首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A 40-kD protein kinase C (PKC)epsilon related activity was found to associate with human epithelial specific cytokeratin (CK) polypeptides 8 and 18. The kinase activity coimmunoprecipitated with CK8 and 18 and phosphorylated immunoprecipitates of the CK. Immunoblot analysis of CK8/18 immunoprecipitates using an anti-PKC epsilon specific antibody showed that the 40-kD species, and not native PKC epsilon (90 kD) associated with the cytokeratins. Reconstitution experiments demonstrated that purified CK8 or CK18 associated with a 40-kD tryptic fragment of purified PKC epsilon, or with a similar species obtained from cells that express the fragment constitutively but do not express CK8/18. A peptide pseudosubstrate specific for PKC epsilon inhibited phosphorylation of CK8/18 in intact cells or in a kinase assay with CK8/18 immunoprecipitates. Tryptic peptide map analysis of the cytokeratins that were phosphorylated by purified rat brain PKC epsilon or as immunoprecipitates by the associated kinase showed similar phosphopeptides. Furthermore, PKC epsilon immunoreactive species and CK8/18 colocalized using immunofluorescent double staining. We propose that a kinase related to the catalytic fragment of PKC epsilon physically associates with and phosphorylates cytokeratins 8 and 18.  相似文献   

2.
Murine T cell differentiation antigen CD8 alpha (Lyt-2) is phosphorylated in vivo after phorbol 12-myristate 13-acetate (PMA) treatment of cells. Concanavalin A,dibutyryl cAMP and calcium ionophore are unable to stimulate phosphate incorporation into CD8 alpha. Depletion of cellular protein kinase C (PKC) by prolonged PMA treatment abolished this phosphorylation, suggesting that PKC is required for this effect. Using the amino acid sequence derived from cloning CD8 alpha, peptides encompassing both possible intracellular phosphorylation sites were made and used to test the ability of various kinases to phosphorylate CD8 alpha sequences. Only the proximal serine peptide was a kinase substrate, and of PKC, cAMP-dependent kinase and the multifunctional calcium/calmodulin-dependent kinase, only PKC was able to phosphorylate this peptide. These studies provide the first definitive evidence that CD8 alpha is a direct substrate of PKC.  相似文献   

3.
The phosphorylation of cytokeratin was investigated in primary cultures of hepatocytes. The two hepatocyte cytokeratins CK8 and CK18 (55,000 and 49,000 Mr, respectively) were phosphorylated, CK8 being more phosphorylated than CK18. Treatment of the hepatocytes with 150 nM 12-O-tetradecanoyl-phorbol-13-acetate (TPA) an activator of protein kinase C induced a transient increase in the level of phosphorylation of CK8 but not CK18. This effect was maximal after 15 min of TPA treatment and was maintained for up to 3 h. After 22 h of treatment with TPA, which down-regulates protein kinase C, CK8 phosphorylation was returned to the basal level. Further addition of TPA to the 22-h treated cells did not cause an increase in CK8 phosphorylation. Indirect immunofluorescence microscopy with a monoclonal antibody to CK8 indicated that while the addition of TPA induced the formation of granular cytokeratin aggregates in some hepatocytes, in most hepatocytes no major changes in the intermediate filament network were observed. Staining for actin showed that actin microfilaments were rapidly reorganized after the treatment and a loss of stress fibres were observed. We propose that CK8 is an in vitro substrate for protein kinase C and that the specific phosphorylation of CK8 plays a role in protein kinase C signal transduction.  相似文献   

