首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
To characterize cis-acting regulatory elements of the murine homeobox gene, Hox-2.2, transgenic mouse lines were generated that contained the LacZ reporter gene under the control of different fragments from the presumptive Hox-2.2 promoter. A promoter region of 3600 base pairs (bp) was identified, which reproducibly directed reporter gene expression into specific regions of developing mouse embryos. At 8.5 days postcoitum (p.c.) reporter gene activity was detected in posterior regions of the lateral mesoderm and, in subsequent developmental stages, expression of the LacZ gene was restricted to specific regions of the developing limb buds and the mesenchyme of the ventrolateral body region. This pattern of Hox-2.2-LacZ expression was found in all transgenic embryos that have been generated with the 3.6 kb promoter fragment (two founder embryos and embryos from five transgenic lines). In addition, embryos from two transgenic mouse lines expressed the reporter gene at low levels in the developing central nervous system (CNS). Our results are consistent with the idea that in addition to their presumptive role in CNS and vertebrae development, Hox-2.2 gene products are involved in controlling pattern formation in developing limbs.  相似文献   

4.
5.
Although the proximal, 5′ 115 bp of the human carbonic anhydrase II (CA II) gene was sufficient for expression of a reporter gene in some transfected cell lines, we found previously that 1100 bp of this promoter (or 500 bp of the mouse CA II promoter) was not sufficient for expression in transgenic mice. We have now studied the expression of linked reporter genes in mice transgenic for either (1) 11 kb of the human 5′ promoter or (2) 8 kb of the human 5′ promoter with mouse sequences from the first exon, part of the first intron (since a CpG island spans this region), and the 3′ sequences of the gene. Expression was found in both cases, but the tissue specificity was not appropriate for CA II. Although there was a difference in the sensitivity of the assays used, the first construct led to expression in many tissues, while the second construct was expressed only in spleen. These findings indicate considerable complexity of DNA control regions for in vivo CA II expression.  相似文献   

6.
目的制备乳腺特异性高表达人促红细胞生成素(hEPO)转基因奶山羊。方法采用牛β-乳球蛋白基因(BLG)调控元件和hEPO全长编码序列基因组DNA构建真核表达载体,应用受精卵原核注射的方法制备hEPO转基因山羊。结果在原核注射获得的188头羔羊中,经Southern blot法检测有4头羊含有hEPO基因,其中3头为母羊,1头公羊于出生后20d死亡;3头转基因母羊hEPO基因的拷贝数分别为1、10、2;Western blot检测结果显示转基因羊乳中的hEPO分子质量为32kDa;MTT法检测结果表明,在泌乳10d的3只转基因羊乳汁中,每毫升乳汁中hEPO活性分别达到1.17×10^2IU、1.90×10^4IU、1.91×10^4IU。结论牛BLG能够调控hEPO基因在山羊乳腺中高表达,为实现其他药用蛋白在山羊乳腺中表达奠定了基础。  相似文献   

7.
To investigate the ability of 1.8 kb or 3.1 kb bovine beta-casein promoter sequences for the expression regulation of transgene in vivo, transgenic mice were produced with human type II collagen gene fused to 1.8 kb and 3.1 kb of bovine beta-casein promoter by DNA microinjection. Five and three transgenic founder mice were produced using transgene constructs with 1.8 kb and 3.1 kb of bovine beta-casein promoters respectively. Founder mice were outbred with the wild type to produce F1 and F2 progenies. Total RNAs were extracted from four tissues (mammary gland, liver, kidney, and muscle) of female F1 transgenic mice of each transgenic line following parturition. RT-PCR and Northern blot analysis revealed that the expression level of transgene was variable among the transgenic lines, but transgenic mice containing 1.8 kb of promoter sequences exhibited more leaky expression of transgene in other tissues compared to those with 3.1 kb promoter. Moreover, Western blot analysis of transgenic mouse milk showed that human type II collagen proteins secreted into the milk of lactating transgenic mice contained 1.8 kb and 3.1 kb of bovine beta-casein promoter. These results suggest that promoter sequences of 3.1 kb bovine beta-casein gene can be used for induction of mammary gland-specific expression of transgenes in transgenic animals.  相似文献   

8.
9.
A critical problem in the production of transgenic animals is the uncontrolled constitutive expression of the foreign gene, which occasionally results in serious physiological disorders in the transgenic animal. In this study, we report successful production of transgenic chickens that express the human erythropoietin (hEPO) gene under the control of a tetracycline-inducible promoter. A recombinant Moloney murine leukemia virus (MoMLV)-based retrovirus vector encapsidated with vesicular stomatitis virus G glycoprotein (VSV-G) was injected beneath the blastoderm of unincubated chicken embryos (stage X). Out of 198 injected eggs, 15 chicks hatched after 21 days of incubation and 14 hatched chicks expressed the vector-encoded hEPO gene when fed doxycycline, a tetracycline derivative, without any significant physiological dysfunctions. The expression of hEPO reverted to the pre-induction state by removing doxycycline from the diet. The biological activity of the hEPO produced in the transgenic chickens was comparable to commercially available CHO cell-derived hEPO. Successful germline transmission of the transgene was also confirmed in G1 transgenic chicks produced from crossing G0 transgenic roosters with non-transgenic hens. Tetracycline-inducible expression of the hEPO gene was also confirmed in the blood and eggs of the transgenic chickens.  相似文献   

