首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Evaluation of monoclonal antibody (mAb) fragments (e.g., Fab', Fab, or engineered fragments) as cancer-targeting reagents for therapy with the α-particle emitting radionuclide astatine-211 ((211)At) has been hampered by low in vivo stability of the label and a propensity of these proteins localize to kidneys. Fortunately, our group has shown that the low stability of the (211)At label, generally a meta- or para-[(211)At]astatobenzoyl conjugate, on mAb Fab' fragments can be dramatically improved by the use of closo-decaborate(2-) conjugates. However, the higher stability of radiolabeled mAb Fab' conjugates appears to result in retention of radioactivity in the kidneys. This investigation was conducted to evaluate whether the retention of radioactivity in kidney might be decreased by the use of an acid-cleavable hydrazone between the Fab' and the radiolabeled closo-decaborate(2-) moiety. Five conjugation reagents containing sulfhydryl-reactive maleimide groups, a hydrazone functionality, and a closo-decaborate(2-) moiety were prepared. In four of the five conjugation reagents, a discrete poly(ethylene glycol) (PEG) linker was used, and one substituent adjacent to the hydrazone was varied (phenyl, benzoate, anisole, or methyl) to provide varying acid sensitivity. In the initial studies, the five maleimido-closo-decaborate(2-) conjugation reagents were radioiodinated ((125)I or (131)I), then conjugated with an anti-PSMA Fab' (107-1A4 Fab'). Biodistributions of the five radioiodinated Fab' conjugates were obtained in nude mice at 1, 4, and 24 h post injection (pi). In contrast to closo-decaborate(2-) conjugated to 107-1A4 Fab' through a noncleavable linker, two conjugates containing either a benzoate or a methyl substituent on the hydrazone functionality displayed clearance rates from kidney, liver, and spleen that were similar to those obtained with directly radioiodinated Fab' (i.e., no conjugate). The maleimido-closo-decaborate(2-) conjugation reagent containing a benzoate substituent on the hydrazone was chosen for study with (211)At. That reagent was conjugated with 107-1A4 Fab', then labeled (separately) with (125)I and (211)At. The radiolabeled Fab' conjugates were coinjected into nude mice bearing LNCaP human tumor xenografts, and biodistribution data were obtained at 1, 4, and 24 h pi. Tumor targeting was achieved with both (125)I- and (211)At-labeled Fab', but the (211)At-labeled Fab' reached a higher concentration (25.56 ± 11.20 vs 11.97 ± 1.31%ID/g). Surprisingly, while the (125)I-labeled Fab' was cleared from kidney similar to earlier studies, the (211)At-labeled Fab'was not (i.e., kidney conc. for (125)I vs (211)At; 4 h, 13.14 ± 2.03 ID/g vs 42.28 ± 16.38%D/g; 24 h, 4.23 ± 1.57 ID/g vs 39.52 ± 15.87%ID/g). Since the Fab' conjugate is identical in both cases except for the radionuclide, it seems likely that the difference in tissue clearance seen is due to an effect that (211)At has on either the hydrazone cleavage or on the retention of a metabolite. Results from other studies in our laboratory suggest that the latter case is most likely. The hydrazone linkers tested do not provide the tissue clearance sought for (211)At, so additional hydrazones linkers will be evaluated. However, the results support the use of hydrazone linkers when Fab' conjugated with closo-decaborate(2-) reagents are radioiodinated.  相似文献   

2.
The purpose of this study was to examine the influence of the lactam bridge cyclization on melanoma targeting and biodistribution properties of the radiolabeled conjugates. Two novel lactam bridge-cyclized alpha-MSH peptide analogues, DOTA-CycMSH (1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid-c[Lys-Nle-Glu-His-DPhe-Arg-Trp-Gly-Arg-Pro-Val-Asp]) and DOTA-GlyGlu-CycMSH (DOTA-Gly-Glu-c[Lys-Nle-Glu-His-DPhe-Arg-Trp-Gly-Arg-Pro-Val-Asp]), were synthesized and radiolabeled with (111)In. The internalization and efflux of (111)In-labeled CycMSH peptides were examined in B16/F1 melanoma cells. The melanoma targeting properties, pharmacokinetics, and SPECT/CT imaging of (111)In-labeled CycMSH peptides were determined in B16/F1 melanoma-bearing C57 mice. Both (111)In-DOTA-CycMSH and (111)In-DOTA-GlyGlu-CycMSH exhibited fast internalization and extended retention in B16/F1 cells. The tumor uptake values of (111)In-DOTA-CycMSH and (111)In-DOTA-GlyGlu-CycMSH were 9.53+/-1.41% injected dose/gram (% ID/g) and 10.40+/-1.40% ID/g at 2 h postinjection, respectively. Flank melanoma tumors were clearly visualized with (111)In-DOTA-CycMSH and (111)In-DOTA-GlyGlu-CycMSH by SPECT/CT images at 2 h postinjection. Whole-body clearance of the peptides was fast, with greater than 90% of the radioactivities cleared through urinary system by 2 h postinjection. There was low radioactivity (<0.8% ID/g) accumulated in blood and normal organs except kidneys at all time points investigated. Introduction of a negatively charged linker (-Gly-Glu-) into the peptide sequence decreased the renal uptake by 44% without affecting the tumor uptake at 4 h postinjection. High receptor-mediated melanoma uptakes coupled with fast whole-body clearance in B16/F1 melanoma-bearing C57 mice demonstrated the feasibility of using (111)In-labeled lactam bridge-cyclized alpha-MSH peptide analogues as a novel class of imaging probes for receptor-targeting melanoma imaging.  相似文献   