4.
The members of the regulatory factor (RF) gene family, Na(+)/H(+) exchanger (NHE)-RF and NHE3 kinase A regulatory factor (E3KARP) are necessary for cAMP to inhibit the epithelial brush border NHE isoform 3 (NHE3). The mechanism of their action was studied using PS120 fibroblasts stably transfected with rabbit NHE3 and wild type rabbit NHE-RF or wild type human E3KARP. 8-Bromo-cAMP (8-Br-cAMP) had no effect on Na(+)/H(+) exchange activity in cells expressing NHE3 alone. In contrast, in cells co-expressing NHE-RF, 8-Br-cAMP inhibited NHE3 by 39%. In vivo phosphorylation of NHE3 demonstrated that cAMP increased phosphorylation in two chymotrypsin-generated phosphopeptides of NHE3 in cells containing NHE-RF or E3KARP but not in cells lacking these proteins. The requirement for phosphorylation of NHE-RF in this cAMP-induced inhibition of NHE3 was examined by studying a mutant NHE-RF in which serines 287, 289, and 290 were mutated to alanines. Wild type NHE-RF was a phosphorylated protein under basal conditions, but treatment with 8-Br-cAMP did not alter its phosphorylation. Mutant NHE-RF was not phosphorylated either under basal conditions or after 8-Br-cAMP. 8-Br-cAMP inhibited NHE3 similarly in PS120/NHE3 cells containing wild type or mutant NHE-RF. NHE-RF and NHE3 co-precipitated and did so similarly with and without cAMP. Mutant NHE-RF also similarly immunoprecipitated NHE3 in the presence and absence of 8-Br-cAMP. This study shows that members of the regulatory factor gene family, NHE-RF and E3KARP, are necessary for cAMP inhibition of NHE3 by allowing NHE3 to be phosphorylated. This inhibition is not dependent on the phosphorylation of NHE-RF.  相似文献   

5.
Regulation of the cAMP-activated apical membrane Cl- conductance (GaCl) in Necturus gallbladder (NGB) epithelial cells was investigated with intracellular-microelectrode techniques. GaCl was increased by exposure to 8-Br-cAMP, theophylline or forskolin. Neither 8-Br-cGMP nor elevation of intracellular [Ca2+] using ionomycin had effects on GaCl or interfered with activation of GaCl by forskolin. N-(2- [methylamino]ethyl)-5-isoquinolinesulfonamide (H8), an inhibitor of cAMP-dependent protein kinase (PKA), slowed but did not prevent the GaCl response to 8-Br-cAMP. Phorbol 12-myristate 13-acetate (PMA), which activates protein kinase C (PKC), stimulated GaCl but had no effects on intracellular [cAMP]. GaCl was unaffected by 4 alpha- phorbol, a PMA analog which does not activate PKC. Okadaic acid (OA), an inhibitor of protein phosphatases (PP) types 1 and 2A, slowed the activation of GaCl by 8-Br-cAMP, hastened the return of GaCl to basal values following removal of 8-Br-cAMP, and significantly reduced the elevation in intracellular [cAMP] produced by forskolin. OA had no effects on the GaCl changes elicited by theophylline. We conclude that: (a) NGB GaCl can be activated by PKA-mediated phosphorylation of apical membrane Cl- channels or a regulatory protein, (b) GaCl can also be activated via PKC, by a cAMP-independent mechanism, (c) OA-sensitive PP are not required for inactivation of GaCl; OA appears to stimulate phosphodiesterase, which lowers intracellular [cAMP] and affects GaCl activation, and (d) the apical membrane of NGB epithelium lacks a Ca(2+)-activated Cl- conductance.  相似文献   

6.
DNA topoisomerase I catalyzes the relaxation of superhelical DNA tension and is vital for DNA metabolism; therefore, it is essential for growth and development of plants. Here, we have studied the phosphorylation-dependent regulation of topoisomerase I from pea (Pisum sativum). The purified enzyme did not show autophosphorylation but was phosphorylated in an Mg(2+)-dependent manner by endogenous protein kinases present in pea nuclear extracts. This phosphorylation was abolished with calf intestinal alkaline phosphatase and lambda phosphatase. It was also phosphorylated by exogenous casein kinase 2 (CK2), protein kinase C (PKC; from animal sources), and an endogenous pea protein, which was purified using a novel phorbol myristate acetate affinity chromatography method. All of these phosphorylations were inhibited by heparin (inhibitor of CK2) and calphostin (inhibitor of PKC), suggesting that pea topoisomerase I is a bona fide substrate for these kinases. Spermine and spermidine had no effect on the CK2-mediated phosphorylation, suggesting that it is polyamine independent. Phospho-amino acid analysis showed that only serine residues were phosphorylated, which was further confirmed using antiphosphoserine antibody. The topoisomerase I activity increased after phosphorylation with exogenous CK2 and PKC. This study shows that these kinases may contribute to the physiological regulation of DNA topoisomerase I activity and overall DNA metabolism in plants.  相似文献   

