首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
水稻花粉发育的分子机理   总被引:5,自引:0,他引:5  
水稻的小孢子母细胞在花粉囊中进行减数分裂产生小孢子,小孢子进一步发育成花粉粒。当花粉成熟时,花粉粒从花粉囊中释放出来进行受精。分子生物学的研究已经发现了一些参与这一过程的基因,包括控制花粉囊组织的分化、小孢子母细胞的减数分裂、小孢子的发育和花药的开裂等。本文旨在总结水稻花粉发育过程及其调控分子机制的研究进展。  相似文献   

2.
水稻的小孢子母细胞在花粉囊中进行减数分裂产生小孢子, 小孢子进一步发育成花粉粒。当花粉成熟时, 花粉粒从花粉囊中释放出来进行受精。分子生物学的研究已经发现了一些参与这一过程的基因, 包括控制花粉囊组织的分化、小孢子母细胞的减数分裂、小孢子的发育和花药的开裂等。本文旨在总结水稻花粉发育过程及其调控分子机制的研究进展。  相似文献   

3.
用光镜和电镜观察羽叶薰衣草(Lavandula pinnata L.)雄性不育小孢子发育过程的细胞形态学特征.结果表明:羽叶薰衣草花药4枚,每枚花药通常具4个小孢子囊.花药壁发育为双子叶型,从外向内分为表皮、药室内壁、中层和绒毡层4层细胞.减数分裂形成的四分体为四面体及十字交叉型.小孢子的发育过程可分为造孢细胞期、减数分裂时期、小孢子发育早期、小孢子发育晚期.未观察到二胞花粉期和成熟花粉期.羽叶薰衣草花粉败育主要发生在单核花粉时期,细胞内物质解体并逐渐消失变成空壳花粉或花粉皱缩变形成为各种畸形的败育花粉.在此之前小孢子的发育正常.羽叶薰衣草小孢子不育机制体现在绒毡层过早解体、四分体时期以后各细胞中线粒体结构不正常、胼胝质壁与小孢子母细胞脱离、花药壁细胞中淀粉出现时间异常等. 壁发育为双子叶型,从外向内分为表皮、药室内壁、中层和绒毡层4层细胞.减数分裂形成的四分体为四面体及十字交叉型.小孢子的发育过程可分为造孢细胞期、减数分裂时期、小孢子发育早期、小孢子发育晚期.未观察到二胞花粉期和成熟花粉期.羽叶薰衣草花粉败育主要发生在单核花粉时期,细胞内物质解体并逐渐消失变成空壳花粉或花粉皱缩变形成为各种畸形的败育花粉.在此 前小孢子的发育正常.羽叶薰衣草小孢子不育机制体现在绒毡层过早解体、四分体时期以后各细胞中线粒体结构不正常、胼胝质壁与小孢子母细胞脱离、花药壁细胞中淀粉出现时间异常等. 壁发育为双子叶型,从外向内分为表皮、药室内壁、中层和绒毡层4层细胞.减数分裂形成的四分体为四  相似文献   

4.
用压片法对八倍体小偃麦与硬粒小麦及其杂种F_1小孢子发生和花粉发育进行了详细的细胞学观察。结果表明,两亲本八倍体小偃麦和硬粒小麦的小孢子发生和花粉发育是基本正常的,二者结实率也基本正常。[八倍体小偃麦×硬粒小麦]F_1小孢子发生过程非常紊乱,花粉母细胞减数分裂中期Ⅰ出现较高频率的单价体和多价体,其相对紊乱系数高达0.67;减数分裂晚后期,每个细胞落后染色体平均3.56条;四分体期,每个四分体微核数平均2.82个。在杂种F_1花粉发育的每个时期都可产生不同频率的败育花粉。在三细胞成熟花粉期,杂种F_1可育花粉百分率为67.36%,基本能够满足传粉受精的需要,但其结实率仅为2.79%,远远低于两亲本结实率。因此杂种F_1花粉的败育不是导致其结实率低的主导因素。  相似文献   