3.
New human Escherichia coli heat-stable peptide (ST(h)) analogues containing a DOTA chelating group were synthesized by sequential and selective formation of disulfides bonds in the peptide. This synthetic approach utilizes three orthogonal thiol-protecting groups, Trt, Acm, and t-Bu, to form three disulfide bonds by successive reactions using 2-PDS, iodine, and silyl chloride-sulfoxide systems. The DOTA-ST(h) conjugates exhibiting high guanylin/guanylate cyclase-C (GC-C) receptor binding affinities were obtained with >98% purity. In vitro competitive binding assays, employing T-84 human colon cancer cells, demonstrated the IC(50) values of <2 nM for GC-C receptor binding suggesting that the new synthetic ST(h) analogues are biologically active. In vitro stability studies of the (111)In-DOTA-Phe(19)-ST(h) conjugate incubated in human serum at 37 degrees C under 5% CO(2) atmosphere revealed that this conjugate is extremely stable with no observable decomposition at 24 h postincubation. HPLC analysis of mouse urine at 1 h pi of the (111)In-DOTA-Phe(19)-ST(h) conjugate showed only about 15% decomposition suggesting that the (111)In-DOTA-Phe(19)-ST(h) conjugate is highly stable, even under in vivo conditions. In vivo pharmacokinetic studies of the (111)In-DOTA-Phe(19)-ST(h) conjugate in T-84 human colon cancer derived xenografts in SCID mice conducted at 1 h pi showed an initial tumor uptake of 2.04 +/- 0.30% ID/g at 1 h pi with efficient clearance from the blood pool (0.23 +/- 0.14% ID/g, 1 h pi) by excretion mainly through the renal/urinary pathway (95.8 +/- 0.2% ID, 1 h pi). High tumor/blood, tumor/muscle, and tumor/liver ratios of approximately 9:1, 68:1, and 26:1, respectively, were achieved at 1 h pi The specific in vitro and in vivo uptake of the radioactivity by human colonic cancer cells highlights the potential of radiometalated-DOTA-ST(h) conjugates as diagnostic/therapeutic radiopharmaceuticals.  相似文献   

4.
Jia B  Liu Z  Shi J  Yu Z  Yang Z  Zhao H  He Z  Liu S  Wang F 《Bioconjugate chemistry》2008,19(1):201-210
In this report, we present in vitro and in vivo evaluation of three 111 In-labeled DTPA conjugates of a cyclic RGDfK dimer: DTPA-Bn-SU016 (SU016 = E[c(RGDfK)] 2; DTPA-Bn = 2-( p-isothioureidobenzyl)diethylenetriaminepentaacetic acid), DTPA-Bn-E-SU016 ( E = glutamic acid) and DTPA-Bn-Cys-SU016 (Cys = cysteic acid). The integrin alpha vbeta 3 binding affinities of SU016, DTPA-Bn-SU016, DTPA-Bn-E-SU016, and DTPA-Bn-Cys-SU016 were determined to be 5.0 +/- 0.7 nM, 7.9 +/- 0.6 nM, 5.8 +/- 0.6 nM, and 6.9 +/- 0.9 nM, respectively, against 125 I-c(RGDyK) in binding to integrin alpha vbeta3, suggesting that E or Cys residue has little effect on the integrin alpha vbeta3 affinity of E[c(RGDfK)] 2. It was also found that the 111 In-labeling efficiency of DTPA-Bn-SU016 and DTPA-Bn-E-SU016 is 3-5 times better than that of DOTA analogues due to fast chelation kinetics and high-yield 111 In-labeling under mild conditions (e.g., room temperature). Biodistribution studies were performed using BALB/c nude mice bearing U87MG human glioma xenografts. 111 In-DTPA-Bn-SU016, 111 In-DTPA-Bn-E-SU016, and 111 In-DTPA-Bn-Cys-SU016 all displayed rapid blood clearance. Their tumor uptake was comparable between 0.5 and 4 h postinjection (p.i.) within experimental error. 111 In-DTPA-Bn-E-SU016 had a significantly lower ( p < 0.01) kidney uptake than 111 In-DTPA-Bn-SU016 and 111 In-DTPA-Bn-Cys-SU016. The liver uptake of 111 In-DTPA-Bn-SU016 was 1.69 +/- 0.18% ID/g at 24 h p.i., while the liver uptake values of 111 In-DTPA-Bn-E-SU016 and 111 In-DTPA-Bn-Cys-SU016 were 0.55 +/- 0.11% ID/g and 0.79 +/- 0.15% ID/g at 24 h p.i., respectively. Among the three 111 In radiotracers evaluated in this study, 111 In-DTPA-Bn-E-SU016 has the lowest liver and kidney uptake and the best tumor/liver and tumor/kidney ratios. Results from metabolism studies indicated that there is little metabolism (<10%) for three 111 In radiotracers at 1 h p.i. Imaging data showed that tumors can be clearly visualized at 4 h p.i. with good contrast in the tumor-bearing mice administered with 111 In-DTPA-Bn-E-SU016. It is concluded that using a glutamic acid linker can significantly improve excretion kinetics of the 111 In-labeled E[c(RGDfK)] 2 from liver and kidneys.  相似文献   