10.
Transgenic mice were generated in which 5 kb of the 5' flanking promoter region of the human Factor IX (FIX) gene fused to various FIX constructs (gene, minigene and cDNA) were stably integrated in the germ line. Several transgenic mouse lines expressed high circulating levels of active and correctly processed recombinant human FIX. The presence of at least one FIX intron had a positive effect on the expression. The FIX transgenes were expressed in a tissue-specific manner in the liver of transgenic mice. By crossing transgenic mice synthesizing FIX with others prone to develop hepatoma, progeny which co-express the transgenes in hepatocytes were obtained. Hepatoma-derived cell lines were shown to have a differentiated phenotype and secrete active human FIX for many generations.  相似文献   

11.
We are investigating human insulin gene expression in transgenic mice. An 8.8 kilobase (kb) human genomic DNA fragment, including the insulin gene (1.4 kb) and 2 kb of 5' human flanking sequences, was introduced into mouse embryos by pronuclear microinjection. Two lines of transgenic mice have been established, both of which carry the intact human gene in multiple copies. Animals from both lines have significantly higher insulin levels than control mice, and the degree of hyperinsulinemia shows a positive correlation with human gene copy number in the two lines. Expression of the human gene is confirmed by the detection of human C-peptide in plasma. Tissue specificity of expression is maintained, with human insulin mRNA detectable only in the pancreas. The transgenics maintain normal fasting blood glucose in spite of their high insulin levels, but preliminary studies show them to be glucose intolerant when given a glucose load. These mice provide a model system for further studies on the regulation of insulin gene expression and on the effects of chronic hyperinsulinemia on glucose homeostasis.  相似文献   

12.
A putative proximal promoter was defined previously for the mouse glucagon receptor (GR) gene. In the present study, a distal promoter was characterized upstream from a novel non-coding exon revealed by the 5'-rapid amplification of cDNA ends from mouse liver tissue. The 5'-flanking region of the mouse GR gene was cloned up to 6 kb and the structural organization was compared to the 5' untranslated region of the rat gene cloned up to 7 kb. The novel exon, separated by an intron of 3.8 kb from the first coding exon, displayed a high homology (80%) with the most distal of the two untranslated exons found in the 5' region of the rat GR gene. The mouse distal promoter region, extending up to -1 kb from the novel exon, displayed 85% identity with the rat promoter. Both contain a highly GC-rich sequence with five putative binding sites for Sp1, but no consensus TATA or CAAT elements. To evaluate basal promoter activities, 5'-flanking sequences of mouse or rat GR genes were fused to a luciferase reporter gene and transiently expressed in a mouse and in a rat cell line, respectively or in rat hepatocytes. Both mouse and rat distal promoter regions directed a high level of reporter gene activity. Deletion of the Sp1 binding sites region or mutation of the second proximal Sp1 sequence markedly reduced the distal promoter activity of the reporter gene. The mouse proximal promoter activity was 2- to 3-fold less than the distal promoter, for which no functional counterpart was observed in the similar region of the rat gene.  相似文献   

13.
Brain aromatase is widely distributed in the vertebrates, from fish to mammals, and plays important roles in functional reproductive behavior through production of estrogen as a neurosteroid. It is expressed only in the nerve cells of specific brain regions with a transient peak in the neonatal period when sexual behavior becomes organized, and therefore provides a good model system to study regulatory mechanism of cell-specific, brain region-specific, and developmental stage-specific expression.

To elucidate spatiotemporal regulation of brain aromatase, we prepared transgenic mice carrying a reporter gene under the promoter of brain-specific exon 1f of the mouse aromatase gene. The reporter transgene carrying a 6.5 kb upstream region of the brain-specific promoter accurately reproduced the spatiotemporal expression patterns of aromatase in mouse brain, whereas transgenes carrying smaller fragments of the promoter showed ambiguous or inconsistent expression patterns.

The binding sites of Aro-AI, Aro-AII, and Aro-B for nuclear factors were also identified in the proximal region of the exon 1f brain-specific promoter. Introduction of a mutation into the Aro-AII site in the reporter transgene carrying −6.5 kb promoter region of exon 1f caused complete alteration of the spatiotemporal expression pattern of the reporter gene in the transgenic mice.

