首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The incorporation of unnatural amino acids site-specifically is a valuable technique for structure-function studies, incorporation of biophysical probes, and determining protein-protein interactions. THG73 is an amber suppressor tRNA used extensively for the incorporation of >100 different residues in over 20 proteins, but under certain conditions THG73 is aminoacylated in vivo by endogenous aminoacyl-tRNA synthetase. Similar aminoacylation is seen with the Escherichia coli Asn amber suppressor tRNA, which has also been used to incorporate UAAs in many studies. We now find that the natural amino acid placed on THG73 is Gln. Since the E. coli GlnRS recognizes positions in the acceptor stem, we made several acceptor stem mutations in the second to fourth positions on THG73. All mutations reduce aminoacylation in vivo and allow for the selection of highly orthogonal tRNAs. To show the generality of these mutations, we created opal suppressor tRNAs that show less aminoacylation in Xenopus oocytes relative to THG73. We have created a library of Tetrahymena thermophila Gln amber suppressor tRNAs that will be useful for determining optimal suppressor tRNAs for use in other eukaryotic cells.  相似文献   

2.
The discriminator nucleotide (position 73) in tRNA has long been thought to play a role in tRNA identity as it is the only variable single-stranded nucleotide that is found near the site of aminoacylation. For this reason, a complete mutagenic analysis of the discriminator in three Escherichia coli amber suppressor tRNA backgrounds was undertaken; supE and supE-G1C72 glutamine tRNAs, gluA glutamate tRNA and supF tyrosine tRNA. The effect of mutation of the discriminator base on the identity of these tRNAs in vivo was assayed by N-terminal protein sequencing of E. coli dihydrofolate reductase, which is the product of suppression by the mutated amber suppressors, and confirmed by amino acid specific suppression experiments. In addition, suppressor efficiency assays were used to estimate the efficiency of aminoacylation in vivo. Our results indicate that the supE glutamine tRNA context can tolerate multiple mutations (including mutation of the discriminator and first base-pair) and still remain predominantly glutamine-accepting. Discriminator mutants of gluA glutamate tRNA exhibit increased and altered specificity probably due to the reduced ability of other synthetases to compete with glutamyl-tRNA synthetase. In the course of these experiments, a glutamate-specific mutant amber suppressor, gluA-A73, was created. Finally, in the case of supF tyrosine tRNA, the discriminator is an important identity element with partial to complete loss of tyrosine specificity resulting from mutation at this position. It is clear from these experiments that it may not be possible to assign a specific role in tRNA identity to the discriminator. The identity of a tRNA in vivo is determined by competition among aminoacyl-tRNA synthetases, which is in turn modulated by the nucleotide substitution as well as the tRNA context.  相似文献   

3.
We describe the generation of a complete set of orthogonal 21st synthetase-amber, ochre and opal suppressor tRNA pairs including the first report of a 21st synthetase-ochre suppressor tRNA pair. We show that amber, ochre and opal suppressor tRNAs, derived from Escherichia coli glutamine tRNA, suppress UAG, UAA and UGA termination codons, respectively, in a reporter mRNA in mammalian cells. Activity of each suppressor tRNA is dependent upon the expression of E.coli glutaminyl-tRNA synthetase, indicating that none of the suppressor tRNAs are aminoacylated by any of the twenty aminoacyl-tRNA synthetases in the mammalian cytoplasm. Amber, ochre and opal suppressor tRNAs with a wide range of activities in suppression (increases of up to 36, 156 and 200-fold, respectively) have been generated by introducing further mutations into the suppressor tRNA genes. The most active suppressor tRNAs have been used in combination to concomitantly suppress two or three termination codons in an mRNA. We discuss the potential use of these 21st synthetase-suppressor tRNA pairs for the site-specific incorporation of two or, possibly, even three different unnatural amino acids into proteins and for the regulated suppression of amber, ochre and opal termination codons in mammalian cells.  相似文献   

