首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Uptake and conversion of the antibiotic albomycin by Escherichia coli K-12.   总被引:4,自引:0,他引:4  
The antibiotic albomycin is transported into cells of Escherichia coli K-12 by the same uptake system as the iron-supplying ferrichrome complex. The iron-complexing hydroxamate moieties of albomycin and ferrichrome are structurally similar. During the phase of rapid iron uptake the chelators were not found in the cells. In order to understand the antibiotic activity of albomycin, it was labeled in the hydroxamate with tritium and in the presumed antibiotically active area with radioactive sulfur. While the tritium label was not retained by the cells, part of the sulfur label was taken up and concentrated 500-fold within the cell. The sulfur was not incorporated into proteins or nucleic acids since it was recovered as a low molecular weight component. Gel filtration on Bio-Gel P-2 revealed one tritium-labeled and two sulfur-labeled cleavage products in the incubation medium. We conclude that albomycin is actively transported via its ferrichrome-like portion into the cells and that the growth-inhibitory moiety is released by hydrolysis intracellularly and remains there.  相似文献   

3.
4.
Phosphoglucomutase Mutants of Escherichia coli K-12   总被引:16,自引:11,他引:5       下载免费PDF全文
Bacteria with strongly depressed phosphoglucomutase (EC 2.7.5.1) activity are found among the mutants of Escherichia coli which, when grown on maltose, accumulate sufficient amylose to be detectable by iodine staining. These pgm mutants grow poorly on galactose but also accumulate amylose on this carbon source. Growth on lactose does not produce high amylose but, instead, results in the induction of the enzymes of maltose metabolism, presumably by accumulation of maltose. These facts suggest that the catabolism of glucose-1-phosphate is strongly depressed in pgm mutants, although not completely abolished. Anabolism of glucose-1-phosphate is also strongly depressed, since amino acid- or glucose-grown pgm mutants are sensitive to phage C21, indicating a deficiency in the biosynthesis of uridine diphosphoglucose or uridine diphosphogalactose, or both. All pgm mutations isolated map at about 16 min on the genetic map, between purE and the gal operon.  相似文献   

5.
Escherichia coli K-12 transformed with pACYC184 plasmid DNA was exposed to ozone (O3) in aqueous solution. The damage to the membrane, protein, plasmid DNA, and cell survival were investigated. Cell viability was unaffected by short-term O3 exposure (1–5 min) but membrane permeability was compromised as indicated by protein and nucleic acid leakage and lipid oxidation. The intracellular components, protein and DNA, remained intact. With longer durations of O3 exposure (up to 30 min) cell viability decreased with a more significant increase in lipid oxidation and protein and nucleic acid leakage. The proteins leaking out were further oxidized by O3. The total intracellular proteins run on sodium dodecyl sulfate/polyacrylamide gel electrophoresis, and plasmid DNA run on agarose gel, showed progressive degradation corresponding to the decrease in cell viability. The data indicate that membrane components are the primary targets of O3 damage with subsequent reactions involving the intracellular components, protein and DNA. Received: 18 Apirl 1996 / Received revision: 26 July 1996 / Accepted: 5 August 1996  相似文献   

6.
7.
Potassium-dependant mutants of Escherichia coli K-12   总被引:28,自引:14,他引:14  
Mutants of Escherichia coli K-12 that grow more slowly in media containing low concentrations of K have been isolated. All independent mutants of this type which have been studied carry a mutation in a small region of the bacterial chromosome between the supE and gal loci. The growth rate of the mutants is the same as that of the parental strains in medium containing more than 1 mm K, but is only 50% that of the parent when the K concentration is reduced to 0.1 mm. The mutants do not appear to have a primary alteration in K transport, and are therefore referred to as K-dependent. The abbreviation kdp is proposed for this class of mutant.  相似文献   

