首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Cardiovascular disease (CVD) is now the largest killer in western society, and the importance of interactions between vascular endothelium and circulating blood components in disease pathogenesis is well established. Microparticles are a heterogeneous population of <1 μm blood borne particles that arise from blebbing or shedding of cell membranes. The microparticle population includes several classes of apoptotic bodies; however, increased numbers of procoagulant microparticles have been described in plasma from people with CVD. We have previously demonstrated that interactions of monocytes and platelets with isolated inflamed endothelial cells lead to production of pro-coagulant tissue factor bearing microparticles under laminar flow conditions. Here we have investigated microparticle production after perfusion of human whole blood through intact inflamed human umbilical artery. When blood was perfused through umbilical arteries which had been pre-stimulated with tumour necrosis factor (TNFα) for 18 h under flow conditions, there was significantly increased production of microparticles from both platelet and non-platelet sources, in particular from erythrocytes. To determine whether microparticles generated during interactions with inflamed endothelium could induce a pro-inflammatory response in trans, we isolated microparticles by centrifugation after co-culture and incubated with isolated quiescent endothelial cells followed by measurement of reactive oxygen species formation. Microparticles derived from co-culture with inflamed endothelium induced significantly enhanced levels of reactive oxygen species (ROS). These data suggest that presence of an inflamed endothelium causes release of pro-inflammatory microparticles from circulating blood cells, which could contribute to prolonged endothelial activation and subsequent atherosclerotic changes in blood vessels subjected to inflammatory insult.  相似文献   

2.
To find whether Fas/Fas ligand (FasL) pathway is involved in T-2 toxin (T-2)-mediated thymocyte apoptosis, we used lpr/lpr (lpr) and gld/gld (gld) mice, whose Fas and FasL proteins, respectively, are functionally deficient. Based on the DNA fragmentation profile in gel electrophoresis and measurement of apoptotic cell percent by flow cytometry, the levels of thymocyte apoptosis in lpr and gld mice that had received T-2 showed that both lpr and gld mice had undergone apoptosis essentially to the same magnitude as those of corresponding wild type mice (+/+). These results strongly suggest that T-2-induced thymocyte apoptosis in vivo in mice is independent of the Fas/FasL pathway.  相似文献   

3.
The study of the role of Fas ligand (FasL/CD95L) in tumor immune evasion has been complicated by the discovery that FasL may trigger cytokine secretion and induce inflammation. Antisense suppression of FasL expression by colon tumor cells was used to investigate if a reduction in endogenously expressed FasL in tumors resulted in reduced tumor development and improved anti-tumor immune challenge in vivo. Downregulation of FasL expression had no effect on tumor growth in vitro but significantly reduced tumor development in syngeneic immune-competent mice in vivo. Tumor size was also significantly decreased. Reduced FasL expression by tumor cells was associated with increased lymphocyte infiltration. Moreover, constitutively expressed FasL was not pro-inflammatory. This study indicates that upregulation of FasL expression by colon tumor cells results in an improved anti-tumor immune challenge in vivo, providing functional evidence in favor of the ‘Fas counterattack’ as a mechanism of tumor immune evasion.  相似文献   

4.
Fas is a widely expressed cell surface receptor that can initiate apoptosis when activated by its ligand (FasL). Whereas Fas abundance on cardiac myocytes increases in response to multiple pathological stimuli, direct evidence supporting its role in the pathogenesis of heart disease is lacking. Moreover, controversy exists even as to whether Fas activation induces apoptosis in cardiac myocytes. In this study, we show that adenoviral overexpression of FasL, but not beta-galactosidase, results in marked apoptosis both in cultures of primary neonatal cardiac myocytes and in the myocardium of intact adult rats. Myocyte killing by FasL is a specific event, because it does not occur in lpr (lymphoproliferative) mice that lack functional Fas. To assess the contribution of the Fas pathway to myocardial infarction (MI) in vivo, lpr mice were subjected to 30 min of ischemia followed by 24 h of reperfusion. Compared with wild-type mice, lpr mice exhibited infarcts that were 62.3% smaller with 63.8% less myocyte apoptosis. These data provide direct evidence that activation of Fas can induce apoptosis in cardiac myocytes and that Fas is a critical mediator of MI due to ischemia-reperfusion in vivo.  相似文献   