4.
5.
Initiator tRNAs are used exclusively for initiation of protein synthesis and not for elongation. We show that both Escherichia coli and eukaryotic initiator tRNAs have negative determinants, at the same positions, that block their activity in elongation. The primary negative determinant in E. coli initiator tRNA is the C1xA72 mismatch at the end of the acceptor stem. The primary negative determinant in eukaryotic initiator tRNAs is located in the TPsiC stem, whereas a secondary negative determinant is the A1:U72 base pair at the end of the acceptor stem. Here we show that E. coli initiator tRNA also has a secondary negative determinant for elongation and that it is the U50.G64 wobble base pair, located at the same position in the TPsiC stem as the primary negative determinant in eukaryotic initiator tRNAs. Mutation of the U50.G64 wobble base pair to C50:G64 or U50:A64 base pairs increases the in vivo amber suppressor activity of initiator tRNA mutants that have changes in the acceptor stem and in the anticodon sequence necessary for amber suppressor activity. Binding assays of the mutant aminoacyl-tRNAs carrying the C50 and A64 changes to the elongation factor EF-Tu.GTP show marginally higher affinity of the C50 and A64 mutant tRNAs and increased stability of the EF-Tu.GTP. aminoacyl-tRNA ternary complexes. Other results show a large effect of the amino acid attached to a tRNA, glutamine versus methionine, on the binding affinity toward EF-Tu.GTP and on the stability of the EF-Tu.GTP.aminoacyl-tRNA ternary complex.  相似文献   

6.
We describe the use of a gel electrophoretic method for measuring the levels of aminoacylation in vivo of mutant Escherichia coli initiator tRNAs, which are substrates for E. coli glutaminyl-tRNA synthetase (GlnRS) due to an anticodon sequence change. Using this method, we have compared the effects of introducing further mutations in the acceptor stem, at base pairs 1:72, 2:71, and 3:70 and discriminator base 73, on the recognition of these tRNAs by E. coli GlnRS in vitro and in vivo. The effects of the acceptor stem mutations on the kinetic parameters for aminoacylation of the mutant tRNAs in vitro are consistent with interactions seen between this region of tRNA and GlnRS in the crystal structure of tRNA(Gln). GlnRS complex. Except for one mutant, the observed levels of aminoacylation of the mutant tRNAs in vivo agree with those expected on the basis of the kinetic parameters obtained in vitro. We have also measured the relative amounts of aminoacyl-tRNAs for the various mutants and their activities in suppression of an amber codon in vivo. We find that there is, in general, a good correlation between the relative amounts of aminoacyl-tRNAs and their activities in suppression.  相似文献   

7.
Mutants of initiator tRNA that function both as initiators and elongators   总被引:13,自引:0,他引:13  
We describe the effect of mutations in the acceptor stem of Escherichia coli initiator tRNA on its function in vivo. The acceptor stem mutations were coupled to mutations in the anticodon sequence from CAU----CUA to allow functional studies on the mutant tRNAs in initiation and in elongation in vivo. We show that, with one exception, there is a good correlation between the kinetic parameters for formylation of the mutant tRNAs in vitro (preceding paper, Lee, C.P., Seong, B. L., and RajBhandary, U.L. (1991) J. Biol. Chem. 266, 18012-18017) and their activity in initiation in vivo. These results suggest an important role for formylation of initiator tRNA in its function in initiation, at least when it is aminoacylated with glutamine as is the case with the mutant tRNAs used here. Mutant tRNAs that have a base pair between nucleotides 1 and 72 at the top of the acceptor stem function as elongators, as analyzed by their ability to suppress an amber mutation in the E. coli beta-galactosidase gene. One of these mutants is also quite active in initiation. Thus, activities of a tRNA in initiation and elongation steps of protein synthesis are not mutually exclusive. Using a mRNA with two in frame UAG codons, we show that this mutant tRNA can both initiate protein synthesis from the upstream UAG and suppress the down-stream UAG. We discuss the potential use of tRNAs with such "dual" functions in tightly regulated expression of genes for proteins in E. coli.  相似文献   

