首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Hardening of the chorion of medaka eggs was quantitated in terms of the solubility of its constituent proteins. After activation of unfertilized eggs with the Ca2+-ionophore A23187, hardening of chorion (named ionophore-activation hardening) proceeded and 60 min after activation the solubility of the proteins in 1 N NaOH had decreased to 20% of that of proteins of unhardened chorions. On SDS-PAGE, the chorions of unfertilized eggs gave four major protein bands (150, 83, 78 and 51 K). After Ca2+-ionophore activation, new two protein bands (135 and 61 K) appeared, with concurrent disappearance of all the original bands except the 51 K band. Isolated chorions of unfertilized eggs were also hardened by Ca2+and 60 min after addition of Ca2+the solubility of their proteins in 1 N NaOH had decreased to about 45% of that originally. During this type of hardening (named 'Ca2+-hardening), however, the SDS-PAGE pattern of the proteins remained unchanged. Therefore, there are two mechanisms of hardening. The 'ionophore-activation hardening was inhibited by cadaverine. When chorions were isolated 20 min after Ca2+-ionophore activation and kept in Ca2+-free conditions, the 'ionophore-activation hardening process was arrested: further hardening was resumed on addition of Ca2+to the medium. These results suggest the presence of some hardening machinery in isolated chorions.  相似文献   

2.
The unfertilized egg envelope of medaka ( Oryzias latipes ) consists of two major groups of subunits, ZI-1,2 (74–76 kDa) and ZI-3 (49kDa). During egg envelope hardening after egg activation, both subunit groups decreased in amount, new protein bands of 57–65, 110 and 125 kDa appeared and, finally, no bands were detectable on sodium dodecylsulfate-polyacrylamide gel electrophoresis. The 110 and 125 kDa bands are intermediates formed by polymerization of such subunit groups. In contrast, treatment with iodoacetamide, an inhibitor of polymerization, revealed that the 57–65 kDa intermediates originated from ZI-1,2 by limited hydrolysis. ZI-1,2 comprises at least three distinct proteins of quite similar structure with their N -termini undetectable by Edman degradation, while the 57–65 kDa intermediates also consist of at least three proteins with the same N -terminal amino acid sequence: DGKPSNPQQPQVPQYPSK-. This fact strongly suggests a participation of a protease in the conversion of ZI-1,2 into 57–65 kDa proteins. EDTA and 1,10-phenanthrolinium inhibited the conversion and both Ca2+ and Zn2+ recovered the inhibition. These results suggest that the assumed protease is a metalloprotease.  相似文献   

3.
The calcium antagonists diltiazem and verapamil at 100 μM caused considerable inhibition of the glycolysis system in recently fertilized eggs of the echiuroid, Urechis unicinctus . The levels of glycolytic intermediates in eggs were found to be higher 5 min after insemination than before fertilization while the levels of adenine nucleotides and inorganic phosphate were almost the same before and after fertilization. Addition of diltiazem or verapamil 30 sec after insemination did not inhibit fertilization, but resulted in maintenance of as low levels of glycolytic intermediates as in unfertilized eggs. The apparent mass action ratio in the phosphorylase step, calculated from the levles of glucose-1-phosphate and inorganic phosphate was normally higher in fertilized eggs than in unfertilized eggs, but was maintained at as low a level as in unfertilized eggs by adding these compounds 30 sec after insemination. Phosphorylase a activity also normally increased after insemination, but was maintained at a low level in fertilized eggs by adding these compounds. These compounds also inhibited the increased 45Ca2+ uptake normally observed after fertilization. These results suggest that after fertilization, the Ca2+ level increases associated with fertilization-induced Ca2+ influx and that this stimulates Ca2+ dependent protein kinase to phosphorylate phosphorylase b , resulting in an increased rate of the phosphorylase reaction.  相似文献   

