首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cadmium induces p53-dependent apoptosis in human prostate epithelial cells   总被引:1,自引:0,他引:1  
Cadmium, a widespread toxic pollutant of occupational and environmental concern, is a known human carcinogen. The prostate is a potential target for cadmium carcinogenesis, although the underlying mechanisms are still unclear. Furthermore, cadmium may induce cell death by apoptosis in various cell types, and it has been hypothesized that a key factor in cadmium-induced malignant transformation is acquisition of apoptotic resistance. We investigated the in vitro effects produced by cadmium exposure in normal or tumor cells derived from human prostate epithelium, including RWPE-1 and its cadmium-transformed derivative CTPE, the primary adenocarcinoma 22Rv1 and CWR-R1 cells and LNCaP, PC-3 and DU145 metastatic cancer cell lines. Cells were treated for 24 hours with different concentrations of CdCl(2) and apoptosis, cell cycle distribution and expression of tumor suppressor proteins were analyzed. Subsequently, cellular response to cadmium was evaluated after siRNA-mediated p53 silencing in wild type p53-expressing RWPE-1 and LNCaP cells, and after adenoviral p53 overexpression in p53-deficient DU145 and PC-3 cell lines. The cell lines exhibited different sensitivity to cadmium, and 24-hour exposure to different CdCl(2) concentrations induced dose- and cell type-dependent apoptotic response and inhibition of cell proliferation that correlated with accumulation of functional p53 and overexpression of p21 in wild type p53-expressing cell lines. On the other hand, p53 silencing was able to suppress cadmium-induced apoptosis. Our results demonstrate that cadmium can induce p53-dependent apoptosis in human prostate epithelial cells and suggest p53 mutation as a possible contributing factor for the acquisition of apoptotic resistance in cadmium prostatic carcinogenesis.  相似文献   

2.
3.
The molecular mechanisms controlling DNA-damage-induced apoptosis of human embryonic stem cells (hESC) are poorly understood. Here we investigate the role of p53 in etoposide-induced apoptosis. We show that p53 is constitutively expressed at high levels in the cytoplasm of hESC. Etoposide treatment results in a rapid and extensive induction of apoptosis and leads to a further increase in p53 and PUMA expression as well as Bax processing. p53 both translocates to the nucleus and associates with the mitochondria, accompanied by colocalization of Bax with Mcl1. hESC stably transduced with p53 shRNA display 80% reduction of endogenous p53 and exhibit an 80% reduction in etoposide-induced apoptosis accompanied by constitutive downregulation of Bax and an attenuated upregulation of PUMA. Our data further show that undifferentiated hESC that express Oct4 are much more sensitive to etoposide-induced apoptosis than their more differentiated progeny. Our study demonstrates that p53 is required for etoposide-induced apoptosis of hESC and reveals, at least in part, the molecular mechanism of DNA-damage-induced apoptosis in hESC.  相似文献   

4.
Choudhuri T  Pal S  Agwarwal ML  Das T  Sa G 《FEBS letters》2002,512(1-3):334-340
The aim of this study was to determine the mechanisms of curcumin-induced human breast cancer cell apoptosis. From quantitative image analysis data showing an increase in the percentage of cells with a sub-G0/G1 DNA content, we demonstrated curcumin-induced apoptosis in the breast cancer cell line MCF-7, in which expression of wild-type p53 could be induced. Apoptosis was accompanied by an increase in p53 level as well as its DNA-binding activity followed by Bax expression at the protein level. Further experiments using p53-null MDAH041 cell as well as low and high p53-expressing TR9-7 cell, in which p53 expression is under tight control of tetracycline, established that curcumin induced apoptosis in tumor cells via a p53-dependent pathway in which Bax is the downstream effector of p53. This property of curcumin suggests that this molecule could have a possible therapeutic potential in breast cancer patients.  相似文献   

5.
6.
7.
Kuo YC  Kuo PL  Hsu YL  Cho CY  Lin CC 《Life sciences》2006,78(22):2550-2557
Ellipticine (5,11-dimethyl-6H-pyrido[4,3-b]carbazole), one of the simplest naturally occurring alkaloids, was isolated from the leaves of the evergreen tree Ochrosia elliptica Labill (Apocynaceae). Here, we reported that ellipticine inhibited the cell growth of human hepatocellular carcinoma cell line HepG2 and provided molecular understanding of this effect. The XTT assay results showed that ellipticine decreased the cell viability of HepG2 cells in a dose- and time-dependent manner, and the IC50 value was 4.1 microM. Furthermore, apoptosis induction by ellipticine in HepG2 cells was verified by the appearance of DNA fragmentation and annexin V-FITC/propidium iodide (PI) staining assay. Ellipticine treatment was found to result in the upregulation of p53, Fas/APO-1 receptor and Fas ligand. Besides, ellipticine also initiated mitochondrial apoptotic pathway through regulation of Bcl-2 family proteins expression, alteration of mitochondrial membrane potential (DeltaPsim), and activation of caspase-9 and caspase-3. Taken together, ellipticine decreased the cell growth and induced apoptosis in HepG2 cell.  相似文献   