8.
Transfer RNAs (tRNAs) are grouped into two classes based on the structure of their variable loop. In Escherichia coli, tRNAs from three isoaccepting groups are classified as type II. Leucine tRNAs comprise one such group. We used both in vivo and in vitro approaches to determine the nucleotides that are required for tRNA(Leu) function. In addition, to investigate the role of the tRNA fold, we compared the in vivo and in vitro characteristics of type I tRNA(Leu) variants with their type II counterparts.A minimum of six conserved tRNA(Leu) nucleotides were required to change the amino acid identity and recognition of a type II tRNA(Ser) amber suppressor from a serine to a leucine residue. Five of these nucleotides affect tRNA tertiary structure; the G15-C48 tertiary "Levitt base-pair" in tRNA(Ser) was changed to A15-U48; the number of nucleotides in the alpha and beta regions of the D-loop was changed to achieve the positioning of G18 and G19 that is found in all tRNA(Leu); a base was inserted at position 47n between the base-paired extra stem and the T-stem; in addition the G73 "discriminator" base of tRNA(Ser) was changed to A73. This minimally altered tRNA(Ser) exclusively inserted leucine residues and was an excellent in vitro substrate for LeuRS. In a parallel experiment, nucleotide substitutions were made in a glutamine-inserting type I tRNA (RNA(SerDelta); an amber suppressor in which the tRNA(Ser) type II extra-stem-loop is replaced by a consensus type I loop). This "type I" swap experiment was successful both in vivo and in vitro but required more nucleotide substitutions than did the type II swap. The type I and II swaps revealed differences in the contributions of the tRNA(Leu) acceptor stem base-pairs to tRNA(Leu) function: in the type I, but not the type II fold, leucine specificity was contingent on the presence of the tRNA(Leu) acceptor stem sequence. The type I and II tRNAs used in this study differed only in the sequence and structure of the variable loop. By altering this loop, and thereby possibly introducing subtle changes into the overall tRNA fold, it became possible to detect otherwise cryptic contributions of the acceptor stem sequence to recognition by LeuRS. Possible reasons for this effect are discussed.  相似文献   

9.
Incorporation of unnatural amino acids into proteins in vivo, known as expanding the genetic code, is a useful technology in the pharmaceutical and biotechnology industries. This procedure requires an orthogonal suppressor tRNA that is uniquely acylated with the desired unnatural amino acid by an orthogonal aminoacyl-tRNA synthetase. In order to enhance the numbers and types of suppressor tRNAs available for engineering genetic codes, we have developed a convenient screening system to generate suppressor tRNAs with good orthogonality from the available library of suppressor tRNA mutants. While developing an amber suppressor tRNA, we discovered that amber suppressor tRNA with poor orthogonality inhibited the growth rate of the host, indicating that suppressor tRNA demonstrates a species-specific toxicity to host cells. We verified this species-specific toxicity using amber suppressor tRNA mutants from prokaryotes, eukaryotes, and archaea. We also confirmed that adding terminal CCA to Methanococcus jannaschii tRNATyr mutant is important to its toxicity against Escherichia coli. Further, we compared the toxicity of the suppressor tRNA toward the host with differing copy numbers. Using the combined toxicity of suppressor tRNA toward the host with blue–white selection, we developed a convenient screening system for orthogonal suppressor tRNA that could serve as a general platform for generating tRNA/aaRS pairs and thereby obtained three suppressor tRNA mutants with high orthogonality from the tRNA library derived from Mj tRNATyr.  相似文献   

10.
An Arabidopsis thaliana L. DNA containing the tRNA(TrpUGG) gene was isolated and altered to encode the amber suppressor tRNA(TrpUAG) or the ochre suppressor tRNA(TrpUAA). These DNAs were electroporated into carrot protoplasts and tRNA expression was demonstrated by the translational suppression of amber and ochre nonsense mutations in the chloramphenicol acetyltransferase (CAT) reporter gene. DNAs encoding tRNA(TrpUAG) and tRNA(TrpUAA) nonsense suppressor tRNAs caused suppression of their cognate nonsense codons in CAT mRNAs, with the tRNA(TrpUAG) gene exhibiting the greater suppression under optimal conditions for expression of CAT. The development of these translational suppressors which function in plant cells facilitates the study of plant tRNA gene expression and will make possible the manipulation of plant protein structure and function.  相似文献   

