首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Recombinant Saccharomyces cerevisiae strains were developed to overproduce an anticoagulant hirudin. The delta-sequences of the yeast retrotransposon Ty1 and URA3 were used as target sites for a hirudin expression cassette. High copy-number transformants were successfully selected using a dominant selection antibiotic, G418. The copy numbers of the hirudin expression cassette integrated into delta-sequences of the yeast chromosome ranged from five to ten copies per cell. Production of hirudin in the delta-integrated recombinant S. cerevisiae system increased over two-fold compared with the YEp-based episomal hirudin expression system. A linear relationship between the copy number of the hirudin expression cassette and hirudin expression level was observed up to 10 copies. The hirudin expression cassettes integrated into the yeast chromosome were stably maintained in non-selective culture conditions.  相似文献   

2.
J J Manis  S K Highlander 《Gene》1982,18(1):13-20
An organism classified as Streptomyces espinosus was found to carry an approx. 9.2-kb plasmid. This plasmid, designated pUC6, has a copy number of 30-40 per host genome equivalent. Plasmid pUC1061, a copy-number mutant of pUC6, was isolated after in vitro deletion of an approx. 2.0-kb XhoI restriction fragment. Plasmid pUC1061 has a copy number of 500-600. Plasmid pUC1061 appears to be incompatible with pUC6 and will transform a pUC6-containing culture at a frequency of approx. 1%. The sizes, restriction maps and copy numbers of plasmids pUC6 and pUC1061 indicate these may be valuable vectors for gene cloning Streptomyces.  相似文献   

3.
Maintenance of some ColE1-type plasmids in chemostat culture   总被引:11,自引:0,他引:11  
Summary When cells carrying the plasmids RP1, pDS4101 (a ColK derivative) or pDS1109 (a ColE1 derivative) were maintained in chemostat culture in the absence of antibiotic selection, plasmid-free segregants were not detected after 120 generations of nutrient-limited growth. By contrast, plasmid-free segregants of pMB9- and pBR322-containing cells arose after approximately 30 generations, irrespective of the host genetic background. However, even though pDS1109 was maintained its copy-number fell five-fold during 80 generations of limited growth. It is suggested that loss of pBR322 occurs following a similar copy-number decrease which results in defective segregation of the plasmid to daughter host cells. This defective segregation was not complemented in trans by either RP1 or pDS4101.  相似文献   

4.
Cheng C  Kimmel R  Neiman P  Zhao LP 《Genomics》2003,82(2):122-129
cDNA microarray technology has been applied to the detection of DNA copy-number changes in malignant tumors. Test and control genomic DNA samples are differentially labeled and cohybridized to a spotted cDNA microarray. The ratio of test to control fluorescence intensities for each spot reflects relative gene copy number. The low signal-to-noise ratios of this assay and the variable levels of gene amplification and deletion among tumors hamper the detection of deviations from the diploid complement. We describe a regression-based statistical method to test for altered copy number on each gene and apply the technique to copy-number profiles in 10 thyroid tumors. We show that a novel transformation of fluorescence ratios into array rank order efficiently normalizes the heterogeneity among copy-number profiles and improves the reproducibility of the results. Array rank order regression analysis enhances the detection of consistent changes in gene copy number in solid tumors by cDNA microarray-based comparative genome hybridization.  相似文献   

5.
Extensive copy-number variation of the human olfactory receptor gene family   总被引:3,自引:0,他引:3  
As much as a quarter of the human genome has been reported to vary in copy number between individuals, including regions containing about half of the members of the olfactory receptor (OR) gene family. We have undertaken a detailed study of copy-number variation of ORs to elucidate the selective and mechanistic forces acting on this gene family and the true impact of copy-number variation on human OR repertoires. We argue that the properties of copy-number variants (CNVs) and other sets of large genomic regions violate the assumptions of statistical methods that are commonly used in the assessment of gene enrichment. Using more appropriate methods, we provide evidence that OR enrichment in CNVs is not due to positive selection but is because of OR preponderance in segmentally duplicated regions, which are known to be frequently copy-number variable, and because purifying selection against CNVs is lower in OR-containing regions than in regions containing essential genes. We also combine multiplex ligation-dependent probe amplification (MLPA) and PCR to assay the copy numbers of 37 candidate CNV ORs in a panel of ~50 human individuals. We confirm copy-number variation of 18 ORs but find no variation in this human-diversity panel for 16 other ORs, highlighting the caveat that reported intervals often overrepresent true CNVs. The copy-number variation we describe is likely to underpin significant variation in olfactory abilities among human individuals. Finally, we show that both homology-based and homology-independent processes have played a recent role in remodeling the OR family.  相似文献   