7.
Yoon MS  Koo JB  Hwang JH  Lee KS  Han JS 《FEBS letters》2005,579(25):5635-5642
We investigated the mechanism of 8-Br-cAMP-mediated phospholipase D (PLD) activation using a primary cell culture system of human endometrial stromal cells (ES cells). PLD activity was increased by the treatment of ES cells with 8-Br-cAMP, maximally at 5 min. To determine whether the effects of 8-Br-cAMP on PLD occurred as a consequence of PKC activation, ES cells were preincubated for 15 min with RO320432 (1 microM) and GF109203X (1 microM), the PKC inhibitors, or they were pretreated for 24h with phorbol myristate acetate (100 nM) to downregulate PKC. However, these treatments had no effects on PLD activation induced by 8-Br-cAMP. Furthermore, 8-Br-cAMP had no effects on the subcellular distribution of PKC alpha and PKC betaI, confirming no involvement of PKC. 8-Br-cAMP activated ERK1/2, maximally at 5 min, and PD98059 (MEK inhibitor: 50 microM) and transfection of ES cells with dominant negative (DN)-MEK completely inhibited 8-Br-cAMP-induced PLD activation, suggesting that ERK1/2 mediates the PLD activation. To investigate the involvement of protein kinase A (PKA), Src, and Ras in 8-Br-cAMP-induced PLD activation, we used PKA inhibitor, H89 and Rp-cAMPs, and transfections of DN-Src and DN-Ras. H-89 and Rp-cAMPs completely blocked 8-Br-cAMP-mediated PLD and ERK activation, implying the involvement of PKA in this PLD activation. In addition, transfection of ES cells with DN-Src, or DN-Ras partially inhibited 8-Br-cAMP-induced ERK1/2 and consequently PLD activation, whereas cotransfection of DN-Src and DN-Ras completely inhibited ERK1/2 and PLD activation, suggesting that Src and Ras independently regulate ERK/PLD activation. Taken together, these results demonstrate a novel pathway in ES cells that 8-Br-cAMP activate PLD through PKA and ERK1/2 and this ERK/PLD activation by 8-Br-cAMP is mediated by Src and Ras, separately.  相似文献   

8.
The mechanisms of GnRH-induced desensitization of LH secretion are poorly understood. Protein kinase C (PKC) and protein kinase A (PKA) desensitize some receptors of the 7-membrane type, and the GnRH receptor has consensus phosphorylation sites for PKC in the first and third intracellular loops, and a site for PKA in the first intracellular loop. In the first set of experiments we determined whether synthetic peptides representing the three intracellular loops of the receptor could be phosphorylated in vitro by purified PKC and PKA. As compared with a model substrate peptide for PKC, the third intracellular loop was phosphorylated 74% and the first intracellular loop 21%; PKA-phosphorylated the first intracellular loop peptide 17% as well as a model peptide substrate. In the second set of experiments, we used phorbol 12-myristate 13 acetate (PMA), an established PKC stimulator, and cholera toxin (CTX), established to activate the Gs protein and presumed to activate PKA, to treat cultured rat pituitary cells followed by LH measurements. Treatment with both drugs severely impaired GnRH-stimulated LH secretion whereas neither drug alone reduced LH secretion. Dibutyryl cAMP did not duplicate the effects of cholera toxin suggesting that the CTX action could not be explained by an increase in cAMP. These results suggest that more than one intracellular signaling pathway requires activation in order to induce desensitization; one pathway involves PKC and the other involves a pathway stimulated by cholera toxin, presumably Gs protein, which does not involve PKA.  相似文献   

9.
The regulation of MAP kinase phosphorylation by cAMP and protein kinase C (PKC) modulators during pig oocyte maturation was studied by Western immunoblotting. We showed that both forskolin and IBMX inhibited MAP kinase phosphorylation and meiosis resumption in a dose-dependent manner, and this inhibitory effect was overcome by the protein phosphatase inhibitor, okadaic acid. Pharmacological PKC activator phorbol myristate acetate or physiological PKC activator diC8 also delayed MAP kinase phosphorylation and meiosis resumption, and their effect was abrogated by PKC inhibitors, staurosporine, and calphostin C. The results suggest that meiotic resumption is inhibited by elevation of cAMP or delayed by activation of PKC probably via down-regulation of MAP kinase activation, which is mediated by protein phosphatase, during pig oocyte maturation.  相似文献   