5.
Affibody molecules have received significant attention in the fields of molecular imaging and drug development. However, Affibody scaffolds display an extremely high renal uptake, especially when modified with chelators and then labeled with radiometals. This unfavorable property may impact their use as radiotherapeutic agents in general and as imaging probes for the detection of tumors adjacent to kidneys in particular. Herein, we present a simple and generalizable strategy for reducing the renal uptake of Affibody molecules while maintaining their tumor uptake. Human serum albumin (HSA) was consecutively modified by 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid mono-N-hydroxysuccinimide ester (DOTA-NHS ester) and the bifunctional cross-linker sulfosuccinimidyl 4-[N-maleimidomethyl]cyclohexane-1-carboxylate (Sulfo-SMCC). The HER2 Affibody analogue, Ac-Cys-Z(HER2:342), was covalently conjugated with HSA, and the resulting bioconjugate DOTA-HSA-Z(HER2:342) was further radiolabeled with ??Cu and 111In and evaluated in vitro and in vivo. Radiolabeled DOTA-HSA-Z(HER2:342) conjugates displayed a significant and specific cell uptake into SKOV3 cell cultures. Positron emission tomography (PET) investigations using ??Cu-DOTA-HSA-Z(HER2:342) were performed in SKOV3 tumor-bearing nude mice. High tumor uptake values (>14% ID/g at 24 and 48 h) and high liver accumulations but low kidney accumulations were observed. Biodistribution studies and single-photon emission computed tomography (SPECT) investigations using 111In-DOTA-HSA-Z(HER2:342) validated these results. At 24 h post injection, the biodistribution data revealed high tumor (16.26% ID/g) and liver (14.11% ID/g) uptake but relatively low kidney uptake (6.06% ID/g). Blocking studies with coinjected, nonlabeled Ac-Cys-Z(HER2:342) confirmed the in vivo specificity of HER2. Radiolabeled DOTA-HSA-Z(HER2:342) Affibody conjugates are promising SPECT and PET-type probes for the imaging of HER2 positive cancer. More importantly, DOTA-HSA-Z(HER2:342) is suitable for labeling with therapeutic radionuclides (e.g., ??Y or 1??Lu) for treatment studies. The approach of using HSA to optimize the pharmacokinetics and biodistribution profile of Affibodies may be extended to the design of many other targeting molecules.  相似文献   

6.
Recombinant antibody fragments offer potential advantages over intact monoclonal antibodies in the radioimmunoscintigraphy (RIS) of solid tumors. Due to their smaller molecular size, antibody fragments have shown rapid tumor targeting and blood clearance, a more uniform tumor distribution and a lower potential to elicit a human immune response. Previously, we have expressed two genetically engineered antibody fragments, the T84.66 diabody (scFv dimer) and the T84.66 minibody (scFv-CH3 dimer), specific to carcinoembryonic antigen (CEA). When radioiodinated, both antibody fragments exhibited rapid tumor targeting and rapid blood clearance in xenografted mice. To extend and optimize their future clinical RIS utility with radiometals, these antibody fragments were conjugated with the macrocycle 1,4,7,10-tetraazacyclododecane N,N',N' ',N' "-tetraacetic acid (DOTA) and labeled with 111In. Tumor targeting and biodistribution studies were carried out in athymic mice xenografted with a human colorectal tumor cell line, LS174T. The [111In]T84.66 diabody (55 kDa) exhibited very rapid tumor targeting with 12.5 +/- 0.4% injected dose per gram (% ID g(-1) +/- standard error) at 2 h and reached a maximum of 13.3 +/- 0.9% ID g(-1) at 6 h. However, kidney uptake was observed to reached a peak of 183.5 +/- 21.0% ID g(-1) at 6 h, a result similar to that reported by others for other low molecular weight fragments labeled with radiometals. Preadministration of an oral dose of D-lysine resulted in a 59% lowering of the renal accumulation at 6 h, but was accompanied by a 31% reduction of tumor uptake to 9.2 +/- 1.2% ID g(-1). The second recombinant antibody fragment, the [111In]T84.66 minibody (80 kDa), displayed rapid tumor targeting of 14.2 +/- 6.1% ID g(-1) at 2 h, and reached a maximum activity of 24.5 +/- 6.1% ID g(-1) by 12 h. Renal uptake achieved a plateau of 12-13% ID g(-1) which cleared to 7.2% ID g(-1) at 72 h. However, hepatic uptake was elevated and reached a maximum of 26.0 +/- 1.0% ID g(-1) at 12 h in these xenograft-bearing mice. Experiments in nontumor bearing mice showed a reduction of hepatic activity at 12 h to 16.6 +/- 1.5% ID g(-1), indicative of an intrinsic hepatic accumulation of the [111In]DOTA-T84.66 minibody or metabolites. While the anti-CEA [111In]DOTA-T84.66 diabody and T84.66 minibody retain the rapid tumor targeting properties of the radioiodinated form, the normal organ accumulation (kidneys and liver, respectively) of the [111In]DOTA forms appeared problematic for RIS and RIT applications. Development of alternative blocking strategies or new metabolizable chelates are under investigation to enhance the utility of the radiometal form of these and other promising recombinant antibody fragments.  相似文献   