5.
There is increasing evidence that the active contribution of hepatocytes to liver disease is strongly dependent on local cytokine environment. It has been shown in vitro that TNFα can enhance hepatocyte FasLigand (FasL)-mediated cytotoxicity. Here, we demonstrate that TNFα-induced apoptosis was associated with Fas and FasL upregulation and that a FasL-neutralizing antibody prevented TNFα-induced apoptosis. We further examined in vivo the relevance of the Fas/FasL pathway to hepatocellular apoptosis in a TNFα-driven model of acute liver failure. Livers of galactosamine/lipopolysaccharide (Gal/LPS)-exposed Fas wild-type mice highly expressed both Fas and FasL and revealed marked hepatocellular apoptosis that was almost completely blocked by soluble TNFα-receptor; this was also almost absent in Gal/LPS-exposed Fas lymphoproliferation mutant mice. Our data provide evidence for a direct link between TNFα and Fas/FasL in mediating hepatocyte apoptosis. Fratricidal death by Fas–FasL interactions of neighbouring hepatocytes may actively contribute to acute liver failure.  相似文献   

6.
Synovial fluid from patients with various arthritides contains procoagulant, cell-derived microparticles. Here we studied whether synovial microparticles modulate the release of chemokines and cytokines by fibroblast-like synoviocytes (FLS). Microparticles, isolated from the synovial fluid of rheumatoid arthritis (RA) and arthritis control (AC) patients (n = 8 and n = 3, respectively), were identified and quantified by flow cytometry. Simultaneously, arthroscopically guided synovial biopsies were taken from the same knee joint as the synovial fluid. FLS were isolated, cultured, and incubated for 24 hours in the absence or presence of autologous microparticles. Subsequently, cell-free culture supernatants were collected and concentrations of monocyte chemoattractant protein-1 (MCP-1), IL-6, IL-8, granulocyte/macrophage colony-stimulating factor (GM-CSF), vascular endothelial growth factor (VEGF) and intracellular adhesion molecule-1 (ICAM-1) were determined. Results were consistent with previous observations: synovial fluid from all RA as well as AC patients contained microparticles of monocytic and granulocytic origin. Incubation with autologous microparticles increased the levels of MCP-1, IL-8 and RANTES in 6 of 11 cultures of FLS, and IL-6, ICAM-1 and VEGF in 10 cultures. Total numbers of microparticles were correlated with the IL-8 (r = 0.91, P < 0.0001) and MCP-1 concentrations (r = 0.81, P < 0.0001), as did the numbers of granulocyte-derived microparticles (r = 0.89, P < 0.0001 and r = 0.93, P < 0.0001, respectively). In contrast, GM-CSF levels were decreased. These results demonstrate that microparticles might modulate the release of chemokines and cytokines by FLS and might therefore have a function in synovial inflammation and angiogenesis.  相似文献   

7.
The aim of the present study is to elucidate the signaling pathway involved in death of human neuroblastoma SK‐N‐SH cells induced by Naja naja atra phospholipase A2 (PLA2). Upon exposure to PLA2, p38 MAPK activation, ERK inactivation, ROS generation, increase in intracellular Ca2+ concentration, and upregulation of Fas and FasL were found in SK‐N‐SH cells. SB202190 (p38MAPK inhibitor) suppressed upregulation of Fas and FasL. N‐Acetylcysteine (ROS scavenger) and BAPTA‐AM (Ca2+ chelator) abrogated p38 MAPK activation and upregulation of Fas and FasL expression, but restored phosphorylation of ERK. Activated ERK was found to attenuate p38 MAPK‐mediated upregulation of Fas and FasL. Deprivation of catalytic activity could not diminish PLA2‐induced cell death and Fas/FasL upregulation. Moreover, the cytotoxicity of arachidonic acid and lysophosphatidylcholine was not related to the expression of Fas and FasL. Taken together, our results indicate that PLA2‐induced cell death is, in part, elicited by upregulation of Fas and FasL, which is regulated by Ca2+‐ and ROS‐evoked p38 MAPK activation, and suggest that non‐catalytic PLA2 plays a role for the signaling pathway. J. Cell. Biochem. 106: 93–102, 2009. © 2008 Wiley‐Liss, Inc.  相似文献   