8.
The flavodoxins are flavin mononucleotide-containing electron transferases. Flavodoxin I has been presumed to be the only flavodoxin of Escherichia coli, and its gene, fldA, is known to belong to the soxRS (superoxide response) oxidative stress regulon. An insertion mutation of fldA was constructed and was lethal under both aerobic and anaerobic conditions; only cells that also had an intact (fldA(+)) allele could carry it. A second flavodoxin, flavodoxin II, was postulated, based on the sequence of its gene, fldB. Unlike the fldA mutant, an fldB insertion mutant is a viable prototroph in the presence or absence of oxygen. A high-copy-number fldB(+) plasmid did not complement the fldA mutation. Therefore, there must be a vital function for which FldB cannot substitute for flavodoxin I. An fldB-lacZ fusion was not induced by H(2)O(2) and is therefore not a member of the oxyR regulon. However, it displayed a soxS-dependent induction by paraquat (methyl viologen), and the fldB gene is preceded by two overlapping regions that resemble known soxS binding sites. The fldB insertion mutant did not have an increased sensitivity to the effects of paraquat on either cellular viability or the expression of a soxS-lacZ fusion. Therefore, fldB is a new member of the soxRS (superoxide response) regulon, a group of genes that is induced primarily by univalent oxidants and redox cycling compounds. However, the reactions in which flavodoxin II participates and its role during oxidative stress are unknown.  相似文献   

9.
L-Serine-sensitive mutants of Escherichia coli K-12   总被引:7,自引:7,他引:0       下载免费PDF全文
While attempting to isolate d-serine-sensitive mutants of Escherichia coli K-12, we found a class of mutants sensitive to low concentrations of l-serine (10 to 25 mug/ml).  相似文献   

10.
Iron transport in Escherichia coli K-12   总被引:14,自引:0,他引:14  
The study of iron uptake promoted by 2,3-dihydroxybenzoate (DHB) into Escherichia coli K-12 aroB mutants allowed some dissection of outer and cytoplasmic membrane functions. These strains are unable to produce the iron-transporting chelate enterochelin, unless fed with a precursor such as DHB. When added to the medium, enterochelin and its natural breakdown products, the linear dimer and trimer of 2,3-dihydroxybenzoylserine (DBS), efficiently transported iron via the feuB, tonB and fep gene products. Thus mutants in these genes were defective in transport of the above chelates. However, feuB and tonB mutants were able to take up iron when DHB was added to the medium. Thus DHB-promoted iron uptake bypassed two functions required for the transport of ferric-enterochelin from the medium. One of these functions, feuB, has been shown to be an outer membrane protein. In contrast to three other iron transport systems including ferric-enterochelin uptake, DHB-promoted iron uptake was little affected by the uncoupler 2,4-dinitrophenol. Dissipation of the energized state of the cytoplasmic membrane apparently only affects those iron transport systems which require an outer membrane protein. Since DHB-promoted iron uptake bypasses the feuB outer membrane protein and the tonB function, it is concluded that, in ferricenterochelin transport, the tonB gene may function in coupling the energized state of the cytoplasmic membrane to the protein-dependent outer membrane permeability. DHB-promoted iron uptake required the synthesis and enzymatic breakdown of enterochelin as judged by the effects of the entF and fesB mutations. A fep mutant was not only deficient in the transport of the ferric chelates of enterochelin and its breakdown products, but was also deficient in DHB-promoted iron uptake. A scheme is presented in which iron diffuses as DHB-complex through the outer membrane, and is subsequently captured by enterochelin or DBS dimer or trimer and translocated across the cytoplasmic membrane.List of Abbreviations DHB 2,3-dihydroxybenzoate - DBS 2,3-dihydroxybenzoylserine - NTA nitrilotriacetate - DNP 2,4-dinitrophenol  相似文献   