4.
Recent studies have suggested that Ca2+/calmodulin (CaM) or CaM-like proteins may be involved in blue light (BL)-dependent proton pumping in guard cells. As the increase in cytosolic concentration of Ca2+ is required for the activation of CaM and CaM-like proteins, the origin of the Ca2+ was investigated by measuring BL-dependent proton pumping with various treatments using guard cell protoplasts (GCPs) from Vicia faba . BL-dependent proton pumping was affected neither by Ca2+ channel blockers nor by changes of Ca2+ concentration in the medium used for the GCPs. Addition of Ca2+ ionophores and an agonist to GCPs did not induce proton pumping. However, BL-dependent proton pumping was inhibited by 10 m M caffeine, which releases Ca2+ from the intracellular stores, and by 10 μ M 2,5-di-( tert -butyl)-1,4-benzohydroquinone (BHQ) and 10 μ M cyclopiazonic acid (CPA), inhibitors of Ca2+-ATPase in the sarcoplasmic and endoplasmic reticulum (ER). By contrast, the inhibitions were not observed by 10 μ M thapsigargin, an inhibitor of animal ER-type Ca2+-ATPase. The inhibitions by caffeine and BHQ were reversible. Light-dependent stomatal opening in the epidermis of Vicia was inhibited by caffeine, BHQ, and CPA. From these results, we conclude that the Ca2+ thought to be required for BL-dependent proton pumping may originate from intracellular Ca2+ stores, most likely from ER in guard cells, and that this origin of Ca2+ may generate a stimulus-specific Ca2+ signal for stomatal opening.  相似文献   

5.
Abstract: The potential involvement of L- and N-type voltage-sensitive calcium (Ca2+) channels and a voltage-independent receptor-operated Ca2+ channel in the release of adenosine from dorsal spinal cord synaptosomes induced by depolarization with K+ and capsaicin was examined. Bay K 8644 (10 n M ) augmented release of adenosine in the presence of a partial depolarization with K+ (addition of 6 m M ) but not capsaicin (1 and 10 μ M ). This augmentation was dose dependent from 1 to 10 n M and was followed by inhibition of release from 30 to 100 n M . Nifedipine and nitrendipine inhibited the augmenting effect of Bay K 8644 in a dose-dependent manner, but neither antagonist had any effect on release of adenosine produced by K+ (24 m M ) or capsaicin (1 and 10 μ M ) ω-Conotoxin inhibited K+-evoked release of adenosine in a dose-dependent manner but had no effect on capsaicin-evoked release. Ruthenium red blocked capsaicin-induced release of adenosine but had no effect on K+-evoked release. Although L-type voltage-sensitive Ca2+ channels can modulate release of adenosine when synaptosomes are partially depolarized with K+, N-type voltage-sensitive Ca2+ channels are primarily involved in K+-evoked release of adenosine. Capsaicin-evoked release of adenosine does not involve either L- or N-type Ca2+ channels, but is dependent on a mechanism that is sensitive to ruthenium red.  相似文献   

6.
The plasma membrane fractions of the sperm of four species of sea urchin, obtained by the method by Podell et al. (24), gave similar electrophoretic profiles of proteins. Several proteins in the membrane fraction from Hemicentrotus pulcherrimus bound [3H]nitrendipine, a specific antagonist of voltage-dependent Ca2+channels, added at concentration of about 104times those reported to be effective in muscle and nerve cells. Nifedipine, a close analogue of nitrendipine, decreased the bindings of [3H]nitrendipine to 210, 140, 130 and 110 kDa and increased its bindings to several other proteins. Diltiazem, another type of Ca2+channel blocker, enhanced the bindings of [3H]nitrendipine to proteins of 210, 140, 130 and 110 kDa, and decreased its bindings to the other proteins. This effect of diltiazem on the binding of [3H]nitrendipine to proteins in the membrane fraction was similar to its effect on the mammalian excitable membrane fraction. The proteins whose binding to [3H]nitrendipine was blocked by nifedipine and enhanced by diltiazem are Ca2+channels.  相似文献   

7.
Abstract: Annexin VI bound to >14 species of proteins in the whole homogenate of rat forebrain in a Ca2+/phosphatidylserine- or phosphatidic acid-dependent manner. When the subcellular fractions of rat forebrain were examined with a blot from a sodium dodecyl sulfate-polyacrylamide gel, each annexin VI-binding protein showed a different distribution, suggesting that annexin VI is a multifunctional protein. Of these proteins, the doublets of Mr 80,000 were enriched in the purified synaptic vesicles and were identified as synapsin I. Annexin VI bound to the head domain of synapsin I. When the binding of annexin VI to synapsin I was characterized in the native state, the affinity of the binding for Ca2+ ( K Ca) was 12.6 µ M , and the affinity for annexin VI ( K D) was ∼270 n M . Phosphorylation of synapsin I by cyclic AMP-dependent protein kinase and by Ca2+/calmodulin-dependent protein kinase II inhibited the annexin VI binding. The mode of the inhibition was different between the two kinases. These results indicate that annexin VI may modulate the function of synapsin I in a Ca2+- and phospholipid-dependent manner.  相似文献   