8.
Systemic administration of rIL-18 protein to mice significantly suppresses the growth of murine tumor cell lines. The antitumor effect of IL-18 appears to be primarily mediated by asialo GM1+ cells. Since IL-18 enhances Fas ligand (FasL) expression on NK cell lines, the IL-18 antitumor effects could be mediated by FasL-induced cross-linking of Fas and subsequent tumor apoptosis. To address this question, rIL-18 or rIL-12 was administered to animals bearing the CL8-1 melanoma inoculated intradermally into wild type (wt), lymphoproliferation gene (lpr) (Fas deficient), or generalized lymphoproliferative disease gene (gld) (FasL deficient) mice. Although rIL-12 treatment retained significant antitumor effects in gld and lpr mice, those of rIL-18 administration were completely abrogated in gld but not lpr or wt mice. In vitro cytotoxicity was significantly enhanced against NK-sensitive YAC-1 cells and CL8-1 cells by rIL-18 administration to wt mice, but not to gld mice. Furthermore, rIL-18 administration augmented the cytotoxicity of liver lymphocytes harvested from perforin-deficient mice, whereas rIL-12 administration did not. Consistent with the role of this pathway, rIL-18 administration also up-regulates the expression of FasL mRNA in splenocytes. Lysis of CL8-1 cells induced by anti-Fas agonistic Ab was enhanced about 1.4-fold by IFN-gamma, a cytokine that is induced by IL-18 in vitro and in vivo. We conclude that the antitumor effect of IL-18 is exerted predominantly through a Fas-dependent pathway. The perforin pathway, however, appears to be the predominant cytolytic pathway mediating IL-12 antitumor effects.  相似文献   

9.
Fas death pathway is important for lymphocyte homeostasis, but the role of Fas pathway in T cell memory development is not clear. We show that whereas the expansion and contraction of CD8+ T cell response against Listeria monocytogenes were similar for wild-type (WT) and Fas ligand (FasL) mutant mice, the majority of memory CD8+ T cells in FasL mutant mice displayed an effector memory phenotype in the long-term in comparison with the mainly central memory phenotype displayed by memory CD8+ T cells in WT mice. Memory CD8+ T cells in FasL mutant mice expressed reduced levels of IFN-gamma and displayed poor homeostatic and Ag-induced proliferation. Impairment in CD8+ T cell memory in FasL mutant hosts was not due to defective programming or the expression of mutant FasL on CD8+ T cells, but was caused by perturbed cytokine environment in FasL mutant mice. Although adoptively transferred WT memory CD8+ T cells mediated protection against L. monocytogenes in either the WT or FasL mutant hosts, FasL mutant memory CD8+ T cells failed to mediate protection even in WT hosts. Thus, in individuals with mutation in Fas pathway, impairment in the function of the memory CD8+ T cells may increase their susceptibility to recurrent/latent infections.  相似文献   

10.
Fas ligand (CD95 ligand) controls angiogenesis beneath the retina   总被引:15,自引:0,他引:15  
A principal cause of blindness is subretinal neovascularization associated with age-related macular degeneration. Excised neovascular membranes from patients with age-related macular degeneration demonstrated a pattern of Fas+ new vessels in the center of the vascular complex, surrounded by FasL+ retinal pigment epithelial cells. In a murine model, Fas (CD95)-deficient (Ipr) and FasL-defective (gld) mice had a significantly increased incidence of neovascularization compared with normal mice. Furthermore, in gld mice there is massive subretinal neovascularization with uncontrolled growth of vessels. We found that cultured choroidal endothelial cells were induced to undergo apoptosis by retinal pigment epithelial cells through a Fas-FasL interaction. In addition, antibody against Fas prevented vascular tube formation of choroidal endothelial cells derived from the eye in a three-dimensional in vitro assay. Thus, FasL expressed on retinal pigment epithelial cells may control the growth and development of new subretinal vessels that can damage vision.  相似文献   