7.
Novel organometallic 99mTc(I)-folate derivatives have been synthesized and evaluated in vitro and in vivo in order to assess the influence of the overall charge of the radioconjugates and the spacer entity on the affinity and pharmacokinetic profile. Folic acid has been functionalized at the gamma-carboxylate group of the glutamate moiety with (i) a hydrophilic diethoxyethyl spacer bearing a picolylamine monoacetic acid chelate, (ii) a hexyl spacer bearing an iminodiacetic acid chelate, and (iii) a hexyl spacer with a bis(pyridylmethyl)amine chelating system. Coordination of the 99mTc(CO)3-core resulted in neutral complex 21, anionic complex 22, and cationic complex 23 in excellent yields (>90%) at ligand concentrations of 10(-4) M. Complexes 21-23 were HPLC purified for in vitro and in vivo experiments. In the case of 23, separation from the unlabeled folate analogue was incomplete, leading to low specific activity and, hence, significantly inferior in vivo uptake in folate-receptor-positive (FR-positive) organs and tissues (tumors and kidneys). Time dependent in vivo studies were performed in female, athymic nude mice bearing subcutaneous FR-positive human KB cell xenografts at 1, 4, and 24 h post injection (p.i.) of the radiotracers. Tumor uptake ranged between 1.9-2.7% ID/g, 4 h p.i. and 1.6-2.2% ID/g, 24 h p.i. for 21 and 22, and 0.9% ID/g, 4 h p.i. and 1.1% ID/g, 24 h p.i. for 23. Blood clearance was fast for all derivatives (< or =0.2% ID/g 1 h p.i.). Significant fractions of radioactivity were found in nontargeted and FR-negative organs and tissues (particularly in the liver and the intestines/intestinal contents) at early time points p.i. Coadministration of folic acid reduced radioactivity in FR-positive tissues and organs to background levels. In conclusion, overall charge and the nature of the spacer entity seemed to have a relatively minor influence on receptor affinity and the in vivo pharmacokinetic profile of the tested radiofolates.  相似文献   

8.
We have synthesized a bifunctional vinyl sulfone-cysteineamido derivative of DOTA (1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid) that can be conjugated to the sulfhydryls of mildly reduced recombinant antibody (chimeric anti-CEA antibody cT84.66) at pH 7 or to the amino groups of lysine residues at pH 9. The conjugation is sulfhydryl specific at pH 7 (case 1), and amino specific at pH 9 (case 2) as long as the antibody has no free sulhydryl groups. At a molar ratio of 50 BCA (bifunctional chelating agent) to mAb, the number of chelates conjugated is 0.8 for case 1, and 4.6 for case 2. The resulting conjugates can be radiolabeled with (111)In to high specific activity (5 mCi/mg) with high efficiency (>95%) at 43 degrees C in 60 min. The radiolabeled conjugates retained >95% immunoreactivity and are stable in serum containing 1mM DTPA over 3 d. When the radiolabeled conjugates were injected into nude mice bearing LS174T human colon tumor xenografts, over 40% ID/g accumulated in tumors during the period 24-72h. Tumor-to-blood ratios were 4.5, 3.5, and 2.5 for the sulfhydryl coupled conjugate at 24, 48, and 72 h, respectively, and 2.7, 2.5, and 2.3 for the amino-coupled conjugate at the same time points. For other organs the biodistributions were nearly identical whether the conjugates were attached via sulfhydryl or amino groups. These novel BCAs are easy to synthesize, offer versatile conjugation options, and give equivalent biodistributions that result in high tumor uptake and good tumor-to-blood ratios.  相似文献   

