首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Total DNA isolated from Rhizobium leguminosarum VF39SM cells is resistant to cleavage by the restriction endonuclease PstI. Plasmid curing and transfer studies localized this phenotype to pRleVF39b, the second smallest of six plasmids found in this bacterium. In vitro selection for vector modification was employed to isolate a presumptive methylase gene (M.Rle39BI) from a plasmid gene library. Total and plasmid DNAs isolated from E. coli containing M.RleBI were resistant to digestion by PstI. Sequence data suggested that a putative restriction endonuclease (R.Rle39BI) was also encoded on the same fragment. The two genes were flanked by identical copies of a putative insertion sequence, which was also present in several copies elsewhere in the VF39SM genome. The presence of this element in other strains examined suggested that this element is indeed an insertion sequence. The differences in G/C content between the DNA coding for the R/M system and that of the IS element suggest that this DNA region may have been acquired by horizontal transfer.  相似文献   

2.
Summary The modification genes of Flavobacterium okeanokoites and Haemophilus galinarum have been cloned into the vector pBR322 and expressed in Escherichia coli cells. FokI methylase gene is contained on a 3.80 kb piece of F. okeanokoites DNA. Plasmid constructs carrying this fragment of DNA are resistant to digestion by FokI restriction endonuclease but are sensitive to cleavage by HindIII, EcoRI and PstI. Unmodified DNA molecules, exposed in vitro to cell extracts prepared from cells habouring this plasmid, became resistant to digestion by FokI.The smallest HgaI methylase clone carries the pBR322 plasmid containing a 3.50 kb piece of H. galinarum DNA. This plasmid is resistant to digestion by HgaI.Neither the FokI nor the HgaI restriction endonuclease was detected in either clone. This is the first report of cloning modification genes whose protein products recognise asymmetric nucleotide sequences.  相似文献   

3.
Mycoplasma fermentans is currently being examined as an agent potentially associated with human disease. Several strains of M. fermentans were isolated from patients with respiratory tract disease and AIDS. Two of these clinical strains, M64 and SK6, were triple-filter-cloned and designated as the parental clones in this study. Genomic DNA of randomly picked subclones in four and five subsequent generations passed from the parental M64 and SK6 clones were analyzed by using a radiolabeled M. fermentans-specific insertion sequence (IS)-like element as the probe. The hybridization patterns of DNA restriction fragments revealed high frequencies of chromosomal changes accompanied with excision or new insertion of the IS-like element in M. fermentans chromosome. The findings indicate M. fermentans has an effective mechanism(s) to produce a rapid gene rearrangement that may be mediated by one or more copies of the IS-like element. Received: 8 October 1997 / Accepted: 8 December 1997  相似文献   

4.
An apparently full-length complementary DNA copy of in vitro polyadenylated MS2 RNA was synthesized with avian myeloblastosis virus RNA-dependent DNA polymerase. After the MS2 RNA template was removed from the complementary DNA strand with T1 and pancreatic RNase digestion, the complementary DNA became a good template for the synthesis of double-stranded MS2 DNA with Escherichia coli DNA polymerase I. We then constructed molecular chimeras by inserting the double-stranded MS2 DNA into the PstI restriction endonuclease cleavage site of the E. coli plasmid pBR322 by means of the poly(dA)· poly(dT) tailing procedure. An E. coli transformant carrying a plasmid with a nearly full-length MS2 DNA insertion, called pMS2-7, was chosen for further study. Correlation between the restriction cleavage site map of pMS2-7 DNA and the cleavage map predicted from the primary structure of MS2 RNA, and nucleotide sequence analysis of the 5′ and 3′ end regions of the MS2 DNA insertion, showed that the entire MS2 RNA had been faithfully copied, and that, except for 14 nucleotides corresponding to the 5′-terminal sequence of MS2 RNA, the fulllength DNA copy of the viral genetic information had been inserted into the plasmid. Restriction endonuclease analysis of the chimera plasmid DNA also revealed the presence of an extra DNA insertion which was identified as the translocatable element IS13 (see following paper).  相似文献   