11.
Mischarging mutants of Escherichia coli sup3 tyrosine transfer RNA have been isolated by selecting for suppression of bacterial amber mutations not suppressed by sup3. Five of the mutants have single base changes in the amino acid acceptor stem (A1, A2, U80, U81 and G82). Mutants A1 and A2 are weak thermosensitive suppressors from which thermostable derivatives have been isolated. Some of these derivatives affect the amount of tRNA synthesized but not the sequence (precursor or promoter mutations), and others are double mutants A1U81 and A2U80. The latter mutant does not mischarge. The efficiency of suppression of A1 and A2 can also be increased by recombination events that lead to duplication and triplication of the suppressor gene.The amino acid inserted by some of these mutants at the amber site has been determined. Mutant A1 inserts glutamine, while U81 and A1U81 insert both glutamine and tyrosine.Taken together the results show that the terminal part of the amino acid acceptor stem has an important role in the specificity of aminoacylation by the glutamine and tyrosine synthetase.  相似文献   

12.
13.
The U8:A14 tertiary base pair of transfer RNAs (tRNAs) stabilizes the sharp turn from the acceptor stem to the dihydrouridine stem. This tertiary base pair is important for the overall L-shaped tRNA structure. Inspection of tRNA sequences shows that U8:A14 is highly conserved. However, variations of U8:A14 are found in natural sequences. This raises the question of whether all 16 permutations of U8:A14 can be accommodated by a single tRNA sequence framework and by the bacterial translational apparatus. Here we expressed the wild type and 15 variants of U8:A14 of an alanine tRNA amber suppressor in Escherichia coli and tested the ability of each to suppress an amber mutation. We showed that 12 of the 15 variants are functional suppressors (sup+) and 3 are nonfunctional (sup-). Of the 12 functional suppressors, the G8:G14 variant is the most efficient suppressor, whose suppression efficiency is indistinguishable from that of the wild type. Analysis of tRNA structure with chemical probes and the lead-cleavage reaction, however, showed a distinct difference between the G8:G14 variant and the wild type. Thus, two different structures of E. coli tRNAAla/CUA share an identical functional phenotype in protein synthesis. The remaining 11 sup+ variants with reduced suppression efficiencies are likely to have other structural variations. We suggest that the variations of these sup+ mutants are structurally and functionally accommodated by the bacterial translational apparatus. In contrast, the three sup- mutants harbor variations that alter the backbone structure in the corner of the L. These variations are likely to reduce the stability of the tRNA inside the cell or, among others, to interfere with the ability of the tRNA to functionally interact with elongation factor Tu and with the ribosome.  相似文献   

14.
Anderson JC  Schultz PG 《Biochemistry》2003,42(32):9598-9608
Recently, it has been shown that an amber suppressor tRNA/aminoacyl-tRNA synthetase pair derived from the tyrosyl-tRNA synthetase of Methanococcus jannaschii can be used to genetically encode unnatural amino acids in response to the amber nonsense codon, TAG. However, we have been unable to modify this pair to decode either the opal nonsense codon, TGA, or the four-base codon, AGGA, limiting us to a 21 amino acid code. To overcome this limitation, we have adapted a leucyl-tRNA synthetase from Methanobacterium thermoautotrophicum and leucyl tRNA derived from Halobacterium sp. NRC-1 as an orthogonal tRNA-synthetase pair in Escherichia coli to decode amber (TAG), opal (TGA), and four-base (AGGA) codons. To improve the efficiency and selectivity of the suppressor tRNA, extensive mutagenesis was performed on the anticodon loop and acceptor stem. The two most significant criteria required for an efficient amber orthogonal suppressor tRNA are a CU(X)XXXAA anticodon loop and the lack of noncanonical or mismatched base pairs in the stem regions. These changes afford only weak suppression of TGA and AGGA. However, this information together with an analysis of sequence similarity of multiple native archaeal tRNA sequences led to efficient, orthogonal suppressors of opal codons and the four-base codon, AGGA. Ultimately, it should be possible to use these additional orthogonal pairs to genetically incorporate multiple unnatural amino acids into proteins.  相似文献   