5.
油松种子园自由授粉与控制授粉种子父本分析   总被引:2,自引:0,他引:2       下载免费PDF全文
利用“微卫星”标记对油松(Pinus tabulaeformis)种子园控制授粉和自由授粉的子代进行了父本分析, 探讨自由授粉状态下种子园子代遗传组成与花粉传播的关系, 以及人工控制授粉状态下花粉形态等指标与子代遗传组成的相关性。其中,利用SSR对281粒油松种子进行父本分析, 在80%的置信水平下确定了其中126粒种子的花粉来源; 对2株母树自由授粉种子的父本分析表明, 种子园内花粉传播距离最大为85 m, 有效距离在30 m以内; 对11#和24#母树分别用21个无性系的等体积混合花粉进行控制授粉发现, 子代由少数无性系的花粉受精产生, 其中 50#、7#、25#、33#无性系对2株母树子代的花粉贡献率分别达到50.62%和61.54%; 花粉粒大小、花粉等体积重和花粉活力与选择性受精相关不显著, 而花粉活力偏低的无性系也有授粉成功的可能性。  相似文献   

6.
采用石蜡切片法,对南方红豆杉小孢子发生及雄配子体发育过程进行了系统地观察。结果表明:南方红豆杉小孢子叶球于7月下旬分化,9月中旬形成造孢细胞,11月初形成小孢子母细胞;同一小孢子叶球中的小孢子母细胞表现出发育不同步现象;11中旬,进入减数分裂时期,形成游离小孢子后休眠越冬,于翌年1月下旬逐渐成熟,成熟花粉粒为单核;2月中下旬开始散粉,散粉时间持续15 d 左右。花粉落入胚珠后,经过3次分裂形成管细胞、柄细胞和2个精子;管细胞和柄细胞最终退化解体,未见花粉败育现象。认为南方红豆杉小孢子发生与雄配子体发育正常,不是致其濒危的主要原因。  相似文献   

7.
人参胚胎学研究   总被引:13,自引:0,他引:13  
本文对人参(Panax ginseng C.A.Mey.)胚胎学进行较为系统的研究。主要结果如下:1.人参花药为四分孢子囊。小孢子母细胞减数分裂过程中,胞质分裂为同时型,四分孢子为四面体形。成熟花粉粒为3-细胞型。2.大孢子母细胞减数分裂形成四个线形或“T”形排列的大孢子,合点端大孢子具功能。雌配子体发育属蓼型。3.在同一朵花中,对雌蕊和雄蕊发育的相关性进行了观察,并将它们与外部形态相联系。4.双受精过程属有丝分裂前配子融合类型。授粉后7-10小时,大部分雌、雄性核发生融合。5.初生胚乳核在授粉后36小时内发生第一次有丝分裂;合子休眠期较长,大约15-20天。核型胚乳。胚乳具约300个游离核时,以自由生长的细胞壁的形式细胞化。  相似文献   

8.
'京白梨'结实与雌雄配子体发育的解剖学研究   总被引:2,自引:0,他引:2  
以‘京白梨’、‘鸭梨’、‘雪花梨’为材料,用石蜡切片技术对其雌雄配子体发育过程进行了观察研究,并对其花粉育性、自然授粉结实率进行统计分析。结果表明:(1)‘京白梨’自然授粉结实率和花粉发芽率明显低于‘鸭梨’和‘雪花梨’;(2)京白梨从小孢子母细胞形成到成熟花粉的各个发育阶段观察到未形成小孢子或形成后很快退化、花粉囊中的花粉极少、花粉发育阶段细胞发生退化等不同类型的雄性败育个体,而且在花粉成熟阶段有部分花药中的绒毡层细胞不发生退化,花粉难以散出造成雄性败育;(3)雌配子体在大孢子母细胞发育阶段发现不能形成大孢子和大孢子形成后退化或发育不良等多种发育异常的雌配子体败育类型,而且败育频率高达36.7%。研究表明,‘京白梨’雌、雄配子体在其形成发育过程中的各种异常使其不能正常受精,最终导致坐果低下。  相似文献   