5.
Summary Replicating DNA molecules of the mini R6-5 plasmid, pKTO71, were purified by equilibrium centrifugation in two successive ethidium bromide-caesium chloride gradients, converted to linear forms by cleavage with either HindIII or BglII restriction endonuclease, and examined in the electron microscope. Determination of the replication fork positions in 65 replicating molecules demonstrated that replication is initiated at a unique location on the plasmid and that it proceeds uni-directionally from this site. The direction of replication is such that the origin-proximal BglII cleavage site is replicated late or, in the case of the parent R6-5 plasmid, is such that the R-determinant region of the molecule is replicated early. The origin of replication, located by these experiments at R6-5 coordinate 98.6 kb, is clearly distinct from that of the R6-5 incompatibility determinant which has been shown to be located on an adjacent PstI-generated DNA fragment whose termini have R6-5 coordinates 96.8 and 97.9 kb. This result indicates that the incompatibility function is not an origin DNA sequence.  相似文献   

6.
The genes for a Class II restriction-modification system (HhaII) from Haemophilus haemolyticus have been cloned in Escherichia coli. The vector used for cloning was plasmid pBR322 which confers resistance to tetracycline and ampicillin and contains a single endonuclease R·PstI site, (5′)C-T-G-C-A-G (3′), in the ampicillin gene. The procedure developed by Bolivar et al. (1977) was used to form DNA recombinants. H. haemolyticus DNA was cleaved with PstI endonuclease and poly(dC) extensions were added to the 3′-OH termini using terminal deoxynucleotidyl transferase. Circular pBR322 DNA was cleaved to linear molecules with PstI endonuclease and poly(dG) extensions were added to the 3′-OH termini, thus regenating the PstI cleavage site sequence. Recombinant molecules, formed by annealing the two DNAs, were used to transfect a restriction and modification-deficient strain of E. coli (HB101 r?m?recA). Tetracycline-resistant clones were tested for acquisition of restriction phenotype (as measured by growth on plates seeded with phage λcI·O). A single phage-resistant clone was found. The recombinant plasmid, pDI10, isolated from this clone, had acquired 3 kilobases of additional DNA which could be excised with PstI endonuclease. In addition to the restriction function, cells carrying the plasmid expressed the HhaII modification function. Both activities have been partially purified by single-stranded DNA-agarose chromatography. The cloned HhaII restriction activity yields cleavage patterns identical to HinfI. A restriction map of the cloned DNA segment is presented.  相似文献   

7.
A new restriction endonuclease Sst12I belonging to type II and recognizing the sequence 5"-CTGCAG-3" was isolated from the bacterial strain Streptomycessp. St-12. The enzyme hydrolyzes DNA between adenine and guanine residues; thus, it is a true isoschizomer of restrictase PstI. In contrast to PstI, the restriction endonuclease Sst12I hydrolyses DNA both at 37 and 55°C and remains active after long-term storage.  相似文献   

8.
The insertion element IS1 is a natural constituent of coliphage P1 DNA.   总被引:7,自引:0,他引:7  
S Iida  J Meyer  W Arber 《Plasmid》1978,1(3):357-365
The presence of one copy of the insertion element IS1 in P1 DNA at map unit 20 of the physical genome map is revealed by restriction enzyme cleavage patterns and electron microscopy. This IS1 element is cleaved once by the restriction endonuclease PstI and extends about 500 to 600 base pairs to the left and 200 to 300 base pairs to the right of the unique PstI cleavage site of P1 DNA. Two P1Cm derivatives, P1Cm246 and P1Cm89, carrying a chloramphenicol resistance determinant contain DNA insertions with two terminal directly repeated IS1 elements. Insertion of such IS1-mediated transposition elements may occur at the IS1 site in the P1 genome or at other sites. The significance of IS1 as a natural constitutent of P1 DNA is discussed.  相似文献   

9.
The PCR product amplified from Rickettsia japonica with the primer pair Rr 190.70p and Rr 190.602n of R. rickettsii 190-kDa antigen gene was cloned into M13mp19 RF DNA at the EcoRI site and sequenced by chemiluminescent DNA sequencing. The sequence revealed a molecular size of 533 base pairs (bp). The primer-flanking region of 491 bp, an open reading frame, was compared with the corresponding region of R. rickettsii, demonstrating 35 nucleotide substitutions in R. japonica. The sequence of primer portions in R. japonica DNA was also analyzed, revealing one nucleotide substitution in the Rr 190.70p and two in the Rr 190.602n portion. The homology in the overall sequence of PCR-amplified regions between R. japonica and R. rickettsii was 93% in nucleotide and 85% in putative amino acid structure. The sequence contains no cleavage site for the restriction endonuclease AfaI but two PstI sites giving three fragments of 121, 159, and 253 bp, which differentiated R. japonica from other spotted fever group rickettsiae in addition to R. rickettsii. The cleavage sites for endonucleases AluI, HinfI, and MunI that disappeared or appeared in the sequence by nucleotide substitution differentiated R. japonica from others, as did PstI. The estimation of molecular size of DNA fragments on polyacrylamide gel electrophoresis is discussed.  相似文献   