9.
Effect of albumin fusion on the biodistribution of interleukin-2   总被引:4,自引:0,他引:4  
Purpose We investigated and compared the biodistribution of Albuleukin, a human serum albumin (HSA)-interleukin-2 (IL-2) fusion protein, with those of IL-2 and HSA. The objective was to determine whether Albuleukin distributes differently to normal organs and lymphoid tissues than IL-2 by virtue of its genetic fusion with HSA.Methods The chelating agent 2-(p-isothiocyanato-benzyl)-cyclohexyl-diethylenetriaminepentaacetic acid (CHX-AII was selected for radiolabeling with 111In, and conjugation with CHX-AII did not alter bioactivities of IL-2 and Albuleukin on proliferation of CTLL-2 cells. The radiolabeled proteins were injected intravenously into mice, uptake in organs was measured, and whole-body autoradiography was performed.Results Striking differences in the biodistribution of IL-2 and Albuleukin were noted. 111In-IL-2 cleared from blood rapidly, with less than 1% ID/g (percentage of injected dose per gram of tissue) at 20 min after injection. At this time, the kidneys showed more than 120% ID/g uptake, and these high levels persisted through 6 h. 111In-Albuleukin, by contrast, showed significantly longer circulation (14% ID/g at 6 h), lower kidney uptake (<6% ID/g), and higher localization in liver, spleen, and lymph nodes (maximal uptake ~22% ID/g for all three organs). Uptake in liver, spleen, and lymph nodes appears to be mediated in part by the IL-2 component of Albuleukin because 111In-HSA showed significantly lower accumulation in those tissues despite more prolonged circulation in blood.Conclusion These data support the hypothesis that Albuleukin targets tissues where lymphocytes reside to a much greater extent than does IL-2, and suggest that Albuleukin may exhibit improved efficacy and reduced toxicity in the treatment of solid tumors. Clinical trials underway will determine whether the improved targeting in the mice translates into a better therapeutic index in humans.  相似文献   

10.
The biological behavior of 111In-labeled HPD has been investigated in tumor-bearing animals. Mice mammary adenocarcinomas and 7,12-dimethylbenz(a)anthracine induced breast tumors in Sprague-Dawley female rats were clearly visualized by 111In-HPD nuclear scintigraphy. Optimal scans were obtained after a 48 h delay. In normal and tumor-bearing animals, the highest uptake of 111In-HPD 72 h post-injection was found in the liver, the spleen and the kidneys. Depending on the size and the extent of necrosis, the uptake of 111In-HPD by malignant breast tumors varied from 2.5% injected dose (ID) (range 0.14–5.3% ID) in mice to 1% ID (range 0.22–8.1% ID) in rats. Benign breast tumor uptake of 111In-HPD was less that 1%ID. No significant amount of the radiopharmaceutical was found in pulmonary abscesses and abdominal cysts (< 0.1 % ID). Scintigrams of these infectious or inflammatory lesions were normal. Malignant tumor to blood, heart and lung ratios averaged 50:1, 10:1 and 3:1 respectively. Tumor to brain ratio ranged from 72 to 444:1.  相似文献   

11.
The integrin receptor alpha(v)beta(3) is overexpressed on the endothelial cells of growing tumors and on some tumor cells themselves. Radiolabeled alpha(v)beta(3) antagonists have demonstrated potential application as tumor imaging agents and as radiotherapeutic agents. This report describes the total synthesis of eight new HYNIC and DOTA conjugates of receptor alpha(v)beta(3) antagonists belonging to the quinolin-4-one class of peptidomimetics, and their radiolabeling with (99m)Tc (for HYNIC) and (111)In (for DOTA). Tethering of the radionuclide-chelator complexes was achieved at two different sites on the quinolin-4-one molecule. All such derivatives maintained high affinity for receptor alpha(v)beta(3) and high selectivity versus receptors alpha(IIb)beta(3), alpha(v)beta(5), alpha(5)beta(1). Biodistribution of the radiolabeled compounds was evaluated in the c-neu Oncomouse mammary adenocarcinoma model. DOTA conjugate (111)In-TA138 presented the best biodistribution profile. Tumor uptake at 2 h postinjection was 9.39% of injected dose/g of tissue (%ID/g). Activity levels in selected organs was as follows: blood, 0.54% ID/g; liver, 1.94% ID/g; kidney, 2.33% ID/g; lung, 2.74% ID/g; bone, 1.56% ID/g. A complete biodistribution analysis of (111)In-TA138 and the other radiolabeled compounds of this study are presented and discussed. A scintigraphic imaging study with (111)In-TA138 showed a clear delineation of the tumors and rapid clearance of activity from nontarget tissues.  相似文献   

12.
The high kinetic stability of the Cu2+ complex of the chelator 4-[(1,4,8,11-tetraazacyclotetradec-1-yl)-methyl]benzoic acid was demonstrated at physiological pH as well as under acidic conditions. The chelating agent was conjugated to AB35, a monoclonal antibody directed against CEA, without a significant loss of immunoreactivity. The conjugate could, under optimal labeling conditions, be labeled with 67Cu in acetate buffer with a full occupancy of ligands within 20 min. This radiolabeled conjugate showed no transfer of radiocopper to serum proteins in human serum over 7 days. The biodistribution in tumor-bearing mice was measured and compared to that of iodinated AB35. Tumor uptake was high with 15 +/- 3% ID (injected dose)/g after 24 h and 32 +/- 7% ID/g after 96 h for the 67Cu-labeled antibody and 13 +/- 4% ID/g after 24 h and 14 +/- 2% ID/g after 96 h for the 125I-labeled antibody. Whereas radioactivity in normal organs decreased with time after 24 h, increased residence time was shown up to 4 days with the 67Cu-labeled AB35.  相似文献   