10.
Protein phosphorylation by protein kinase C (PKC) has been implicated in the control of neurotransmitter release and various forms of synaptic plasticity. The PKC substrates responsible for phosphorylation-dependent changes in regulated exocytosis in vivo have not been identified. Munc18a is essential for neurotransmitter release by exocytosis and can be phosphorylated by PKC in vitro on Ser-306 and Ser-313. We demonstrate that it is phosphorylated on Ser-313 in response to phorbol ester treatment in adrenal chromaffin cells. Mutation of both phosphorylation sites to glutamate reduces its affinity for syntaxin and so acts as a phosphomimetic mutation. Unlike phorbol ester treatment, expression of Munc18 with this phosphomimetic mutation in PKC phosphorylation sites did not affect the number of exocytotic events. The mutant did, however, produce changes in single vesicle release kinetics, assayed by amperometry, which were identical to those caused by phorbol ester treatment. Furthermore, the effects of phorbol ester treatment on release kinetics were occluded in cells expressing phosphomimetic Munc18. These results suggest that the dynamics of vesicle release events during exocytosis are controlled by PKC directly through phosphorylation of Munc18 on Ser-313. Phosphorylation of Munc18 by PKC may provide a mechanism for the control of exocytosis and thereby synaptic plasticity.  相似文献   

11.
The superoxide anion generation in Ehrlicg ascites tumour (EAT) cells increased more than two-fold in the presence of the tumour promoter, tetradecanoyl phorbol myristate acetate (TPA). Epinephrine and dibutryl cAMP (Bt2 cAMP) inhibited in a dose-dependent manner, both basal and TPA-triggered superoxide generation in EAT cells. The kinetics of inhibition of superoxide generation showed a maximum inhibition between 30 and 40 min of preincubation with epinephrine or Bt2 cAMP of EAT cells and coincided with an increase in activity of a phosphoprotein phosphatase. In TPA-treated EAT cells, epinephrine or Bt2 cAMP increased the phosphatase activity in a dose-dependent manner. In vitro EGTA, EDTA and sodium fluoride inhibited phosphatase activity. Superoxide generation in response to TPA in Triton-permeabilized EAT cells was inhibited by inclusion of the phosphatase in the assay. Taken together, these results clearly suggest that the phosphatase activity in EAT cells develops as a result of protein kinase A (PKA) and protein kinase C (PKC)-mediated phosphorylation of the phosphatase which then mediates dephosphorylation of the PKC-triggered phosphorylation of proteins to inhibit respiratory burst. A cross-talk between PKA and PKC pathways negatively modulates superoxide generation in EAT cells.  相似文献   

12.
A recently cloned mouse cDNA designated F52 encodes a putative protein with striking sequence similarity to the MARCKS protein, a major cellular substrate for protein kinase C (PKC). Major regions of sequence similarity include the amino-terminal myristoylation consensus sequence and the central calmodulin-binding/PKC phosphorylation site domain. The F52 protein was expressed in Escherichia coli with apparent M(r) 50,000; it was a substrate for PKC and comigrated on two-dimensional electrophoresis with a myristoylated protein whose phosphorylation was stimulated by phorbol 12-myristate 13-acetate in mouse neuroblastoma cells. The F52 protein also was myristoylated in E. coli by co-expression with N-myristoyltransferase. A 24-amino acid peptide derived from the protein's phosphorylation site domain was a good substrate for PKC; like the cognate MARCKS peptide, it was phosphorylated with high affinity (S0.5 = 173 nM) and positive cooperativity (KH = 5.4). The F52 peptide also bound calmodulin with high affinity (Kd = less than 3 nM); this binding could be disrupted by phosphorylation of the peptide with PKC, with a half-time of 8 min. The F52 protein is clearly a member of the MARCKS family as defined by primary sequence; in addition, the two proteins share several key attributes that may be functionally important.  相似文献   

13.
G-protein-coupled receptor kinases (GRKs) are important regulators of G-protein-coupled receptor function. Two members of this family L, GRK2 and GRK5 L, have been shown to be substrates for protein kinase C (PKC). Whereas PKC-mediated phosphorylation results in inhibition of GRK5, it increases the activity of GRK2 toward its substrates probably through increased affinity for receptor-containing membranes. We show here that this increase in activity may be caused by relieving a tonic inhibition of GRK2 by calmodulin. In vitro, GRK2 was preferentially phosphorylated by PKC isoforms alpha, gamma, and delta. Two-dimensional peptide mapping of PKCalpha-phosphorylated GRK2 showed a single site of phosphorylation, which was identified as serine 29 by HPLC-MS. A S29A mutant of GRK2 was not phosphorylated by PKC in vitro and showed no phorbol ester-stimulated phosphorylation when transfected into human embryonic kidney (HEK)293 cells. Serine 29 is located in the calmodulin-binding region of GRK2, and binding of calmodulin to GRK2 results in inhibition of kinase activity. This inhibition was almost completely abolished in vitro when GRK2 was phosphorylated by PKC. These data suggest that calmodulin may be an inhibitor of GRK2 whose effects can be abolished with PKC-mediated phosphorylation of GRK2.  相似文献   