10.
We have successfully adapted plasmid insertion and restriction enzyme-mediated integration (REMI) to produce cercosporin toxin-deficient mutants in the asexual phytopathogenic fungus Cercospora nicotianae. The use of pre-linearized plasmid or restriction enzymes in the transformation procedure significantly decreased the transformation frequency, but promoted a complicated and undefined mode of plasmid integration that leads to mutations in the C. nicotianae genome. Vector DNA generally integrated in multiple copies, and no increase in single-copy insertion was observed when enzymes were added to the transformation mixture. Out of 1873 transformants tested, 39 putative cercosporin toxin biosynthesis ( ctb) mutants were recovered that showed altered levels of cercosporin production. Seven ctb mutants were recovered using pre-linearized plasmids without the addition of enzymes, and these were considered to be non-REMI mutants. The correlation between a specific insertion and a mutant phenotype was confirmed using rescued plasmids as gene disruption vectors in the wild-type strain. Six out of fifteen rescued plasmids tested yielded cercosporin-deficient transformants when re-introduced into the wild-type strain, suggesting a link between the insertion site and the cercosporin-deficient phenotype. Sequence analysis of a fragment flanking the insert site recovered from one insertion mutant showed it to be disrupted in sequences with high homology to the acyl transferase domain of polyketide synthases from other fungi. Disruption of this polyketide synthase gene ( CTB1) using a rescued plasmid resulted in mutants that were defective in cercosporin production. Thus, we provide the first molecular evidence that cercosporin is synthesized via a polyketide pathway as previously hypothesized.Communicated by E. Cerdá-Olmedo  相似文献   

11.
Summary A 4.8×106 dalton ECoRI-generated fragment of the R-factor R6-5 carrying the gene for kanamycin resistance (Km) was joined in vitro to ECoRI-treated ColE1 plasmid DNA. Transformation ofE. coli with the ColE1-Km recombinant plasmid yielded clones, which were immune to colicin E1, resistant to kanamycin and failed to produce colicin E1. During multiplication of this recombinant plasmid in the presence of chloramphenicol, cells expressed an increased resistance to kanamycin. Transformation studies with the recombinant DNA molecule showed very frequent loss of Km resistance in those cells harbouring a preexisting F'gal plasmid. Since colicin immunity is not affected and the col- phenotype is still present, one has to test for a remaining DNA sequence further existing in ColE1 DNA by cleaving the plasmid DNA with the ECoRI restriction endonuclease. The full length of ColE1 DNA (6.2 kb) was restored, which confirmed that no deletion of ColE1 DNA sequences had occured. The remaining DNA sequence was identified as a 2.0 or 2.2 kb segment. On the basis of the length of the excised fragment it is proposed that the insertion sequence IS1 and a part of the inverted repeat sequence with coordinates 21.0 to 22.0 of the R6-5 DNA are recognised by a nucleolytic function.  相似文献   

12.
S J Kidd  D M Glover 《Cell》1980,19(1):103-119
We describe a cloned segment of D. melanogaster DNA (cDm219) that contains five tandemly arranged sequence units homologous to the type I insertion sequence found in the majority of 28S rRNA genes on the X chromosome. Heteroduplex studies show that two of the units have a deletion corresponding to a 1.1 kb piece of DNA close to the right-hand end of the type I insertion. Another unit has a 7.5 kb sequence (zeta) substituted for a 0.95 kb piece of DNA close to the left-hand part of the type I rDNA insertion. The two remaining units are interrupted by the Col E1 plasmid vector. There are also differences in the restriction endonuclease cleavage maps both between the units of cDm219 themselves and compared to the restriction endonuclease cleavage maps of cloned rDNA segments that contain type I insertions. Quantitation of the gel transfer hybridization of zeta element probes to restriction endonuclease digests of D. melanogaster DNA indicates there are 30--40 copies of zeta sequences distributed in seven major arrangements within the haploid genome. The hybridization of zeta and insertion sequence probes to a library of D. melanogaster DNA segments cloned in bacteriophage lambda indicates at least 4--6 copies of the zeta element could be linked to insertion sequences. The common site of in situ hybridization of zeta sequences is to the chromocentral heterochromatin of polytene chromosomes.  相似文献   