11.
12.
UGA-specific nonsense suppressors from Escherichia coli K-12 were isolated and characterized. One of them (Su+UGA-11) was identified as a mutant of the prfB gene for the peptide releasing factor RF2. It appears that in this strain, while peptide release at sites of UGA mutations is retarded, the UGA stop codon is read through even in the absence of a tRNA suppressor, exhibiting a novel type of passive nonsense suppression. Three suppressors (Su+UGA-12, -16 and -34) were capable of restoring the streptomycin sensitive phenotype in resistant bacteria (strAr). Because of their drug-related phenotype, these are possibly mutations in the components of the ribosomal machinery, particularly those concerned with peptide release at UGA nonsense codons. A tRNA suppressor was also obtained which was derived from the tRNA(Trp) gene. In this strain, a long region between rrnC (84.5 min) and rrnB (89.5 min) was duplicated and one of the duplicated genes of tRNA(Trp) was mutated to the suppressor. The mechanism of UGA-suppression is discussed in terms of translation termination at the nonsense codon in both active and passive fashions.  相似文献   

13.
The mechanism of action of rifampicin, an antibiotic which inhibits in vitro the polycondensation of ribonucleotides by ribonucleic acid (RNA) nucleotidyltransferase, was studied in vivo in Escherichia coli. It is argued that the inhibition of RNA nucleotidyltransferase represents the primary lesion and is responsible for the bactericidal effect. This conclusion is based on (i) the correlation between concentrations of the antibiotic which block in vivo incorporation of labeled uracil and the bactericidal concentrations, (ii) the evidence that the loss of viability of the cells immediately follows the block of RNA synthesis, and (iii) the observation that the reversal of the inhibition of RNA synthesis goes together with a reversal of the loss of viability.  相似文献   

14.
[This corrects the article on p. 116 in vol. 40.].  相似文献   

15.
Hemin-deficient mutants of Escherichia coli K-12.   总被引:32,自引:16,他引:16  
  相似文献   

16.
17.
18.
Abstract A mutant strain of Pseudomonas aeruginosa , PAC35, was shown to lack homoserine dehydrogenase activity. In minimal salt medium, with growth-limiting concentrations of homoserine, strain PAC35 excreted lysine into the medium and this did not occur when exogenous homoserine, or threonine, was in excess of requirements. The hom gene mapped at about 42 min on the PAO chromosome.  相似文献   

19.
Peptidases in spheroplasts of Escherichia coli K-12   总被引:1,自引:0,他引:1  
  相似文献   

20.
Uroporphyrin-accumulating mutant of Escherichia coli K-12.   总被引:10,自引:6,他引:4       下载免费PDF全文
An uroporphyrin III-accumulating mutant of Escherichia coli K-12 was isolated by neomycin. The mutant, designated SASQ85, was catalase deficient and formed dwarf colonies on usual media. Comparative extraction by cyclohexanone and ethyl acetate showed the superiority of the former for the extraction of the uroporphyrin accumulated by the mutant. Cell-free extracts of SASQ85 were able to convert 5-aminolevulinic acid and porphobilinogen to uroporphyrinogen, but not to copro- or protoporphyrinogen. Under the same conditions cell-free extracts of the parent strain converted 5-aminolevulinic to uroporphyringen, coproporphyrinogen, and protoporphyrinogen. The conversion of porphobilinogen to uroporphyrinogen by cell-free extracts of the mutant was inhibited 98 and 95%, respectively, by p-chloromercuribenzoate and p-chloromercuriphenyl-sulfonate, indicating the presence of uroporphyrinogen synthetase activity in the extracts. Spontaneous transformation of porphobilinogen to uroporphyrin was not detectable under the experimental conditions used [4 h at 37 C in tris(hydroxymethyl)aminomethane-potassium phosphate buffer, pH 8.2]. The results indicate a deficient uroporphyrinogen decarboxylase activity of SASQ85 which is thus the first uroporphyrinogen decarboxylase-deficient mutant isolated in E. coli K-12. Mapping of the corresponding locus by P1-mediated transduction revealed the frequent joint transduction of hemE and thiA markers (frequency of co-transduction, 41 to 44%). The results of the genetic analysis suggest the gene order rif, hemE, thiA, metA; however, they do not totally exclude the gene order rif, thiA, hemE, metA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号