11.
12.
Fas-Fas ligand (FasL)-dependent pathways exert a suppressive effect on inflammatory responses in immune-privileged organs. FasL expression in hepatic Kupffer cells (KC) has been implicated in hepatic immunoregulation. In this study, modulation of FasL expression of KC by endogenous gut-derived bacterial LPS and the role of reactive oxygen species (ROS) as potential mediators of FasL expression in KC were investigated. LPS stimulation of KC resulted in upstream ROS generation and, subsequently, increased FasL expression and consequent Jurkat cell (Fas-positive) apoptosis. The NADPH oxidase and xanthine oxidase enzymatic pathways appear to be major sources of this upstream ROS generation. Increased FasL expression was blocked by antioxidants and by enzymatic blocking of ROS generation. Exogenous administration of H2O2 stimulated KC FasL expression and subsequent Jurkat cell apoptosis. Intracellular endogenous ROS generation may therefore represent an important signal transduction pathway for FasL expression in KC.  相似文献   

13.
To study liver cell damage by CTL, CD8 T cells from P14 TCR transgenic (tg) mice specific for the gp33 epitope of lymphocytic choriomeningitis virus with either deficiency in IFN-gamma (P14.IFN-gamma(null)), functional Fas ligand (P14.gld), or perforin (P14.PKO) were transferred into H8 tg mice ubiquitously expressing gp33 Ag. Treatment of H8 recipient mice with agonistic anti-CD40 Abs induced vigorous expansion of the transferred P14 T cells and led to liver cell destruction determined by increase of glutamate dehydrogenase serum levels and induction of caspase-3 in hepatocytes. Liver injury was mediated by the Fas/Fas ligand (FasL) pathway and by perforin, because P14.gld and P14.PKO T cells failed to induce increased glutamate dehydrogenase levels despite strong in vivo proliferation. In addition, H8 tg mice lacking Fas were resistant to the pathogenic effect of P14 T cells. Besides FasL and perforin, IFN-gamma was also required for liver cell damage, because P14.IFN-gamma(null) T cells adoptively transferred into H8 mice failed to induce disease. Moreover, Fas expression on hepatocytes from H8 recipient mice was increased after transfer of wild-type compared with P14.IFN-gamma(null) T cells, and wild-type P14 T cells expressed higher levels of FasL than P14 T cells lacking IFN-gamma. Thus, our data suggest that IFN-gamma released by activated CD8 T cells upon Ag contact facilitates liver cell destruction.  相似文献   

14.
Chorioamnionitis is a common cause of premature birth and is associated with significant morbidity and mortality in the mother and infant. Preterm birth shares similarities with rejection of the fetal allograft, which is characterized by increased apoptosis of placental trophoblasts. We hypothesized that there is increased trophoblast apoptosis in chorioamnionitis and that this increased apoptosis is mediated by the Fas ligand (FasL)/Fas pathway. To test our hypothesis, we examined placental villous tissues from patients with chorioamnionitis and used the TUNEL assay to demonstrate enhanced trophoblast apoptosis in patients with chorioamnionitis. When the same samples were stained for Fas, there was increased trophoblast Fas expression in patients with chorioamnionitis. To define the mechanisms responsible for this increase in trophoblast apoptosis, we cultured villous explants from uncomplicated term placentas with proinflammatory cytokines and demonstrated a marked increase in trophoblast apoptosis. By blocking FasL, we reduced tumor necrosis factor alpha-induced and interferon gamma-induced apoptosis. These data suggest that chorioamnionitis is associated with increased trophoblast apoptosis and enhanced trophoblast Fas expression. As a complement to our in vivo study, we demonstrated that cytokine-induced trophoblast apoptosis is mediated in part by the FasL/Fas pathway, suggesting that cytokines promote sensitivity to Fas-mediated apoptosis. These mechanisms may be important in perpetuating inflammation in the placental microenvironment and may contribute to the pathogenesis of chorioamnionitis.  相似文献   