13.
Cancer-targeting biomolecules labeled with 211At must be stable to in vivo deastatination, as control of the 211At distribution is critical due to the highly toxic nature of alpha-particle emission. Unfortunately, no astatinated aryl conjugates have shown in vivo stability toward deastatination when (relatively) rapidly metabolized proteins, such as monoclonal antibody Fab' fragments, are labeled. As a means of increasing the in vivo stability of 211At-labeled proteins, we have been investigating antibody conjugates of boron cage moieties. In this investigation, protein-reactive derivatives containing a nido-carborane (2), a bis-nido-carborane derivative (Venus Flytrap Complex, 3), and four 2-nonahydro-closo-decaborate(2-) derivatives (4-7) were prepared and conjugated with an antibody Fab' fragment such that subsequent astatination and in vivo tissue distributions could be obtained. To aid in determination of stability toward in vivo deastatination, the Fab'-borane conjugates were also labeled with 125I, and that material was coinjected with the 211At-labeled Fab'. For comparison, direct labeling of the Fab' with 125I and 211At was conducted. Direct labeling with Na[125I]I and Chloramine-T gave an 89% radiochemical yield. However, direct labeling of the Fab' with Na[211At]At and Chloramine-T resulted in a yield of <1% after quenching with NaS2O5. As another comparison, the same Fab' was conjugated with p-[211At]astatobenzoate NHS ester, [211At]1c-Fab', and (separately) with p-[125I]iodobenzoate NHS ester, [125I]1b-Fab'. An evaluation in athymic mice demonstrated that [211At]1c-Fab' underwent deastatination. In contrast, the high in vivo stability of [125I]1b-Fab' allowed it to be used as a tracer control for the natural distribution of Fab'. Although found to be much more stable in vivo than [211At]1c-Fab', the biodistributions of nido-carborane conjugated Fab' ([125I]2-Fab'/ [211At]2-Fab') and the bis-nido-carborane (VFC) ([125I]3-Fab'/[211At]3-Fab') had very different in vivo distributions than the control [125I]1b-Fab'. Biodistributions of closo-decaborate(2-) conjugates ([125I]4-Fab'/[211At]4-Fab', [125I]6-Fab'/[211At]6-Fab', and [125I]7-Fab'/[211At]7-Fab') demonstrated that they were stable to in vivo deastatination and had distributions similar to that of the control [125I]1b-Fab'. In contrast, a benzyl-modified closo-decaborate(2-) derivative evaluated in vivo ([125I]5-Fab'/[211At]5-Fab') had a very different tissue distribution from the control. This study has shown that astatinated protein conjugates of closo-decaborate(2-) are quite stable to in vivo deastatination and that some derivatives have little effect on the distribution of Fab'. Additionally, direct 211At labeling of Fab' conjugated with closo-decaborate(2-) derivatives provide very high (e.g., 58-75%) radiochemical yields. However, in vivo data also indicate that the closo-decaborate(2-) may cause some retention of radioactivity in the liver. Studies to optimize the closo-decaborate(2-) conjugates for protein labeling are underway.  相似文献   

14.
Site-specific enzymatic reactions with microbial transglutaminase (mTGase) lead to a homogenous species of immunoconjugates with a defined ligand/antibody ratio. In the present study, we have investigated the influence of different numbers of 1,4,7,10-tetraazacyclododecane-N-N′-N′′-N′′′-tetraacetic acid (DOTA) chelats coupled to a decalysine backbone on the in vivo behavior of the chimeric monoclonal anti-L1CAM antibody chCE7agl. The enzymatic conjugation of (DOTA)1-decalysine, (DOTA)3-decalysine or (DOTA)5-decalysine to the antibody heavy chain (via Gln295/297) gave rise to immunoconjugates containing two, six or ten DOTA moieties respectively. Radiolabeling of the immunoconjugates with 177Lu yielded specific activities of approximately 70 MBq/mg, 400 MBq/mg and 700 MBq/mg with increasing numbers of DOTA chelates. Biodistribution experiments in SKOV3ip human ovarian cancer cell xenografts demonstrated a high and specific accumulation of radioactivity at the tumor site for all antibody derivatives with a maximal tumor accumulation of 43.6±4.3% ID/g at 24 h for chCE7agl-[(DOTA)-decalysine]2, 30.6±12.0% ID/g at 24 h for chCE7agl-[(DOTA)3-decalysine]2 and 49.9±3.1% ID/g at 48 h for chCE7agl-[(DOTA)5-decalysine)]2. The rapid elimination from the blood of chCE7agl-[(DOTA)-decalysine]2 (1.0±0.1% ID/g at 24 h) is associated with a high liver accumulation (23.2±4.6% ID/g at 24 h). This behavior changed depending on the numbers of DOTA moieties coupled to the decalysine peptide with a slower blood clearance (5.1±1.0 (DOTA)3 versus 11.7±1.4% ID/g (DOTA)5, p<0.005 at 24 h) and lower radioactivity levels in the liver (21.4±3.4 (DOTA)3 versus 5.8±0.7 (DOTA)5, p<0.005 at 24 h). We conclude that the site-specific and stoichiometric uniform conjugation of the highly DOTA-substituted decalysine ((DOTA)5-decalysine) to an anti-tumor antibody leads to the formation of immunoconjugates with high specific activity and excellent in vivo behavior and is a valuable option for radioimmunotherapy and potentially antibody-drug conjugates (ADCs).  相似文献   