6.
Two elements, the products of genes copG and rnall , are involved in the copy-number control of plasmid pLS1. RNA II is synthesized in a dosage-dependent manner. Mutations in both components have been characterized. To determine the regulatory role of the two genes, we have cloned copG , rnall or both elements at various gene dosages into pLS1-compatible plasmids. Assays of incompatibility towards wild-type or mutant pLS1 plasmids showed that: (i) the rnall gene product, rather than the DNA sequence encoding it, is responsible for the incompatibility, and (ii) CopG and RNA II act in trans and are able to correct up fluctuations in pLS1 copy number. A correlation between the gene dosage at which the regulatory elements were supplied and the incompatibility effect on the resident plasmid was observed. The entire copG-rnall circuit has a synergistic effect when compared with any of its components in the correction of pLS1 copy-number fluctuations, indicating that, in the homoplasmid steady-state situation, the control of pLS1 replication is exerted by the co-ordinate action of CopG and RNA II.  相似文献   

7.
In order to increase a production level of antithrombotic hirudin, BiP was simultaneously expressed in recombinant Saccharomyces cerevisiae strains carrying ten and 15 copies of the hirudin expression cassette integrated in the chromosome. Coexpression of BiP greatly enhanced both cell growth and hirudin production in recombinant S. cerevisiae. Maximum hirudin concentration of 36 mg l(-1) was obtained from batch culture of the ten copy-number transformant concomitantly harboring an episomal copy of the BiP gene under the control of the GAL1 promoter, which is corresponding to a 2.5-fold increase compared with the control strain carrying the genomic BiP gene only. The mean size of the recombinant yeast cells expressing the BiP gene remained at a relatively constant level compared with the control strains of which size increased after the onset of hirudin expression by the GAL10 promoter.  相似文献   

8.
High-copy-number derivatives of the plasmid cloning vector pBR322   总被引:16,自引:0,他引:16  
A stable copy-number mutant of a pBR322-derived plasmid was isolated. The mutation was found to be a single G → T transversion located near the 3' end of a DNA segment coding for the regulatory RNA I. The resulting copy number for this plasmid is approx. 1000 per cell or 65 % of total cellular DNA. Several cloning vectors have been constructed from this copy-number mutant and their practical application is discussed.  相似文献   

9.
The eclipse period (the time period during which a newly replicated plasmid copy is not available for a new replication) of plasmid R1 in Escherichia coli was determined with the classic Meselson-Stahl density-shift experiment. A mini-plasmid with the wild-type R1 replicon and a mutant with a thermo-inducible runaway-replication phenotype were used in this work. The eclipses of the chromosome and of the wild-type plasmid were 0.6 and 0.2 generation times, respectively, at temperatures ranging from 30 degrees C to 42 degrees C. The mutant plasmid had a similar eclipse at temperatures up to 38 degrees C. At 42 degrees C, the plasmid copy number increased rapidly because of the absence of replication control and replication reached a rate of 350-400 plasmid replications per cell and cell generation. During uncontrolled replication, the eclipse was about 3 min compared with 10 min at controlled replication (the wild-type plasmid at 42 degrees C). Hence, the copy-number control system contributed significantly to the eclipse. The eclipse in the absence of copy-number control (3 min) presumably is caused by structural requirements: the covalently closed circular plasmid DNA has to regain the right degree of superhelicity needed for initiation of replication and it takes time to assemble the initiation factors.  相似文献   

10.
Turgeon N  Laflamme C  Ho J  Duchaine C 《Plasmid》2008,60(2):118-124
Only a small number of studies have measured the plasmid copy number (PCN) variation during bacterial growth. Besides, information about the PCN in spores is still rare. In this work, we utilized a real-time PCR assay to evaluate the PCN of four different plasmids in Bacillus cereus. The PCN was measured in spores as well as during germination, active bacterial growth, and sporulation. Plasmid stability was also evaluated to ensure that plasmid loss does not affect the accuracy of the PCN measurement. We demonstrated that the PCN of low and high copy number plasmids varies with growth phase as well as culture media over B. cereus life cycle. The PCN was minimum during the germination and maximum during the stationary growth phase for all plasmids tested. We also demonstrated that the use of antibiotic in the culture media is not enough to ensure stable inheritance in spores of plasmids carrying antibiotic resistance genes. Moreover, we revealed that the PCN in spores is related to the PCN during endospores formation. Therefore, the plasmid partitioning during sporulation is not influenced by the unequal-size of the forespores and the mother cells, even for a plasmid distributed randomly.  相似文献   