These results indicate that the −6.5 kb promoter region of exon 1f is the minimal essential element for brain-specific regulation, with both proximal and distal promoter regions required for accurate spatiotemporal expression of aromatase in the mouse brain.  相似文献   


14.
15.
To investigate the regulation of mouse L-histidine decarboxylase (HDC) gene expression, we isolated genomic DNA clones encoding HDC. Structural analysis revealed that the mouse HDC gene was composed of 12 exons, spanning approximately 24 kb. Northern blotting analysis indicated that, among the cell lines examined, a high level of HDC gene expression was restricted to mature mast cell lines and an erythroblastic cell line. The gene was induced strongly in the mouse immature mast cell line P815 after incubation in the peritoneal cavity of BDF1 mice. We observed that the promoter region was demethylated in the HDC-expressing cell lines and in induced P815 cells. Interestingly, forced demethylation by 5-azacytidine (5-azaC) treatment induced high expression of HDC mRNA in P815 cells. The activity of a mouse HDC promoter-reporter construct stably transfected in P815 cells was repressed by in vitro patch-methylation. This low promoter activity of the patch-methylated reporter construct was restored after 5-azaC treatment, which demethylated the patch-methylated promoter. These results indicate that DNA methylation state of the promoter region controls HDC gene expression.  相似文献   

16.
17.
The nuclear proto-oncogene c-myb plays crucial roles in the growth, survival, and differentiation of hematopoietic cells. We established three lines of erythropoietin receptor-transgenic mice and found that one of them exhibited anemia, thrombocythemia, and splenomegaly. These abnormalities were independent of the function of the transgenic erythropoietin receptor and were observed exclusively in mice harboring the transgene homozygously, suggesting transgenic disruption of a certain gene. The transgene was inserted 77 kb upstream of the c-myb gene, and c-Myb expression was markedly decreased in megakaryocyte/erythrocyte lineage-restricted progenitors (MEPs) of the homozygous mutant mice. In the bone marrows and spleens of the mutant mice, numbers of megakaryocytes were increased and numbers of erythroid progenitors were decreased. These abnormalities were reproducible in vitro in a coculture assay of MEPs with OP9 cells but eliminated by the retroviral expression of c-Myb in MEPs. The erythroid/megakaryocytic abnormalities were reconstituted in mice in vivo by transplantation of mutant mouse bone marrow cells. These results demonstrate that the transgene insertion into the c-myb gene far upstream regulatory region affects the gene expression at the stage of MEPs, leading to an imbalance between erythroid and megakaryocytic cells, and suggest that c-Myb is an essential regulator of the erythroid-megakaryocytic lineage bifurcation.  相似文献   

18.
Comparative analysis of the human and mouse genomic sequences downstream of the apolipoprotein E gene (APOE) revealed a highly conserved element with previously undefined function. In reporter gene transfection studies, this element which is located approximately 42 kb distal to APOE was found to have silencer activity in a subset of cell lines examined. Analysis of transgenic mice containing a fusion construct linking this distal 631 bp conserved element to a reporter gene comprised of the human APOE gene with its proximal promoter resulted in robust brain expression of the transgenic human apoE mRNA in three independent transgenic lines, supporting the identification of a novel brain controlling region (BCR). Further studies using immunohistochemistry revealed widespread human apoE localization throughout the brains of the BCR-apoE transgenic mice with prominent expression in the cortex and diencephalon. In addition, double-label immunofluorescence performed on brain sections and cultures of primary cortical cells localized human apoE protein to cortical neurons and microglia. These studies demonstrate that comparative sequence analysis is a successful strategy to predict candidate regulatory regions in vivo, although they do not imply that this element controls apoE expression physiologically.  相似文献   

19.
In order to understand the importance of various cis-acting elements in regulating VP gene expression, transgenic mice regulated by VP constructs were produced containing 3.8 kb of the 5' flanking region and all the exons and introns in the mouse VP gene, which was fused at the end of exon 3 to an SV40 T antigen (Tag). In the transgenic mice by the pVPSV.IGR3.6 construct, all the six transgenic mice died at the age of 2-6 weeks. In the transgenic mice by pVPSV.IGR2.1, 21% of them had brain tumors at 5 weeks and 100% of the mice had brain tumors after 24 weeks. Histological analysis of the transgenic mice revealed primitive neuroectodermal tumors (PNET) in the brain and lymphoma in the spleen and lymph nodes. The phenotype differences between the two transgenic mice suggest that tissue-specific expression might be regulated by cis-acting elements in the 1.5-kb of the 3(') flanking region, which are not contained in pVPSV.IGR2.1. In conclusion, pVPSV.IGR2.1 mice will be a valuable mouse model system for investigating PNET tumorigenesis in the brain and lymphoma in the lymph nodes and spleen.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号