15.
Fas-mediated apoptosis plays an important role in normal tissue homeostasis, and disruption of this death pathway contributes to many human diseases. Induction of apoptosis via Fas activation has been associated with reactive oxygen species (ROS) generation and down-regulation of FLICE inhibitory protein (FLIP); however, the relationship between these two events and their role in Fas-mediated apoptosis are unclear. We show herein that ROS are required for FLIP down-regulation and apoptosis induction by Fas ligand (FasL) in primary lung epithelial cells. ROS mediate the down-regulation of FLIP by ubiquitination and subsequent degradation by proteasome. Inhibition of ROS by antioxidants or by ectopic expression of ROS-scavenging enzymes glutathione peroxidase and superoxide dismutase effectively inhibited FLIP down-regulation and apoptosis induction by FasL. Hydrogen peroxide is a primary oxidative species responsible for FLIP down-regulation, whereas superoxide serves as a source of peroxide and a scavenger of NO, which positively regulates FLIP via S-nitrosylation. NADPH oxidase is a key source of ROS generation induced by FasL, and its inhibition by dominant-negative Rac1 expression or by chemical inhibitor decreased the cell death response to FasL. Taken together, our results indicate a novel pathway of FLIP regulation by an interactive network of reactive oxygen and nitrogen species that provides a key mechanism of apoptosis regulation in Fas-induced cell death and related apoptosis disorders.  相似文献   

16.
Activated T cells release bioactive Fas ligand (FasL) in exosomes, which subsequently induce self-apoptosis of T cells. However, their potential effects on cell apoptosis in tumors are still unknown. In this study, we purified exosomes expressing FasL from activated CD8(+) T cell from OT-I mice and found that activated T cell exosomes had little effect on apoptosis and proliferation of tumor cells but promoted the invasion of B16 and 3LL cancer cells in vitro via the Fas/FasL pathway. Activated T cell exosomes increased the amount of cellular FLICE inhibitory proteins and subsequently activated the ERK and NF-κB pathways, which subsequently increased MMP9 expression in the B16 murine melanoma cells. In a tumor-invasive model in vivo, we observed that the activated T cell exosomes promoted the migration of B16 tumor cells to lung. Interestingly, pretreatment with FasL mAb significantly reduced the migration of B16 tumor cells to lung. Furthermore, CD8 and FasL double-positive exosomes from tumor mice, but not normal mice, also increased the expression of MMP9 and promoted the invasive ability of B16 murine melanoma and 3LL lung cancer cells. In conclusion, our results indicate that activated T cell exosomes promote melanoma and lung cancer cell metastasis by increasing the expression of MMP9 via Fas signaling, revealing a new mechanism of tumor immune escape.  相似文献   

17.
CTL have evolved two major mechanisms for target cell killing: one mediated by perforin/granzyme secretion and the other by Fas/Fas ligand (L) interaction. Although cytokines are integral to the development of naive CTL into cytolytic effectors, the role of cytokines on mechanisms of CTL killing is just emerging. In this study, we evaluate the effects of IL-4 in Fas(CD95)/FasL(CD95L)-mediated killing of Fas-overexpressing target cells. Recombinant vaccinia viruses (vv) were constructed to express respiratory syncytial virus M2 Ag alone (vvM2) or coexpress M2 and IL-4 (vvM2/IL-4). MHC-matched Fas-overexpressing target cells (L1210Fas+) were used to measure both perforin- and FasL-mediated killing pathways. In contrast to Fas-deficient (L1210Fas-) target cells, effectors from vvM2/IL-4-immunized mice were able to lyse L1210Fas+ target cells with similar magnitude as vvM2-infected mice. Addition of EGTA/Mg2+ revealed that effectors from vvM2/IL-4-infected mice primarily lyse targets by a Ca2+-independent Fas/FasL pathway. Analysis of FasL expression by flow cytometry showed that IL-4 increased cell surface FasL expression on CD4+ and CD8+ splenocytes, with peak expression on day 4 after infection. These data demonstrate that IL-4 increases FasL expression on T cells, resulting in a shift of the mechanism of CTL killing from a dominant perforin-mediated cytolytic pathway to a dominant FasL-mediated cytolytic pathway.  相似文献   