9.
陈晓玲  赵桦 《西北植物学报》2016,36(11):2207-2212
采用石蜡切片技术对百合科植物山麦冬大小孢子发生及雌雄配子体发育进行了观察研究。结果表明:(1)山麦冬花药具有4个花粉囊,花药壁的发育方式为基本型,花药壁完全分化时由表皮、药室内壁、中层及绒毡层组成。(2)绒毡层发育类型为分泌型,到四分体孢子彼此分离形成单细胞花粉阶段,绒毡层细胞开始解体退化,花粉成熟时绒毡层细胞完全消失;花粉母细胞减数分裂为连续型,四分体为左右对称形排列,成熟花粉为3-细胞花粉,单萌发沟。(3)子房3室,每室2枚胚珠,胚珠倒生型,双珠被,薄珠心,雌性孢原细胞不经过平周分裂而直接发育而成大孢子母细胞。(4)减数分裂后四分体大孢子呈线型或T型排列,合点端大孢子分化为功能大孢子,胚囊发育为蓼型;花粉母细胞减数分裂过程中,二分体、四分体细胞外方被胼胝质壁所包被,小孢子形成后胼胝质壁逐渐消失。该研究结果丰富了百合科植物生殖生物学研究的内容,也为探讨百合科植物的系统学研究提供了参考。  相似文献   

10.
试验用压片法对(普通小麦/长穗偃麦草)F1小孢子发生和雄配子体发育进行了细胞学观察.观察表明:1.(普通小麦/长穗偃麦草)F1花粉母细胞减数分裂过程中出现许多异常现象;在PMC M1出现较高频率的单价体和多价体;但是减数分裂过程能够完成,并且四分孢子的败育率较低。2.在雄配子体发育过程中可观察到具有多微核、体积不等的小孢子,并发现经过对称孢子有丝分裂产生的二胞花粉;在花粉发育的不同时期均可观察到花  相似文献   

11.
为了进一步研究花药花粉发育过程,我们通过EMS诱变,筛选到拟南芥雄性不育突变体zy1511。遗传分析表明,zy1511为隐性单位点突变。细胞学观察表明.突变体花药中小孢子从四分体释放出后绒毡层并没有开始退化,花药发育后期绒毡层依然部分存在。说明突变体花药绒毡层退化比野生型的要迟,因此,小孢子不能发育成正常花粉粒。利用图位克隆的方法将zv1511定位于第一条染色体上分子标记F25P12和T8L23之间134.kb的区间内。本项工作为zy1511基因的克隆及对花粉发育功能分析奠定了基础。目前尚未见到该区间内雄性不育基因的报道。因此,zy1511是控制花粉发育的尚未发现的关键基因。  相似文献   

12.
太谷核不育小麦营养体内的游离脯氨酸能迅速地运入并积累于花药中,花药有将谷氨酸转化成脯氨酸的能力。脯氨酸向花药内以主动运输为主,能被DNP所抑制,与旗叶的功能密切相关。在发育阶段Ⅰ(小孢子释放前后),脯氨酸已不能由营养体运入不育花药,运输的障碍在花丝或花药中,不育花药缺乏游离脯氨酸可能是主要原因。发育阶段Ⅰ的可育花药内,脯氨酸是合成蛋白质或其他大分子物质的原料。因而,脯氨酸的缺乏可能是加速不育花药小孢子败育和小孢子释放后急剧解体的重要原因。  相似文献   