8.
Emodin-induced apoptosis through p53-dependent pathway in human hepatoma cells   总被引:13,自引:0,他引:13  
Shieh DE  Chen YY  Yen MH  Chiang LC  Lin CC 《Life sciences》2004,74(18):2279-2290
Most of the commonly used cytotoxic anticancer drugs have been shown to induce apoptosis in susceptible cells. However, the signaling pathway of their apoptotic effects remains undefined. In this study, the cytotoxic effect of emodin on various human hepatoma cell lines was investigated. Results demonstrated that emodin exhibited strongly suppressing effect on HepG2/C3A, PLC/PRF/5, and SK-HEP-1 cells, with the IC(50) value of 42.5, 46.6, and 53.1 microM, respectively. Furthermore, emodin induced apoptosis in HepG2/C3A cells was clearly verified by the appearance of DNA fragmentation and sub-G(1) accumulation. Besides, HepG2/C3A cells were found to be arrested in G(2)/M phase after the cells were treated with 60 microM emodin for 48 h. Moreover, significant increase in the levels of apoptosis-related signals such as p53 (419.3 pg/ml), p21 (437.4 units/ml), Fas (6.6 units/ml), and caspase-3 (35.4 pmol/min) were observed in emodin treated HepG2/C3A cells. Taken together, emodin displays effective inhibitory effects on the growth of various human hepatoma cell lines and stimulates the expression of p53 and p21 that resulted in the cell cycle arrest of HepG2/C3A cells at G(2)/M phase. Results also suggest that emodin-induced apoptosis in HepG2/C3A cells were mediated through the activation of p53, p21, Fas/APO-1, and caspase-3. It implies that emodin could be a useful chemotherapeutical agent for treatment of hepatocellular carcinoma (HCC).  相似文献   

9.
Huang J  Xu LG  Liu T  Zhai Z  Shu HB 《FEBS letters》2006,580(3):940-947
Recently, it has been shown that really interesting new gene (RING)-in between ring finger (IBR)-RING domain-containing proteins, such as Parkin and Parc, are E3 ubiquitin ligases and are involved in regulation of apoptosis. In this report, we show that p53-inducible RING-finger protein (p53RFP), a p53-inducible E3 ubiquitin ligase, induces p53-dependent but caspase-independent apoptosis. p53RFP contains an N-terminal RING-IBR-RING domain and an uncharacterized, evolutionally highly conserved C-terminal domain. p53RFP interacts with E2 ubiquitin-conjugating enzymes UbcH7 and UbcH8 but not with UbcH5, and this interaction is mediated through the RING-IBR-RING domain of p53RFP. Interestingly, the conserved C-terminal domain of p53RFP is required and sufficient for p53RFP-mediated apoptosis, suggesting p53RFP-mediated apoptosis does not require its E3 ubiquitin ligase activity. Together with a recent report showing that p53RFP is involved in ubiquitination and degradation of p21, a p53 downstream protein promoting growth arrest and antagonizing apoptosis, our findings suggest that p53RFP is involved in switching a cell from p53-mediated growth arrest to apoptosis.  相似文献   

10.
Both conjugated linoleic acid (CLA), which contains conjugated double bonds, and eicosapentaenoic acid (EPA), an n-3 polyunsaturated fatty acid, have antitumor effects. Hence, we hypothesized that a combination of conjugated double bonds and an n-3 highly unsaturated fatty acid may produce a stronger antitumor effect, and we have previously shown that conjugated EPA (CEPA), prepared by alkaline treatment of EPA, induces strong and selective apoptosis in vitro and in vivo, with the mechanism proceeding via lipid peroxidation. In this study, we examined CEPA-induced gene expression in DLD-1 colorectal adenocarcinoma human cells carrying a mutant p53, in order to understand the details of CEPA-induced apoptosis via lipid peroxidation. DNA microarray analysis of 9970 genes was performed by comparison of CEPA-treated DLD-1 cells with untreated DLD-1 cells, thereby allowing determination of the differential gene expression profile induced by CEPA in these cells. CEPA treatment caused up-regulation of expression of genes induced by p53 and activation of the mitochondrial apoptosis pathway via Bax and the death pathway via TRAIL, leading to apoptosis of DLD-1 cells. In addition, activation of the mutant p53 was also induced by CEPA, and these effects showed lipid-peroxidation dependency. This is the first such gene expression analysis of the effects of CEPA, and our results confirm that CEPA induces lipid peroxidation, activates mutant p53, and causes p53-dependent apoptosis in DLD-1 cells.  相似文献   