18.
The objective of the current study was to assess the expression of Fas ligand (FasL) and Fas receptor (FasR) as the proteins of the post-mitochondrial apoptotic pathway in colorectal carcinoma and to investigate correlations between their expression and chosen clinico-pathological parameters. The protein expression was analyzed in 50 colorectal carcinoma patients, using the immunohistochemical method. Reaction for FasR was weak in 75.5% and strong in 24.5% of the study patients, as compared to normal glandular epithelium where FasR expression was strong in 100% of cases. On the other hand, FasL expression was found to be weak in 30% and strong in 70% of colorectal cancer patients, as compared to its lack in 100% of normal colorectal epithelium. Statistical analysis showed strong expression of FasL was found to correlate statistically significantly with vascular invasion (p = 0.005). No correlations of FasL and FasR expression in the main mass of tumor was found between other clinic-pathological parameters. Fas ligand and Fas receptor appeared to be of little usefulness as prognostic factors for different groups of colorectal carcinoma patients. However, these proteins could become good therapeutic targets for colorectal carcinoma since their expression differs distinctly between normal intestinal epithelium and cancer cells, and known is the mechanism by which cancer cells escape death via apoptosis-inducing Fas/FasL pathway disorders.  相似文献   

19.
The Fas ligand (FasL)/Fas pathway is crucial for homeostasis of the immune system and peripheral tolerance. Peripheral lymphocyte deletion involves FasL/Fas in at least two ways: coexpression of both Fas and its ligand on T cells, leading to activation-induced cell death, and expression of FasL by nonlymphoid cells, such as intestinal epithelial cells (IEC), that kill Fas-positive T cells. We demonstrate here that superantigen Staphylococcus enterotoxin B (SEB) induced a dramatic upregulation of FasL, TRAIL, and TNF mRNA expression and function in IEC from BALB/c and C57BL/6 mice. Using adoptive transfer in which CD4(+) T cells from OT-2 T-cell receptor transgenic mice were transferred into recipients, we observed an induction in IEC of FasL, TRAIL, and TNF mRNA after administration of antigen. Specific Egr-binding sites have been identified in the 5' promoter region of the FasL gene, and Egr-1, Egr-2, and Egr-3 mRNA in IEC from mice treated with SEB and from transgenic OT-2 mice after administration of antigen was upregulated. Overexpression of Egr-2 and Egr-3 induced endogenous ligand upregulation that was inhibited by overexpression of Egr-specific inhibitor Nab1. These results support a role for Egr family members in nonlymphoid expression of FasL, TRAIL, and TNF.  相似文献   

20.
The control of B cell expansion has been thought to be solely regulated by T lymphocytes. We show in this study that Trypanosoma cruzi infection induces up-regulation of both Fas and Fas ligand (FasL) molecules on B cells and renders them susceptible to B cell-B cell killing (referred to as fratricide throughout this paper) mediated via Fas/FasL. Moreover, by in vivo administration of anti-FasL blocking mAb we demonstrate that Fas-mediated B cell apoptosis is an ongoing process during this parasitic infection. We also provide evidence that B cells that have switched to IgG isotype are the preferential targets of B cell fratricide. More strikingly, this death pathway selectively affects IgG(+) B cells reactive to parasite but not self Ags. Parasite-specific but not self-reactive B cells triggered during this response are rescued after either in vitro or in vivo FasL blockade. Fratricide among parasite-specific IgG(+) B lymphocytes could impair the immune control of T. cruzi and possibly other chronic protozoan parasites. Our results raise the possibility that the blockade of Fas/FasL interaction in the B cell compartment of T. cruzi-infected mice may provide a means for enhancing antiparasitic humoral immune response without affecting host tolerance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号