13.
Studies were undertaken with one olive (Olea europaea L.) cultivar to identify buds with microspores competent to embryogenesis in vitro. Isolated microspore cultures were performed for the induction of gametic embryogenesis. Different pollen development stages and stress conditions (heat or cold shock) were evaluated. The correlation of inflorescence, anther morphology and the suitable stage of microspore development were analysed. The morphology of responsive buds was identified which corresponded with microspores from the late uni-nucleate to early bi-nucleate pollen stages. Symmetrical divisions of microspores as well as resulting multinucleate structures and pro-embryos were observed. In this paper, a new method of isolated microspore culture that leads to cell division and pro-embryos in olive, is reported.  相似文献   

14.
Uninucleate microspores of Triticum aestivum cv. Pavon can be induced in vitro to alter their development to produce embryoids rather than pollen. Microspores expressed their embryogenic capacity through one of two division pathways. In the more common route, the first sporophytic division was asymmetric and produced what appeared to be a typical bicellular pollen grain. Here the generative cell detached from the intine, migrated to a central position in the pollen grain, and underwent a second haploid mitosis as the vegetative cell divided to give rise to the embryoid. In the second pathway, the first division was symmetric and both nuclei divided repeatedly to form the embryoid. This comparative analysis of normal pollen ontogeny and induced embryogenesis provided no evidence for the existence of predetermined embryogenic microspores in vitro or in vivo. Instead, microspores are induced at the time of culture, and embryogenesis involves continued metabolic activity associated with the gradual cessation of the gametophytic pathway and a redifferentiation into the sporophytic pathway. In conjunction with a previous study, it appears that embryogenic induction of wheat microspores involves switching off gametophytic genes and derepressing sporophytic genes.  相似文献   

15.
 The development of isolated, defined wheat microspores undergoing in vitro embryogenesis has been followed by cell tracking. Isolated wheat (Triticum aestivum L.). microspores were immobilized in Sea Plaque agarose supported by a polypropylene mesh at a low cell density and cultured in a hormone-free, maltose-containing medium in the presence of ovaries serving as a conditioning factor. Embryogenesis was followed in microspores isolated from immature anthers of freshly cut tillers or from heat- and starvation-treated, excised anthers. Three types of microspore were identified on the basis of their cytological features at the start of culture. Type-1 microspores had a big central vacuole and a nucleus close to the microspore wall, usually opposite to the germ pore. This type was identical to the late microspore stage in anthers developing in vivo. Microspores with a fragmented vacuole and a peripheral cytoplasmic pocket containing the nucleus were defined as type 2. In type-3 microspores the nucleus was positioned in a cytoplasmic pocket in the centre of the microspore. Tracking revealed that, irrespective of origin, type-1 microspores first developed into type 2 and then into type-3 microspores. After a few more days, type-3 microspores absorbed their vacuoles and differentiated into cytoplasm-rich and starch-accumulating cells, which then divided to form multicellular structures. Apparently the three types of microspore represent stages in a continuous process and not, as previously assumed, distinct classes of responding and non-responding microspores. The first cell division of the embryogenic microspores was always symmetric. Cell tracking also revealed that the original microspore wall opened opposite to a region in the multicellular microspore which consisted of cells containing starch grains while the remaining cells were starch grain-free. The starch-containing cells were located close to the germ pore of the microspore. In more advanced embryos the broken microspore wall was detected at the root pole of the embryo. Received: 27 December 1999 / Accepted: 11 May 2000  相似文献   

16.
During maturation, microspores pass through a series of morphologically distinguishable stages or compartments. A study has been made of the systematic fluctuations in the frequency of microspores in these compartments, when plants are grown under rigidly controlled conditions. A new approach to the construction of cumulative flux rate curves is described; these give the number of cells passing the compartment boundaries per unit time. The curves obtained indicate that simple models, which assume constant flux rates and compartment transit times, will not explain the observations. It is evident that not only do microspores mature at different rates, but that the maturation rate of individual microspores varies during the developmental sequence. The overall process may be controlled by the intimate relationship which exists between the microspores and the tapetal periplasmodium in the Tradescantiae.  相似文献   