15.
The absence of a Watson-Crick base pair at the end of the amino acid acceptor stem is one of the features which distinguishes prokaryotic initiator tRNAs as a class from all other tRNAs. We show that this structural feature prevents Escherichia coli initiator tRNA from acting as an elongator in protein synthesis in vivo. We generated a mutant of E. coli initiator tRNA in which the anticodon sequence is changed from CAU to CUA (the T35A36 mutant). This mutant tRNA has the potential to read the amber termination codon UAG. We then coupled this mutation to others which change the C1.A72 mismatch at the end of the acceptor stem to either a U1:A72 base pair (T1 mutant) or a C1:G72 base pair (G72 mutant). Transformation of E. coli CA274 (HfrC Su- lacZ125am trpEam) with multicopy plasmids carrying the mutant initiator tRNA genes show that mutant tRNAs carrying changes in both the anticodon sequence and the acceptor stem suppress amber codons in vivo, whereas mutant tRNA with changes in the anticodon sequence alone does not. Mutant tRNAs with the above anticodon sequence change are aminoacylated with glutamine in vitro. Measurement of kinetic parameters for aminoacylation by E. coli glutaminyl-tRNA synthetase show that both the nature of the base pair at the end of the acceptor stem and the presence or absence of a base pair at this position can affect aminoacylation kinetics. We discuss the implications of this result on recognition of tRNAs by E. coli glutaminyl-tRNA synthetase.  相似文献   

16.
M Pak  L Pallanck  L H Schulman 《Biochemistry》1992,31(13):3303-3309
The role of the anticodon and discriminator base in aminoacylation of tRNAs with tryptophan has been explored using a recently developed in vivo assay based on initiation of protein synthesis by mischarged mutants of the Escherichia coli initiator tRNA. Substitution of the methionine anticodon CAU with the tryptophan anticodon CCA caused tRNA(fMet) to be aminoacylated with both methionine and tryptophan in vivo, as determined by analysis of the amino acids inserted by the mutant tRNA at the translational start site of a reporter protein containing a tryptophan initiation codon. Conversion of the discriminator base of tRNA(CCA)fMet from A73 to G73, the base present in tRNA(Trp), eliminated the in vivo methionine acceptor activity of the tRNA and resulted in complete charging with tryptophan. Single base changes in the anticodon of tRNA(CCA)fMet containing G73 from CCA to UCA, GCA, CAA, and CCG (changes underlined) essentially abolished tryptophan insertion, showing that all three anticodon bases specify the tryptophan identity of the tRNA. The important role of G73 in tryptophan identity was confirmed using mutants of an opal suppressor derivative of tRNA(Trp). Substitution of G73 with A73, C73, or U73 resulted in a large loss of the ability of the tRNA to suppress an opal stop codon in a reporter protein. Base pair substitutions at the first three positions of the acceptor stem of the suppressor tRNA caused 2-12-fold reductions in the efficiency of suppression without loss of specificity for aminoacylation of the tRNA with tryptophan.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
Pyrrolysine (Pyl), the 22nd co-translationally inserted amino acid, is incorporated in response to a UAG amber stop codon. Pyrrolysyl-tRNA synthetase (PylRS) attaches Pyl to its cognate tRNA, the special amber suppressor tRNA(Pyl). The genes for tRNA(Pyl) (pylT) and PylRS (pylS) are found in all members of the archaeal family Methanosarcinaceae, and in Desulfitobacterium hafniense. The activation and aminoacylation properties of D. hafniense PylRS and the nature of the tRNA(Pyl) identity elements were determined by measuring the ability of 24 mutant tRNA(Pyl) species to be aminoacylated with the pyrrolysine analog N-epsilon-cyclopentyloxycarbonyl-l-lysine. The discriminator base G73 and the first base pair (G1.C72) in the acceptor stem were found to be major identity elements. Footprinting analysis showed that PylRS binds tRNA(Pyl) predominantly along the phosphate backbone of the T-loop, the D-stem and the acceptor stem. Significant contacts with the anticodon arm were not observed. The tRNA(Pyl) structure contains the highly conserved T-loop contact U54.A58 and position 57 is conserved as a purine, but the canonical T- to D-loop contact between positions 18 and 56 was not present. Unlike most tRNAs, the tRNA(Pyl) anticodon was shown not to be important for recognition by bacterial PylRS.  相似文献   