11.
We report on the identification of a 0.3 Mb inherited recurrent but variable copy-number gain at Xq28 in affected males of four unrelated families with X-linked mental retardation (MR). All aberrations segregate with the disease in the families, and the carrier mothers show nonrandom X chromosome inactivation. Tiling Xq28-region-specific oligo array revealed that all aberrations start at the beginning of the low copy repeat LCR-K1, at position 153.20 Mb, and end just distal to LCR-L2, at 153.54 Mb. The copy-number gain always includes 18 annotated genes, of which RPL10, ATP6AP1 and GDI1 are highly expressed in brain. From these, GDI1 is the most likely candidate gene. Its copy number correlates with the severity of clinical features, because it is duplicated in one family with nonsyndromic moderate MR, is triplicated in males from two families with mild MR and additional features, and is present in five copies in a fourth family with a severe syndromic form of MR. Moreover, expression analysis revealed copy-number-dependent increased mRNA levels in affected patients compared to control individuals. Interestingly, analysis of the breakpoint regions suggests a recombination mechanism that involves two adjacent but different sets of low copy repeats. Taken together, our data strongly suggest that an increased expression of GDI1 results in impaired cognition in a dosage-dependent manner. Moreover, these data also imply that a copy-number gain of an individual gene present in the larger genomic aberration that leads to the severe MECP2 duplication syndrome can of itself result in a clinical phenotype as well.  相似文献   

12.
Whole genome sequencing of matched tumor-normal sample pairs is becoming routine in cancer research. However, analysis of somatic copy-number changes from sequencing data is still challenging because of insufficient sequencing coverage, unknown tumor sample purity and subclonal heterogeneity. Here we describe a computational framework, named SomatiCA, which explicitly accounts for tumor purity and subclonality in the analysis of somatic copy-number profiles. Taking read depths (RD) and lesser allele frequencies (LAF) as input, SomatiCA will output 1) admixture rate for each tumor sample, 2) somatic allelic copy-number for each genomic segment, 3) fraction of tumor cells with subclonal change in each somatic copy number aberration (SCNA), and 4) a list of substantial genomic aberration events including gain, loss and LOH. SomatiCA is available as a Bioconductor R package at http://www.bioconductor.org/packages/2.13/bioc/html/SomatiCA.html.  相似文献   

13.
The yeast 2 microns plasmid is found in the nucleus of almost all Saccharomyces cerevisiae strains. Its replication is very similar to that of chromosomal DNA. Although the plasmid does not encode essential genes it is stably maintained in the yeast population and exhibits only a small, though detectable, loss rate. This stability is achieved by a plasmid-encoded copy-number control system which ensures constant plasmid levels. For the investigation of 2 microns replication, a yeast strain that is absolutely dependent on this plasmid was constructed. This was achieved by disruption of the chromosomal CDC9 gene, coding for DNA ligase and providing this essential gene on a 2 microns-derived plasmid. This plasmid is absolutely stable under all growth conditions tested. Using the temperature-sensitive mutant allele cdc9-1 we have developed an artificial control system which allows one to change the copy number of 2 microns-derived plasmids solely by changing the incubation temperature.  相似文献   

14.
15.
Several copy number-altered regions (CNAs) have been identified in the genome of cervical cancer, notably, amplifications of 3q and 5p. However, the contribution of copy-number alterations to cervical carcinogenesis is unresolved because genome-wide there exists a lack of correlation between copy-number alterations and gene expression. In this study, we investigated whether CNAs in the cell lines CaLo, CaSki, HeLa, and SiHa were associated with changes in gene expression. On average, 19.2% of the cell-line genomes had CNAs. However, only 2.4% comprised minimal recurrent regions (MRRs) common to all the cell lines. Whereas 3q had limited common gains (13%), 5p was entirely duplicated recurrently. Genome-wide, only 15.6% of genes located in CNAs changed gene expression; in contrast, the rate in MRRs was up to 3 times this. Chr 5p was confirmed entirely amplified by FISH; however, maximum 33.5% of the explored genes in 5p were deregulated. In 3q, this rate was 13.4%. Even in 3q26, which had 5 MRRs and 38.7% recurrently gained SNPs, the rate was only 15.1%. Interestingly, up to 19% of deregulated genes in 5p and 73% in 3q26 were downregulated, suggesting additional factors were involved in gene repression. The deregulated genes in 3q and 5p occurred in clusters, suggesting local chromatin factors may also influence gene expression. In regions amplified discontinuously, downregulated genes increased steadily as the number of amplified SNPs increased (p<0.01, Spearman's correlation). Therefore, partial gene amplification may function in silencing gene expression. Additional genes in 1q, 3q and 5p could be involved in cervical carcinogenesis, specifically in apoptosis. These include PARP1 in 1q, TNFSF10 and ECT2 in 3q and CLPTM1L, AHRR, PDCD6, and DAP in 5p. Overall, gene expression and copy-number profiles reveal factors other than gene dosage, like epigenetic or chromatin domains, may influence gene expression within the entirely amplified genome segments.  相似文献   