13.
Summary Several lines of evidence were obtained that the previously identified, repeated sequence RS 1100 of Pseudomonas cepacia strain AC1100 undergoes transposition events. DNA sequences flanking the chlorohydroxy hydroquinone (CHQ) degradative genes of this organism were examined from sources, including several independently isolated cosmid clones from an AC1100 genomic library and genomic DNAs of two independently maintained wild-type AC1100 isolates. Hybridization and restriction endonuclease mapping studies revealed these sequences to be similar except for their numbers and distributions of RS1100 copies. A recombinant plasmid containing the immediate chq gene region and excluding any copies of RS1100 was conjugated into AC1100 mutant RHA5 which was shown to have undergone a deletion of its corresponding DNA. Hybridization and restriction mapping analyses of several reisolated plasmids revealed the presence of RS1100 sequences at different positions within either the vector or insert portions. One such plasmid contained tandem copies of RS1100 with an intervening DNA sequence also of AC1100 origin. Similar experiments involving introduction of the promoter probe plasmid pKT240 into wild-type AC1100 cells resulted in the acquisition of high-concentration streptomycin resistance by a number of recipients. The reisolated plasmids in most cases also conferred streptomycin resistance to Escherichia coli transformants and in each case were found to contain insertions close to the upstream portion of the aphC structural gene. These insertions alternatively contained RS1100 sequences or a newly identified 3400 by repeated sequence from AC1100. Based on these results, RS1100 has been redesignated as insertion sequence IS931 and the 3400 bp repeated sequence has been designated as IS932.[/ab]Abbreviations aphc aminoglycoside phosphotransferase gene - BSM basal salts medium - chq chlorohydroxy hydroquinone degradative gene(s) - dCTP deoxycytidine triphosphate - IS insertion sequence - Tft 2,4,5-T degradative phenotype  相似文献   

14.
Animesh Ray  Ron Skurray 《Plasmid》1983,9(3):262-272
A segment of the F plasmid DNA, located between the origin of transfer and the primary F replication region, is the first to enter the recipient cell during conjugation.PstI,SalI, andSmaI restriction endonuclease sites have been mapped within this leading region in conjugational DNA transfer and chimeric plasmids carrying overlapping fragments of the region have been constructed. Analyses of polypeptides synthesized by maxicells carrying these chimeric plasmids have shown four new polypeptides ofMr 27,800, 23,100, 14,400, and 11,000 to be encoded by sequences within the leading region.  相似文献   

15.
Constitutive heterochromatin of a karyotypically conserved species of harvest mouse was compared to that of three karyotypically derived species of harvest mice by examining banding patterns produced on metaphase chromosomes with three restriction endonucleases (EcoRI, MboI and PstI). Banding patterns produced by two of these restriction endonucleases (EcoRI and MboI) were compared to published G- and C-banded karyotypes and in situ hybridization of a satellite DNA repeat for these taxa. The third restriction endonuclease (PstI) did not produce a detectable pattern of digestion. For the most part, patterns produced by EcoRI and MboI can be related to C-banded chromosomes and in situ hybridization of satellite DNA sequences. Moreover, digestion with EcoRI reveals bands not apparent with these other techniques, suggesting that restriction endonuclease digestion of metaphase chromosomes may provide additional insight into the structure and organization of metaphase chromosomes. The patterns produced by restriction endonuclease digestion are compatible with the chromosomal evolution of these taxa, documenting that in the highly derived taxa not only are the chromosomes rearranged but the abundance of certain sequences is highly variable. However, technical variation and difficulty in producing consistent results even on a single slide with some restriction endonucleases documents the problems associated with this method.  相似文献   

16.
K C Luk  P Dobrzański  W Szybalski 《Gene》1982,17(3):259-262
A series of plasmid vectors containing the multiple cloning site (MCS7) of M13mp7 has been constructed. In one of these vectors a kanamycin-resistance marker has been inserted into the center of the symmetrical MCS7 to yield a restriction-site-mobilizing element (RSM). The drug-resistance marker can be cleaved out of this vector with any of the restriction enzymes that recognize a site of the flanking sequences of the RSM to generate an RSM with either various sticky ends or blunt ends. These fragments can be used for insertion mutagenesis of any target molecule with compatible restriction sites. Insertion mutants are selected by their resistance to kanamycin. When the drug-resistance marker is removed with PstI, a small in-frame insertion can be generated. In addition, two new MCSs having single restriction sites have been formed by altering the symmetrical structure of MCS7. The resulting plasmids pUC8 and pUC9 allow one to clone doubly digested restriction fragments separately with both orientations in respect to the lac promoter. The terminal sequences of any DNA cloned in these plasmids can be characterized using the universal M13 primers.  相似文献   