8.
Eggs of the sea urchin, Hemicentrotus pulcherrimus , were stimulated by halothane, known to induce Ca2+ release from sarcosome, to cause fertilization membrane formation in normal and Ca2+ free artificial sea water. In the absence of external Ca2+, halothane-induced formation of fertilization membrane was inhibited by dantrolene, an inhibitor of Ca2+ release from sarcosome, but was not blocked by nifedipine, a Ca2+ antagonist specific to Ca2+ channels in plasma membrane. Ca2+ release from sedimentable fraction isolated from eggs was induced by halothane and was inhibited by dantrolene, but was not blocked by nifedipine. In normal artificial sea water, halothane-caused egg activation was not inhibited either by dantrolene or by nifedipine, but was blocked in the presence of both compounds. 45Ca2+ influx was substantially stimulated by halothane in eggs exposed to 45CaCl2. Halothane-induced 45Ca2+ influx into eggs was inhibited by nifedipine but was not blocked by dantrolene. When Ca2+ release from intracellular organellae is blocked, Ca2+ transport through Ca2+ channels in plasma membrane probably acts as a "fail-safe" system to induce an increase in cytosolic Ca2+ level, resulting in egg activation.  相似文献   

9.
Abstract— Partly purified chromaffin granules were incubated in vitro with Ca2+ (with trace amounts of 45Ca2+) in concentrations ranging from 4 μm to 1 mm. After incubation the granules were washed with media containing EDTA and then subjected to density gradient centrifugation (1.3 to 2.0 m-sucrose solutions) in order to characterize the particles which had taken up 45Ca2+. By using marker enzymes and various inhibitors of Ca2+ uptake into such cell particles as mitochondria it was established that under the conditions of the experiments chromaffin granules took up Ca2+ from the incubation medium. To characterize this uptake a simplified density gradient procedure was tested and found to be suitable. The uptake of Ca2+ into chromaffin granules was strongly dependent on temperature. It was not activated by ATP. The uptake was linear up to 10 min. At high calcium concentrations (above 200 μm) the rate of uptake levelled off. The uptake at 37°C was 1 nmol Ca2+/mg protein/min at a Ca2+ concentration of 500 μm. Mg2+ had no influence on Ca2+ uptake, whereas Sr2+ (1 mm) inhibited it. The methods established in this study should prove useful for a further characterization of this Ca2+ uptake into chromaffin granules which is likely to represent a useful model for the Ca2+ uptake occurring in the intact gland.  相似文献   

10.
Several events are associated with fertilization in oocytes. Two such events are an increase in cytoplasmic Ca2+ concentration and the resumption of meiosis. Oocytes of the marine annelid, Pectinaria gouldii , are in metaphase I arrest when they are spawned. In this report we investigate the relationship between Ca2+ and resumption of meiosis in this species. Meiosis in unfertilized oocytes could be re-initiated with the divalent cation ionophore, A23187. Oocytes in Ca2+ free sea water, however, did not resume meiosis in the presence of the ionophore. Furthermore, it was observed that Ca2+ must be present for at least 15 min following ionophore treatment for meiosis to resume. These results suggest that extracellular Ca2+ is required for the re-initiation of meiosis in this species.  相似文献   

11.
Abstract: The Na+/Ca2+ exchanger is an important element in the maintenance of calcium homeostasis in bovine chromaffin cells. The Na+/Ca2+ exchanger from other cell types has been extensively studied, but little is known about its regulation in the cell. We have investigated the role of reversible protein phosphorylation in the activity of the Na+/Ca2+ exchanger of these cells. Cells treated with 1 m M dibutyryl cyclic AMP (dbcAMP), 1 µ M phorbol 12,13-dibutyrate, 1 µ M okadaic acid, or 100 n M calyculin A showed lowered Na+/Ca2+ exchange activity and prolonged cytosolic Ca2+ transients caused by depolarization. A combination of 10 n M okadaic acid and 1 µ M dbcAMP synergistically inhibited Na+/Ca2+ exchange activity. Conversely, 50 µ M 1-(5-isoquinolinylsulfonyl)-2-methylpiperazine, a protein kinase inhibitor, enhanced Na+/Ca2+ exchange activity. Moreover, we used cyclic AMP-dependent protein kinase and calcium phospholipid-dependent protein kinase catalytic subunits to phosphorylate isolated membrane vesicles and found that the Na+/Ca2+ exchange activity was inhibited by this treatment. These results indicate that reversible protein phosphorylation modulates the activity of the Na+/Ca2+ exchanger and suggest that modulation of the exchanger may play a role in the regulation of secretion.  相似文献   