14.
Treatment of M5076 tumor cells with the phorbol estes 12-O-tetradecanoylphorbol 13-acetate (TPA) and phorbol 12,13 dibutyrate (PdBu) inhibited cellular proliferation, whereas 1,2-dioctanoyl-glycerol (DiC8) and 1-oleoyl2-acetyl-glycerol (OAG) did not affect cell growth. Inhibition of cellular proliferation in this cell line appears to be a consequence of protein kinase C (PKC) down-regulation since phorbol esters, but not a single application of diacylglycerols (DGs) down-regulated cellular PKC levels. By repeated application of DGs, PKC down-regulation was achieved and correlated with inhibition of proliferation. Phorbol ester-induced PKC down-regulation was reversible, upon removal of the phorbol ester, and the reappearance of PKC was associated with resumption of proliferation. The mitogenic responsiveness of these cells to added serum depended upon cellular PKC levels. Phorbol esters also caused the phosphorylation of two proteins which were not phosphorylated in response to DG treatment. Inhibition of growth of M5076 cells appears to be associated with phosphorylation of two novel proteins and/or PKC down-regulation.  相似文献   

15.
Our studies indicate that, in the presence of particular isoforms of adenylyl cyclase (i.e., type 7 AC), moderately intoxicating concentrations of ethanol will significantly potentiate transmitter-mediated activation of the cAMP signaling cascade. Activation of this signaling cascade may have important implications for the mechanisms by which ethanol produces intoxication, and/or for the mechanisms of neuroadaptation leading to tolerance to, and physical dependence on, ethanol. We initiated a series of studies to investigate the phosphorylation of AC7 by PKC, the role of this phosphorylation in modulating the sensitivity of AC7 to activation by Gsalpha, and the PKC isotype(s) involved in the phosphorylation of AC7. The T7 epitope-tagged AC7 expressed in Sf9 and HEK293 cells was found to be phosphorylated in vitro by the catalytic subunit of PKC. Treatment of AC7-transfected HEK293 cells with phorbol dibutyrate (PDBu) or ethanol increased the phosphorylation of AC7 and its responsiveness to Gsalpha. In human erythroleukemia (HEL) cells, which endogeneously express AC7, ethanol and PDBu increased AC activity stimulated by PGE(1). The potentiation by both PDBu and ethanol was found to be sensitive to the PKC delta-selective inhibitor, rottlerin. The potentiation of AC activity by ethanol in HEL cells was also selectively attenuated by the RACK inhibitory peptide specific for PKC delta, and by expression of the dominant negative, catalytically inactive, form of PKC delta. These data demonstrate that AC7 can be phosphorylated by PKC, leading to an increase in functional activity, and ethanol can potentiate AC7 activity through a PKC delta-mediated phosphorylation of AC7.  相似文献   

16.
17.
The heat-stable enterotoxin STa of E. coli causes diarrhea by binding to and stimulating intestinal membrane-bound guanylyl cyclase, triggering production of cyclic GMP. Agents which stimulate protein kinase C (PKC), including phorbol esters, synergistically enhance STa effects on cGMP and secretion. We investigated whether PKC causes phosphorylation of the STa receptor in vivo and in vitro.Immunoprecipitation of the STa receptor-guanylyl cyclase was carried out from extracts of T84 colon cells metabolically labelled with [32P]-phosphate using polyclonal anti-STa receptor antibody. The STa receptor was phosphorylated in its basal state, and 32P content in the 150 kDa holoreceptor band increased 2-fold in cells exposed to phorbol ester for 1 h. In vitro, immunopurified STa receptor was readily phosphorylated by purified rat brain PKC. Phosphorylation was inhibited 40% by 5 M of a synthetic peptide corresponding to the sequence around Ser1029 of the STa receptor, a site previously proposed as a potential PKC phosphorylation site. Treatment of the immunopurified STaR/GC with purified PKC increased STa-stimulated guanylyl cyclase activity 2-fold. We conclude that PKC phosphorylates and activates the STa receptor/guanylyl cyclase in vitro and in vivo; Ser1029 of the STaR/GC remains a candidate phosphorylation site by PKC.Abbreviations STa the heat-stable enterotoxin of E. coli, which has also been called ST-I and STp. The 18 amino acid variant was used throughout - PBS phosphate-buffered saline - PDB 4--12, 13-phorbol dibutyrate - ANP atrial natriuretic peptide - STaR/GC STa receptor/guanylyl cyclase, also called GC-C - PKC protein kinase C  相似文献   