17.
The effects of a nuclear male-sterile mutant (ms2) of soybean, Glycine max (L.) Merr., on anther development were analyzed by means of light- and electron-microscopy. The structure of microspore mother cells (MMCs) in male-sterile plants was identical to that of male-fertile plants. Meiosis was completed, and tetrads of microspores formed. Microspores degenerated after the deposition of primexine and probacullae. The sheath of callose surrounding microspores did not dissolve. No structural abnormalities of the microspores were detected before the onset of degeneration. The tapetal and anther wall layers were characterized by aberrant development. Tapetal abnormalities included premature vacuolation, a persistent inner tangential cell wall, failure to differentiate normal concentrations of endoplasmic reticulum and dictyosomes, disruption of plastids, and premature degeneration. Malfunction of the tapetal layer preceded, and may have induced, microspore degeneration. Gross anther morphology was not influenced until advanced stages of development.  相似文献   

18.
Shim YS  Kasha KJ 《Plant cell reports》2003,21(11):1065-1071
The objective of this study was to correlate the time that DNA synthesis first occurs in haploid microspores of barley with cell cycle and plant morphological stages and to subsequently assess the influence of pretreatments on DNA synthesis at different stages of microspore development. Spikes with microspores in early, mid, and late uninucleate stages of the two-rowed barley cultivars Manley and Igri were subjected to two commonly used pretreatments. First, during cold pretreatment for 28 days there was a slow increase in relative DNA values as well as asymmetric nuclear divisions in some microspores. Second, during a 4-day cold plus 0.3 M mannitol pretreatment, there was very little change in the microspore stage or DNA values indicating that for the duration of this pretreatment the progression of the cell cycle was essentially suspended at all stages, both in Igri and Manley. The results are discussed relative to the potential for genetic transformation of microspores.  相似文献   

19.
辣椒花药培养胚状体发生的组织学和细胞学研究   总被引:1,自引:0,他引:1  
采用荧光显微镜、扫描电镜和透射电镜技术.系统研究了辣椒花药培养胚状体发生的组织学和细胞学变化特征。辣椒单个花药中花粉发育具有强烈的不同步性。随着培养时期的变化.不同时期花粉的百分率也发生变化。处于单核靠边期的小孢子培养以后按两种发育途径之一进行发育。在多数情况下,孢子体不对称分裂,产生典型双核花粉。胚性花粉粒是由营养核的重复分裂形成的。当小孢子从四分体中释放出来.特殊类型的外壁已经形成。在随后的花粉发育过程中.小孢子体积增大,外壁继续加厚。培养24h后,小孢子体积增大。胚性发生的小孢子表现出两种不同的形态变化。当胚状体发育到心形胚时.胚状体的表皮细胞排列规则。用光学和电子显微镜分析了小孢子胚状体形态形成过程.及胚状体诱导后细胞组织发生的一系列结构变化的时序性特征,这些变化主要影响质体、液泡室、细胞壁和细胞核,进一步分化的程序模拟合子胚的发育。  相似文献   

20.
Summary Rice (Oryza sativa L., 2n=24) anthers containing microspores in the early-uninucleate to first-mitosis stages were induced successfully to develop into plants in vitro through an intermediary step of callus formation. Callus initiation occurred with highest frequency in anthers containing mid-uninucleate microspores. The callus derived from different stages of microspore development differed in the potential to differentiate into plants. The plants regenerated from pollen callus were predominantly haploid or diploid; polyploid and aneuploid plants were relatively infrequent. The first division of the uninucleate microspores was asymmetrical, resulting in the formation of large vegetative and small generative nuclei. The vegetative nucleus divided repeatedly and assumed the major role in the formation of callus, whereas the generative nucleus degenerated rapidly. Simultaneous division of the two nuclei was observed in a few pollen grains. Nuclear fusion during the very initial stages of pollen development was postulated to account for the occurrence of the diploid and polyploid plants. This work was supported by the National Science Council, Republic of China.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号