15.
Recombinant streptavidin (rSAv) is of interest as a carrier of alpha-emitting radionuclides in pretargeting protocols for cancer therapy. Due to the inherently high kidney localization of rSAv, modification of this protein is required before it can be useful in pretargeting. Previous studies (Wilbur, D. S., Hamlin, D. K. et al. (1998) Bioconjugate Chem. 9, 322-330) have shown that succinylation of rSAv using succinic anhydride decreases the kidney localization appreciably. In continuing studies, the biotin binding characteristics and biodistribution in mice of rSAv modified by reaction with succinic anhydride (amine modification) or 1,2-cyclohexanedione (arginine modification) have been compared. Modification of rSAv was conducted using 5-50 mol equiv of succinic anhydride and 60-200 mol equiv of 1,2-cyclohexanedione. Most studies were conducted using rSAv modified with the highest quantities of reagents. Succinylation of rSAv did not alter binding with biotin derivatives, but a small increase in the biotin derivative dissociation rate was noted for arginine-modified rSAv. Amino acid analysis of 1,2-cyclohexanedione-treated rSAv indicated about 40% of the arginine residues, or an average of 1.6 residues per subunit, were modified, whereas none of the lysine residues were modified. IEF analyses showed that the pI of the arginine-modified rSAv was 5.3-6, whereas the pI for the succinylated rSAv was approximately 4. Electrospray mass spectral analyses indicated that one to three conjugates of 1,2-cyclohexanedione, and two to three conjugates of succinic anhydride, were obtained per subunit. Both modification reactions resulted in greatly decreasing the kidney localization of rSAv (normally 20-25% ID/g at 4, 24, and 48 h pi). However, the kidney concentration for the succinylated rSAv continued to decrease (5% ID/g to 1.5% ID/g) from 4 to 48 h pi, whereas the concentration (5% ID/g) remained constant over that period of time for the arginine-modified rSAv. In contrast to this, the liver concentration appeared to be slightly higher (3% ID/g vs 2% ID/g) at the later time points for the succinylated rSAv. When less than 50 mol equiv of succinic anhydride were employed in the modification of rSAv, a correlation between increasing kidney localization with decreasing equivalents reacted was observed. Although the differences in the two modified rSAv are not substantial, succinylated rSAv appears to have more favorable properties for pretargeting studies.  相似文献   

16.
In view of the electron microscopic evidence that silver does not penetrate cellular barriers, the distribution of radioactive silver in rat blood and subcellular fractions of liver, kidneys, spleen, and forebrain was studied. It was found that 24 h after a single intraperitoneal injection high levels of radioactivity were reached which decreased at different rates in the various tissues studied. In plasma, liver, and kidneys there was an initial rapid loss of radioactivity which was followed by a slower rate of loss. In the blood, forebrain, and spleen the loss of radioactivity was linear and somewhat slower than in the other three tissues. The cytosols of the liver and kidneys contained 60% while those of the forebrain and spleen contained 30% of the total radioactivity found in the tissue homogenates. Gel filtration on Sephadex G-75 showed that all cytosols contained two peaks of radioactivity; a high molecular weight peak which eluted just after the void volume and a low molecular weight peak. The amount of radioactivity in both peaks was, however, much lower in the chromatographic peaks of the forebrain and spleen than that found in those of the liver and kidneys. Furthermore, the spleen had a comparatively very small low molecular weight radioactive peak. In vitro experiments with liver cytosol showed similar results to those found in vivo in that the high molecular weight radioactive peak could be removed by heat. It is concluded that silver does enter cells and that silver thionein exists in the cytosols of forebrain, spleen, kidney, and liver.  相似文献   

17.
Four new poly(hydroxyethylaspartamide)-based copolymers bearing (a) poly(ethylene glycol) 2000, (b) poly(ethylene glycol) 5000, (c) poly(ethylene glycol) 2000 and hexadecylalkyl, (d) poly(ethylene glycol) 5000 and hexadecylalkyle, as pendant groups were synthesised. The copolymers were obtained by partial aminolysis of polysuccinimide with poly(ethylene glycol) and hexadecylalkyl amino derivatives followed by reaction with ethanolamine. Naked polyhydroxyaspartamide was obtained by polysuccinimide reaction with ethanolamine. The nuclear magnetic resonance, infrared, light scattering and elemental analysis allowed for the extensive physico-chemical characterisation of the carriers. The molecular mass of all the polymers was in the range of 27000-34000 Da, and the polydispersivity was in the range of 1.5-1.7. By intravenous injection to mice bearing a solid tumour, all the polymeric carriers displayed a bi-compartmental pharmacokinetic behaviour. Both the poly(ethylene glycol) and the hexadecylalkyle conjugation prolonged and enhanced the distribution phase of poly(hydroxyethylaspartamide). The poly(ethylene glycol) conjugation was found to promote the carrier elimination by kidney ultrafiltration and to prevent partially the accumulation in the spleen and in the liver. The poly(ethylene glycol)/hexadecylalkyle conjugates localised preferentially in the liver were over 30% of the dose/g of tissue was determined after 144 h from administration. In the tumour all the polymers displayed a relevant accumulation that significantly increased throughout the time to reach high concentrations after 24 h. In particular, the poly(ethylene glycol)/hexadecylalkyle conjugates achieved a concentration of 15-25% of the dose/g of tissue after 24 h from administration that was maintained up to 144 h.  相似文献   