17.
The LlaDII restriction/modification (R/M) system was found on the naturally occurring 8.9-kb plasmid pHW393 in Lactococcus lactis subsp. cremoris W39. A 2.4-kb PstI-EcoRI fragment inserted into the Escherichia coli-L. lactis shuttle vector pCI3340 conferred to L. lactis LM2301 and L. lactis SMQ86 resistance against representatives of the three most common lactococcal phage species: 936, P335, and c2. The LlaDII endonuclease was partially purified and found to recognize and cleave the sequence 5′-GC↓NGC-3′, where the arrow indicates the cleavage site. It is thus an isoschizomer of the commercially available restriction endonuclease Fnu4HI. Sequencing of the 2.4-kb PstI-EcoRI fragment revealed two open reading frames arranged tandemly and separated by a 105-bp intergenic region. The endonuclease gene of 543 bp preceded the methylase gene of 954 bp. The deduced amino acid sequence of the LlaDII R/M system showed high homology to that of its only sequenced isoschizomer, Bsp6I from Bacillus sp. strain RFL6, with 41% identity between the endonucleases and 60% identity between the methylases. The genetic organizations of the LlaDII and Bsp6I R/M systems are identical. Both methylases have two recognition sites (5′-GCGGC-3′ and 5′-GCCGC-3′) forming a putative stem-loop structure spanning part of the presumed −35 sequence and part of the intervening region between the −35 and −10 sequences. Alignment of the LlaDII and Bsp6I methylases with other m5C methylases showed that the protein primary structures possessed the same organization.  相似文献   

18.
W Y Chow  C K Wang  W L Lee  S S Kung    Y M Wu 《Journal of bacteriology》1995,177(14):4157-4161
A 93-kb region (D region) of plasmid pAE1 of Alcaligenes eutrophus H1 has been found to have a high rate of spontaneous deletion. In this study, we constructed a restriction endonuclease map and carried out limited sequencing of an approximately 100-kb region from pAE1 which includes the D region (the deleted region) in order to detect and characterize repetitive sequences. Two types of repetitive sequences, the R1 and R2 sequences, were observed to flank the D region; within the D region are three copies of insertion element ISAE1. The R1 and R2 sequences are arranged in direct and inverted orientations, respectively. Molecular analysis of the end product of the deletion is consistent with the hypothesis that the loss of the D-region DNA is the result of recombination between two copies of the R1 sequence. The R1 sequence encodes a 415-amino-acid protein which exhibits substantial sequence similarity to the lambda integrase family of site-specific recombinases. Its genetic function remains to be determined.  相似文献   

19.
The HinfI restriction and modification genes were cloned on a 3.9-kb PstI fragment inserted into the PstI site of plasmid pBR322. Both genes are confined to an internal 2.3-kb BclI-AvaI subfragment. This subfragment was sequenced. Two large open reading frames (ORF's) are present. ORF1 codes for the methylase [predicted 359 amino acids (aa)] and ORF2 codes for the endonuclease (predicted 262 or 272 aa).  相似文献   

20.
Summary The previously reported existence of plasmid-like (pl) DNA in senescent mycelia of Podospora anserina was confirmed using new methodology. Detailed analysis of bulk DNA has further shown a possible relationship between pl DNA and mt DNA.According to biophysical and electron microscopic experiments the pl DNA was found to consist of oligomeres having a basic unit with a contour length of 0.75 m corresponding to 2.4 kb. To overcome the handicap that pl DNA is only produced in rather small amounts in the aging mycelia, this DNA was cloned in E. coli after insertion into a bacterial plasmid vector, pBR 322. It was possible to isolate a stable hybrid plasmid consisting of the vector and only one integrated monomere of pl DNA. The composition of this hybrid plasmid was confirmed by restriction endonuclease analysis and heteroduplex formation. A restriction map of the pl DNA is presented and its insertion site onto pBR 322 indicated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号