18.
Effects of protein kinase C on protein stability and activity of rat AANAT were investigated in vitro and in vivo. When COS-7 cells transfected with AANAT cDNA were treated with phorbol 12-myristate 13-acetate (PMA), both the activity and protein level of AANAT were increased. These effects of PMA were blocked by GF109203X, a specific inhibitor of PKC. Moreover, PMA increased the phosphorylation of AANAT and induced the formation of AANAT/14-3-3zeta complex. PMA did not affect the basal level of cAMP and did not involve the potentiation of the cAMP production by forskolin, indicating that PKC-dependent activation of adenylyl cyclase was excluded in transfected COS-7 cells. To identify which amino acids were phosphorylated by PKC, several conserved Thr and Ser residues in AANAT were targeted for site-directed mutagenesis. Mutations of Thr29 and Ser203 prevented the increase of enzymatic activity and protein level mediated by PMA. To explore the nature of AANAT phosphorylation, purified rat AANAT was subjected to in vitro PKC kinase assay. PKC directly phosphorylated the rat recombinant AANAT. The phosphopeptides identified by mass spectrometric analysis, and western blotting indicated that Thr29 was one of target sites for PKC. To confirm the effects of the physiological activation of PKC, rat pineal glands were treated with alpha(1)-adrenergic specific agonist phenylephrine. Phenylephrine caused the phosphorylation of endogenous AANAT whereas GF109203X or prazosin, an alpha(1)-adrenergic-specific antagonist, markedly inhibited it. These results suggest that AANAT was phosphorylated at Thr29 by PKC activation through the alpha(1)-adrenergic receptor in rat pineal glands, and that its phosphorylation might contribute to the stability and the activity of AANAT.  相似文献   

19.
Abstract: Although cyclic AMP (cAMP) has been reported to cross talk with the protein kinase C (PKC) system, effects of elevated intracellular cAMP on the activities of specific PKC isoforms have not been studied. We report findings from a permeabilized cell assay that was used to examine changes in the activity of the atypical PKC isoforms brought about by exposure of PC12 cells to agents that elevate intracellular cAMP. We found that increases in intracellular cAMP led to rapid stimulation of atypical PKC activity, 40–70% above control, for a sustained period of time, a response that occurred independent of the phorbol 12-myristate 13-acetate (PMA)-sensitive PKC isoforms. Changes in intracellular cAMP levels resulted in a dose-dependent redistribution of ζ-PKC to the cytoplasm with a concomitant increase in the phosphorylation state of the enzyme. Incubation of purified ζ-PKC with increasing concentrations of PKA likewise caused a twofold increase in the phosphorylation state of ζ-PKC. In contrast to the positive effect that PKA-mediated phosphorylation had on the activity of ζ-PKC, the enzyme displayed reduced binding to ras when phosphorylated. Taken together, these findings are consistent with the hypothesis that protein phosphorylation of PKC acts as a positive effector of its enzyme activity and may serve as a negative modulator for interaction with other proteins.  相似文献   

20.
Ly-1, the murine lymphocyte differentiation antigen CD5, is phosphorylated constitutively in vivo. This phosphorylation is enhanced by phorbol 12-myristate 13-acetate (PMA) treatment, but not by concanavalin A, Ca2+ ionophore or dibutyryl cAMP. Prolonged PMA treatment abolished PMA-induced Ly-1 phosphorylation but not constitutive phosphorylation, suggesting that protein kinase C (PKC) is responsible for this enhanced phosphorylation, but not the basal phosphorylation of Ly-1. Ly-1 is phosphorylated by PKC added to membranes, further supporting a role for protein kinase C in the in vivo phosphorylation of Ly-1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号