12.
A 40000 g supernatant fraction from extracts of germinating wheat ( Triticum turgidum Desf. cv. Edmore) endosperm contains protein kinase activity that phosphorylates several endogenous proteins. In vitro incorporation of radiolabel from [32P]-ATP into phosphoproteins was maximal in the presence of 1 m M CaCl2 and 5 m M MgCl2Ca2+ at micromolar concentrations greatly stimulated the phosphorylation of 49 and 47 kDa polypeptides and also inhibited the phosphorylation of a few specific polypeptides. The phosphorylation of the 49 and 47 kDa polypeptides was present at 2 days after seed germination and was maximal at 8 days. Quantitative protein changes were also detected during the seed germination, but differences could not be correlated with changes in protein phosphorylation. Phosphoamino acid analysis by two dimensional thin-layer electrophoresis showed that the Ca2+-dependent protein kinase phosphorylates a serine residue of the 47 kDa polypeptide. Ca2+-dependent protein kinase phosphorylates a serine residue of the 47 KDa polypeptide. Ca2+ dependent protein phosphorylktion was inhibited by phenothiazine-derived drugs. Addition of S-adenosylmethionine to the in vitro phosphorylation reaction specifically inhibited the Ca2+-dependent protein phosphorylation.  相似文献   

13.
Abstract: The nervous tissue-specific protein B-50 (GAP-43), which has been implicated in the regulation of neurotransmitter release, is a member of a family of atypical calmodulin-binding proteins. To investigate to what extent calmodulin and the interaction between B-50 and calmodulin are involved in the mechanism of Ca2+-induced noradrenaline release, we introduced polyclonal anti-calmodulin antibodies, calmodulin, and the calmodulin antagonists trifluoperazine, W-7, calmidazolium, and polymyxin B into streptolysin-O-permeated synaptosomes prepared from rat cerebral cortex. Anti-calmodulin antibodies, which inhibited Ca2+/calmodulin-dependent protein kinase II autophosphorylation and calcineurin phosphatase activity, decreased Ca2+-induced noradrenaline release from permeated synaptosomes. Exogenous calmodulin failed to modulate release, indicating that if calmodulin is required for vesicle fusion it is still present in sufficient amounts in permeated synaptosomes. Although trifluoperazine, W-7, and calmidazolium inhibited Ca2+-induced release, they also strongly increased basal release. Polymyxin B potently inhibited Ca2+-induced noradrenaline release without affecting basal release. It is interesting that polymyxin B was also the only antagonist affecting the interaction between B-50 and calmodulin, thus lending further support to the hypothesis that B-50 serves as a local Ca2+-sensitive calmodulin store underneath the plasma membrane in the mechanism of neurotransmitter release. We conclude that calmodulin plays an important role in vesicular noradrenaline release, probably by activating Ca2+/calmodulin-dependent enzymes involved in the regulation of one or more steps in the release mechanism.  相似文献   

14.
Abstract: Synaptic vesicle recycling is a neuronal specialization of endocytosis that requires the GTPase activity of dynamin I and is triggered by membrane depolarization and Ca2+ entry. To establish the relationship between dynamin I GTPase activity and Ca2+, we used purified dynamin I and analyzed its interaction with Ca2+ in vitro. We report that Ca2+ bound to dynamin I and this was abolished by deletion of dynamin's C-terminal tail. Phosphorylation of dynamin I by protein kinase C promoted formation of a dynamin I tetramer and increased Ca2+ binding to the protein. Moreover, Ca2+ inhibited dynamin I GTPase activity after stimulation by phosphorylation or by phospholipids but not after stimulation with a GST-SH3 fusion protein containing the SH3 domain of phosphoinositide 3-kinase. These results suggest that in resting nerve terminals, phosphorylation of dynamin I by protein kinase C converts it to a tetramer that functions as a Ca2+-sensing protein. By binding to Ca2+, dynamin I GTPase activity is specifically decreased, possibly to regulate synaptic vesicle recycling.  相似文献   

