mRNA level of the cathecol-O-methyltransferase gene in the midbrain and an increase of the mRNA level of the dopamine transporter and tyrosine hydroxylase genes in the ventral tegmental area of aggressive male mice. Repeated experience of social defeats produced dynamic changes in the serotonergic system of some brain areas and an increase of the mRNA level of the serotonin transporter and monoamine oxidase A genes in the midbrain raphe nuclei. Theoretical and methodological possibilities of the proposed ethological approach for studying molecular mechanisms of agonistic behavior are discussed in the context of the fundamental problem of investigating the ways of regulation from behavior to gene.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号