18.
A preferential incorporation of dietary arachidonic acid (20:4, n-6) into chyle lipoprotein phospholipids, a relative resistance of 20:4 esters of chyle triacylglycerol (TG) to hydrolysis by lipoprotein lipase, a preferential utilization of 20:4 for phospholipid acylation, and a low rate of oxidation of 20:4 are factors that may contribute to the differences seen in the incorporation into tissue lipids between absorbed 20:4 and the predominant dietary 16-18 carbon fatty acids. In this study we fed [14C]20:4 and [3H]eicosapentaenoic acid (20:5, n-3) as free fatty acids in a fish oil emulsion to rats and analyzed the radioactivity in different tissue lipids after 1, 2, and 4 h. The purpose was to examine the degree of similarity in the fate of the two major eicosanoid precursors during the absorption of a fish oil meal. The recovery after 2 and 4 h of 14C exceeded that of 3H in lipids of small intestine, serum, liver, heart, kidneys, and spleen. The differences increased with time, e.g., the liver contained 9.7 (+/- 0.7)% 3H and 17.9 (+/- 1.4)% of the 14C (P less than 0.001), and the upper half of the small intestine 10.0 (+/- 0.8)% of the 3H and 22.8 (+/- 1.1)% of the 14C (P less than 0.001) after 4 h. The 14C and 3H radioactivity per g tissue after 4 h ranked as follows: liver and brown adipose tissue greater than kidneys greater than heart, lungs, spleen, and serum greater than colon greater than white adipose tissue and testes, the differences between tissues being up to 50-fold. There were up to fourfold variations in the 14C/3H ratios between tissues after 4 h, the highest value being observed in the heart and the lowest in white adipose tissue. Of the radioactivity retained in liver and intestine, more 14C and 3H was in phospholipids and less in triacylglycerol (TG), the differences being largest in the liver, e.g., after 4 h 57.6 (+/- 0.8)% of the 14C and 29.9 (+/- 0.9)% of the 3H (P less than 0.001) in the liver was in phosphatidylcholine (PC). In both intestine and liver the highest 14C/3H ratios were found in phosphatidylinositiol (PI). Also phosphatidylethanolamine (PE) contained more 14C than 3H but the quantitative differences were relatively small after 4 h. In heart the proportions of 3H and 14C found in PE and PI did not differ, whereas more of the 14C was in PC and more of the 3H was in cardiolipin and phosphatidylserine.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

19.
The biodistribution of long-circulating PEG-liposomes in a subcutaneous mouse model of established mixed infection abscesses was investigated to assess their possible role as drug carriers in the treatment of small, undrainable intra-abdominal abscesses. There was a 10-30-fold greater localisation of (67)Ga-labelled PEG-liposomes in abscesses compared to uninfected normal skin samples. Over 3% of the injected dose (ID) of liposomes was present in the abscesses 24 h after liposome administration in contrast to 0.1% in normal skin sections. The percentage ID present in the liver, spleen and kidneys was 17%, 4% and 2% per organ respectively. Five days after liposome injection, 2% ID could still be recovered from the abscesses. Using colloidal gold-labelled PEG-liposomes, it was shown that there was a 4-fold greater density of liposome clusters in the subcutaneous tissue surrounding the capsule than in the core of the abscesses. The clusters within the abscesses were distributed evenly. We conclude that PEG-liposomes localise to a significant degree at the infection focus in our mouse model and may provide a new approach to the antimicrobial treatment of intra-abdominal abscesses.  相似文献   

20.
[1-14C]Dolichol was mixed in vitro with sunflower seed oil and intubated into rats. Radioactivity began to appear in the blood at 3 h and peaked after about 6 h. The absorbed radioactivity was rapidly cleared from the blood. At 7.5 h postintubation two thirds of the radioactivity in the serum was associated with chylomicrons and about one quarter with the high density lipoproteins. At 12 h the proportion of the radioactivity in the chylomicrons had fallen to one third and that in the high density lipoproteins had increased to one half of the total. Less than 0.02% of the dose was found in the tissues after 12 h. Liver and blood each contained about one third of the total, with smaller amounts in the lungs and spleen. The heart, testes, brain, and kidneys contained only traces of radioactivity. After 12 h most of the radioactivity in the tissues and feces was present as [1-14C]dolichol. The radioactive compounds in the urine (about 0.05% of the dose) were more polar than [1-14C]dolichol as determined by thin-layer chromatography.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号