11.

Background  

We have previously reported that glycerol acts as a chemical chaperone to restore the expression of WAF1 in some human cancer cell lines bearing mutant p53. Since the expression of WAF1 is up-regulated by activated wildtype p53, glycerol appears to restore wtp53 function. The aim of the present study is to examine the restoration of heat-induced p53-dependent apoptosis by glycerol in human glioblastoma cells (A-172) transfected with a vector carrying a mutant p53 gene (A-172/mp53 cells) or neo control vector (A-172/neo cells).  相似文献   

12.
13.
Chan WH 《IUBMB life》2008,60(3):171-179
The mycotoxin citrinin (CTN) is a natural contaminant in foodstuffs and animal feeds, and exerts cytotoxic and genotoxic effects on various mammalian cells. CTN causes cell injury, including apoptosis. However, its precise regulatory mechanisms of action, particularly in stem cells and embryos, are currently unclear. Recent studies show that CTN has cytotoxic effects on mouse embryonic stem cells and blastocysts, and is associated with defects in their subsequent development, both in vitro and in vivo. Experiments with the embryonic stem cell line, ESC-B5, disclose that CTN induces apoptosis via several mechanisms, including ROS generation, increased cytoplasmic free calcium levels, intracellular nitric oxide production, enhanced Bax/Bcl-2 ratio, loss of mitochondrial membrane potential, cytochrome c release, activation of caspase-9 and caspase-3, and p21-activated protein kinase 2 and c-Jun N-terminal protein kinase activation. Additional studies show that CTN promotes cell death via inactivation of the HSP90/multi-chaperone complex and subsequent degradation of Ras and Raf-1, further inhibiting anti-apoptotic processes such as the Ras-->ERK signal transduction pathway. On the basis of these findings, we propose a model for CTN-induced cell injury signalling cascades in embryonic stem cells and blastocysts.  相似文献   

14.
Despite an increasing interest in the role of the p53 tumour suppressor protein in embryonic stem cells, not much is known about its regulation in this cell type.We show that the relatively high amount of p53 protein correlates with a higher amount of p53 RNA in ES cells compared to differentiated cells. Moreover, p53 RNA is more stable in embryonic stem cells and the p53 protein is more often transcribed. This is at least partly due to decreased expression of miRNA-125a and 125b in embryonic stem cells. Despite its cytoplasmic localisation, p53 is degraded in 26S proteasomes in embryonic stem cells. This process is controlled by Mdm2, the deubiquitinating enzyme Hausp and Ubc13. In contrast, the E3 ligase PirH2 appears to be less important for the control of p53 in embryonic stem cells. During differentiation, p53 protein and RNA levels are decreased which corresponds to increased expression of miRNA-125a and miRNA-125b.  相似文献   

15.
16.
p53 triggers apoptosis in response to cellular stress. We analyzed p53-dependent gene and protein expression in response to hypoxia using wild-type p53-carrying or p53 null HCT116 colon carcinoma cells. Hypoxia induced p53 protein levels and p53-dependent apoptosis in these cells. cDNA microarray analysis revealed that only a limited number of genes were regulated by p53 upon hypoxia. Most classical p53 target genes were not upregulated. However, we found that Fas/CD95 was significantly induced in response to hypoxia in a p53-dependent manner, along with several novel p53 target genes including ANXA1, DDIT3/GADD153 (CHOP), SEL1L and SMURF1. Disruption of Fas/CD95 signalling using anti-Fas-blocking antibody or a caspase 8 inhibitor abrogated p53-induced apoptosis in response to hypoxia. We conclude that hypoxia triggers a p53-dependent gene expression pattern distinct from that induced by other stress agents and that Fas/CD95 is a critical regulator of p53-dependent apoptosis upon hypoxia.  相似文献   

17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号