15.
Rod and cone cells of the mammalian retina harbor two types of a membrane bound guanylate cyclase (GC), rod outer segment guanylate cyclase type 1 (ROS-GC1) and ROS-GC2. Both enzymes are regulated by small Ca2+-binding proteins named GC-activating proteins that operate as Ca2+ sensors and enable cyclases to respond to changes of intracellular Ca2+after illumination. We determined the expression level of ROS-GC2 in bovine ROS preparations and compared it with the level of ROS-GC1 in ROSs. The molar ratio of a ROS-GC2 dimer to rhodopsin was 1 : 13 200. The amount of ROS-GC1 was 25-fold higher than the amount of ROS-GC2. Heterologously expressed ROS-GC2 was differentially activated by GC-activating protein 1 and 2 at low free Ca2+ concentrations. Mutants of GC-activating protein 2 modulated ROS-GC2 in a manner different from their action on ROS-GC1 indicating that the Ca2+ sensitivity of the Ca2+ sensor is controlled by the mode of target–sensor interaction.  相似文献   

16.
Ca2+ influx through NMDA-type glutamate receptor at excitatory synapses causes activation of post-synaptic Ca2+/calmodulin-dependent protein kinase type II (CaMKII) and its translocation to the NR2B subunit of NMDA receptor. The major binding site for CaMKII on NR2B undergoes phosphorylation at Ser1303, in vivo . Even though some regulatory effects of this phosphorylation are known, the mode of dephosphorylation of NR2B-Ser1303 is still unclear. We show that phosphorylation status at Ser1303 enables NR2B to distinguish between the Ca2+/calmodulin activated form and the autonomously active Thr286-autophosphorylated form of CaMKII. Green fluorescent protein–α-CaMKII co-expressed with NR2B sequence in human embryonic kidney 293 cells was used to study intracellular binding between the two proteins. Binding in vitro was studied by glutathione- S -transferase pull-down assay. Thr286-autophosphorylated α-CaMKII or the autophosphorylation mimicking mutant, T286D-α-CaMKII, binds NR2B sequence independent of Ca2+/calmodulin unlike native wild-type α-CaMKII. We show enhancement of this binding by Ca2+/calmodulin. Phosphorylation or a phosphorylation mimicking mutation on NR2B (NR2B-S1303D) abolishes the Ca2+/calmodulin-independent binding whereas it allows the Ca2+/calmodulin-dependent binding of α-CaMKII in vitro . Similarly, the autonomously active mutants, T286D-α-CaMKII and F293E/N294D-α-CaMKII, exhibited Ca2+-independent binding to non-phosphorylatable mutant of NR2B under intracellular conditions. We also show for the first time that phosphatases in the brain such as protein phosphatase 1 and protein phosphatase 2A dephosphorylate phospho-Ser1303 on NR2B.  相似文献   

17.
Purified plasmalemma vesicles were isolated in the presence of 250 m M sucrose from roots of 14-day-old seedlings of winter wheat ( Triticum aestivum L. Martonvásári-8) by phase partitioning of salt-washed microsomal fractions in a Dextran-polyethylene glycol two-phase system, and both Mg2+- and Ca2+-ATPase activities were detected. Orthovanadate-sensitive Mg2+-ATPase activity associated with the inside of right side-out plasmalemma (PM) vesicles (latency 98%) was inhibited 76% by 0.3 m M Ca2+, Ca2+-dependent ATPase activity located partly on the inside and partly on the outside of plasmalemma vesicles (latency 47%) was not affected by Mg2+.
Mg2+-ATPase activity was inhibited by 68% and inhibition of Mg2+ activation by 0.3 m M Ca2+ partly disappeared in the presence of 10 p M tentoxin, a fungal phytotoxin. Mg2+-ATPase activity remained inhibited up to 10 n M tentoxin while at 1 μ M tentoxin Mg2+ activation was as high as without tentoxin. K+-stimulation and vanadate inhibition was increased and decreased, respectively, by 100 p M -10 n M tentoxin. Ca2+-dependent ATPase activity was continuously increased by 1 p M -10 n M tentoxin, but at 1 μ M tentoxin the stimulation disappeared. The effects of p M tentoxin on plasma-lemma Mg2+-ATPase are discussed in relation to its influence on K+ transport in wheat seedlings.  相似文献   