18.
Aminoacyl-tRNA synthetases (aaRSs) are enzymes that are highly specific for their tRNA substrates. Here, we describe the expansion of a class IIb aaRS-tRNA specificity by a genetic selection that involves the use of a modified tRNA displaying an amber anticodon and the argE(amber) and lacZ(amber) reporters. The study was performed on Escherichia coli aspartyl-tRNA synthetase (AspRS) and amber tRNA(Asp). Nine AspRS mutants able to charge the amber tRNA(Asp) and to suppress the reporter genes were selected from a randomly mutated library. All the mutants exhibited a new amber tRNA(Asp) specificity in addition to the initial native tRNA(Asp). Six mutations were found in the anticodon-binding site located in the N-terminal OB-fold. The strongest suppressor was a mutation of residue Glu-93 that contacts specifically the anticodon nucleotide 34 in the crystal structure. The other mutations in the OB-fold were found at close distance from the anticodon in the so-called loop L45 and strand S1. They concern residues that do not contact tRNA(Asp) in the native complex. In addition, this study shows that suppressors can carry mutations located far from the anticodon-binding site. One such mutation was found in the synthetase hinge-module where it increases the tRNA(Asp)-charging rate, and two other mutations were found in the prokaryotic-specific insertion domain and the catalytic core. These mutants seem to act by indirect effects on the tRNA acceptor stem binding and on the conformation of the active site of the enzyme. Altogether, these data suggest the existence of various ways for modifying the mechanism of tRNA discrimination.  相似文献   

19.
Little is known about the conservation of determinants for the identities of tRNAs between organisms. We showed previously that Escherichia coli tyrosine tRNA synthetase can charge the Saccharomyces cerevisiae mitochondrial tyrosine tRNA in vivo, even though there are substantial sequence differences between the yeast mitochondrial and bacterial tRNAs. The S. cerevisiae cytoplasmic tyrosine tRNA differs in sequence from both its yeast mitochondrial and E. coli counterparts. To test whether the yeast cytoplasmic tyrosyl-tRNA synthetase recognizes the E. coli tRNA, we expressed various amounts of an E. coli tyrosine tRNA amber suppressor in S. cerevisiae. The bacterial tRNA did not suppress any of three yeast amber alleles, suggesting that the yeast enzymes retain high specificity in vivo for their homologous tRNAs. Moreover, the nucleotides in the sequence of the E. coli suppressor that are not shared with the yeast cytoplasmic tyrosine tRNA do not create determinants which are efficiently recognized by other yeast charging enzymes. Therefore, at least some of the determinants that influence in vivo recognition of the tyrosine tRNA are specific to the cell compartment and organism. In contrast, expression of the cognate bacterial tyrosyl-tRNA synthetase together with the bacterial suppressor tRNA led to suppression of all three amber alleles. The bacterial enzyme recognized its substrate in vivo, even when the amount of bacterial tRNA was less than about 0.05% of that of the total cytoplasmic tRNA.  相似文献   

20.
Over 100 revertants of five different amber mutants were analyzed by Southern blot hybridization using synthetic oligomers as probes to detect a single base change at the anticodon, CCA to CTA (amber), of tRNA(Trp) genes of Caenohrabditis elegans. Of the 12 members of the tRNA(Trp) gene family, a total of eight were converted to amber suppressor alleles. All eight encode identical tRNAs; three of these are new tRNA(Trp) suppressors, sup-21, sup-33 and sup-34. Previous results had suggested that individual suppressor tRNA genes were expressed differentially in a cell-type- or developmental stage-specific manner. To extend these observations to the new genes and to test the specificity of expression against additional genes, cross suppression tests of these eight amber suppressors were carried out against amber mutations in several different genes including genes likely to be expressed in the same cell-type: three nervous system-affecting genes, two muscle structure-affecting genes and two genes presumed to be expressed in hypodermis. Seven out of eight suppressors could be distinguished one from another by the spectrum of their suppression efficiencies. These results also provide further evidence of cell-type-specific patterns of expression in the nervous system, muscle and hypodermis. The suppression pattern of the suppressor against the two muscle-affecting genes, unc-15 and unc-52, suggested that either the suppressors are expressed in a developmental stage-specific manner or that the unc-52 products are expressed in cell-types other than muscle, possibly hypodermis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号