16.
Loss of heterozygosity (LOH), either with or without accompanying copy-number loss, is a cardinal feature of cancer genomes that is tightly linked to cancer development. However, detection of LOH is frequently hampered by the presence of normal cell components within tumor specimens and the limitation in availability of constitutive DNA. Here, we describe a simple but highly sensitive method for genomewide detection of allelic composition, based on the Affymetrix single-nucleotide-polymorphism genotyping microarray platform, without dependence on the availability of constitutive DNA. By sensing subtle distortions in allele-specific signals caused by allelic imbalance with the use of anonymous controls, sensitive detection of LOH is enabled with accurate determination of allele-specific copy numbers, even in the presence of up to 70%-80% normal cell contamination. The performance of the new algorithm, called "AsCNAR" (allele-specific copy-number analysis using anonymous references), was demonstrated by detecting the copy-number neutral LOH, or uniparental disomy (UPD), in a large number of acute leukemia samples. We next applied this technique to detection of UPD involving the 9p arm in myeloproliferative disorders (MPDs), which is tightly associated with a homozygous JAK2 mutation. It revealed an unexpectedly high frequency of 9p UPD that otherwise would have been undetected and also disclosed the existence of multiple subpopulations having distinct 9p UPD within the same MPD specimen. In conclusion, AsCNAR should substantially improve our ability to dissect the complexity of cancer genomes and should contribute to our understanding of the genetic basis of human cancers.  相似文献   

17.

Background

Tandem repeat variation in protein-coding regions will alter protein length and may introduce frameshifts. Tandem repeat variants are associated with variation in pathogenicity in bacteria and with human disease. We characterized tandem repeat polymorphism in human proteins, using the UniGene database, and tested whether these were associated with host defense roles.

Results

Protein-coding tandem repeat copy-number polymorphisms were detected in 249 tandem repeats found in 218 UniGene clusters; observed length differences ranged from 2 to 144 nucleotides, with unit copy lengths ranging from 2 to 57. This corresponded to 1.59% (218/13,749) of proteins investigated carrying detectable polymorphisms in the copy-number of protein-coding tandem repeats. We found no evidence that tandem repeat copy-number polymorphism was significantly elevated in defense-response proteins (p = 0.882). An association with the Gene Ontology term 'protein-binding' remained significant after covariate adjustment and correction for multiple testing. Combining this analysis with previous experimental evaluations of tandem repeat polymorphism, we estimate the approximate mean frequency of tandem repeat polymorphisms in human proteins to be 6%. Because 13.9% of the polymorphisms were not a multiple of three nucleotides, up to 1% of proteins may contain frameshifting tandem repeat polymorphisms.

Conclusion

Around 1 in 20 human proteins are likely to contain tandem repeat copy-number polymorphisms within coding regions. Such polymorphisms are not more frequent among defense-response proteins; their prevalence among protein-binding proteins may reflect lower selective constraints on their structural modification. The impact of frameshifting and longer copy-number variants on protein function and disease merits further investigation.  相似文献   

18.
A versatile system that permits genetic manipulation of a psychrotrophic deep-sea bacterium, Pseudoalteromonas sp. PS1M3, has been developed. A cryptic indigenous plasmid, pPS1M3, of 3.1 kb from the above strain was isolated and characterized. The nucleotide sequence analysis of plasmid pPS1M3 revealed the presence of one open reading frame, and its deduced amino acid sequence was identified as the essential protein for plasmid maintenance. Transformation with the pPS1M3 harboring antibiotic resistance genes by electroporation was fully successful using the pPS1M3-cured strain as a host. This plasmid was quite stable under nonselective culture conditions for about 100 generations at 4°C. The copy number of this plasmid in the cell was about 5 copies per chromosome. Received May 30, 2000; accepted October 11, 2000.  相似文献   

19.
An actinomycetous culture 2562 inhibiting the growth of gramnegative bacteria was isolated from a soil sample. The culture was classified as Streptomyces griseovariabilis. It was found that culture 2562 produced an antibiotic belonging to the group of novobiocin. It consists of 2 components. One of them is identical to chlorobiocin and the other is a minor component of this group. Some parameters of the antibiotic complex production by strain 2562 under submerged conditions were studied. Nutrient media providing the predominant biosynthesis of the first (main) or the second component of the antibiotic were developed.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号