18.
Various agents were microinjected into the cortical cytoplasm at the animal pole of unfertilized eggs of Oryzias latipes under Ca-free conditions. The agents that triggered a wave of the cortical alveolus exocytosis were Ca2+, inositol, 1, 4, 5-trisphosphate (IP3), Ca-ionophore A23187, cGMP, GMP, GTP and guanosine 5'-0-(2-thio-triphosphate)(GTP-γ-s), while CAMP, ATP, gnanosine 5'-0-(2-thio-triphosphate)(GDP- β-s), inositol monophosphate (IMP) and inositol triphosphate (ITP) were ineffective. Ca2+, IP3 and A231 87 induced the propagative exocytosis after a time lag (5–8 sec), irrespective of the presence of Co2+. The time lag was shorter than that (13–28 sec) following microinjection of cGMP or GTP, while were not effective in the presence of Co2+. The present data suggest that (1) free cytoplasmic Ca2+ participates in both an early and a late step in exocytosis, and (2) cGMP or GTP acts on an early step before initiation of Ca2+ release during exocytosis in the medaka egg.  相似文献   

19.
Cytoplasmic calcium ion (Ca2+) has generally been proposed to be a key factor of numerous cellular processes. Among several agents which might be expected to alter cytoplasmic Ca2+-concentration ([Ca2+]i), unexpectedly Ca2+-antagonist TMB-8 was found to raise considerably [Ca2+]i, and inhibited not only the formation of prespore cells, but also their maintenance in the monolayer cultures of Dictyostelium discoideum . This seems to indicate that higher [Ca2+]i is unfavorable to the prespore differentiation. In this study, we adopted the monolayer culture technique to monitor cell differentiation. However, in high density monolayers there arised a number of unique cells which was highly vacuolated and morphologically intermediate between the stalk and spore cells. These vacuolated cells having both cellulosic wall and spore coat were also induced by differentiation inducing factor (DIF). Thus the monolayer culture system used might be not necessarily qualified to monitor the terminal differentiation of Dictyostelium cells. Nevertheless, the data presented here have strongly suggested that DIF have two physiologically valued roles: 1) Induction of the membrane fusion of vesicles and/or vacuoles (vacuolization), and 2) Induction of the fusion between the cell membrane and vacuole (or vesicle) membrane (exocytosis).  相似文献   

20.
Abstract: The σ ligand 1,3-di- O -tolylguanidine (DTG) increased basal dynamin and decreased depolarization-stimulated phosphorylation of the synaptosomal protein synapsin Ib without having direct effects on protein kinases or protein phosphatases. DTG dose-dependently decreased the basal cytosolic free Ca2+ concentration ([Ca2+]i) and blocked the depolarization-dependent increases in [Ca2+]i. These effects were inhibited by the σ antagonists rimcazole and BMY14802. The nitric oxide donors sodium nitroprusside (SNP) and 8-( p -chlorophenylthio)guanosine-3',5'-cyclic monophosphorothioate decreased basal [Ca2+]i and the KCl-evoked rise in [Ca2+]i to an extent similar to DTG. SNP, but not DTG, produced a rise in cyclic GMP levels, suggesting that the effect of DTG on [Ca2+]i was not mediated via downstream regulation of cyclic GMP levels. DTG increased 45Ca2+ uptake and efflux under basal conditions and inhibited the 45Ca2+ uptake induced by depolarization with KCl. The KCl-evoked rise in [Ca2+]i was inhibited by ω-conotoxin (ω-CgTx)-GVIA and -MVIIC but not nifedipine and ω-agatoxin-IVA. The effect of DTG on decreasing the KCl-evoked rise in [Ca2+]i was additive with ω-CgTx-MVIIC but not with ω-CgTx-GVIA. These data suggest that DTG was producing some of its effects on synapsin I and dynamin phosphorylation and intrasynaptosomal Ca2+ levels via inhibition of N-type Ca2+ channels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号