首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have used thermal and chemical denaturation to characterize the thermodynamics of unfolding for turkey ovomucoid third domain (OMTKY3). Thermal denaturation was monitored spectroscopically at a number of wave-lengths and data were subjected to van't Hoff analysis; at pH 2.0, the midpoint of denaturation (Tm) occurs at 58.6 +/- 0.4 degrees C and the enthalpy of unfolding at this temperature (delta Hm) is 40.8 +/- 0.3 kcal/mol. When Tm was perturbed by varying pH and denaturant concentration, the resulting plots of delta Hm versus Tm yield a mean value of 590 +/- 120 cal/(mol.K) for the change in heat capacity upon unfolding (delta Cp). A global fit of the same data to an equation that includes the temperature dependence for the enthalpy of unfolding yielded a value of 640 +/- 110 cal/(mol.K). We also performed a variation of the linear extrapolation method described by Pace and Laurents, which is an independent method for determining delta Cp (Pace, C.N. & Laurents, D., 1989, Biochemistry 28, 2520-2525). First, OMTKY3 was thermally denatured in the presence of a variety of denaturant concentrations. Linear extrapolations were then made from isothermal slices through the transition region of the denaturation curves. When extrapolated free energies of unfolding (delta Gu) were plotted versus temperature, the resulting curve appeared linear; therefore, delta Cp could not be determined. However, the data for delta Gu versus denaturant concentration are linear over an extraordinarily wide range of concentrations. Moreover, extrapolated values of delta Gu in urea are identical to values measured directly.  相似文献   

2.
The dependence of UV and CD spectra of oligonucleotide 3'-d(ApTpApTpApTpApTpApTp)-O(CH2)6O-5'-(pApTpApTpApTpApTp ApT) (eicosamer) in aqueous solution at pH 7 in the presence of 0.5 M NaCl on temperature and concentration was studied. It was shown that the eicosamer in concentrations below 5.10(-4) M forms a parallel stranded hairpin. From the thermal denaturation profile the thermodynamic parameters of parallel hairpin formation were determined. The values of delta H0, delta S0 and Tm were -90 +/- 8 kJ/mol, -300 +/- 20 J.mol-1.K-1 and 40.5 degrees C, respectively. The CD spectra of the parallel helix differ from those of B-form DNA by reduction of extreme magnitude at approximately 265 nm and appearance of a negative effect at approximately 285 nm.  相似文献   

3.
We studied the thermal denaturation of eglin c by using CD spectropolarimetry and differential scanning calorimetry (DSC). At low protein concentrations, denaturation is consistent with the classical two-state model. At concentrations greater than several hundred microM, however, the calorimetric enthalpy and the midpoint transition temperature increase with increasing protein concentration. These observations suggested the presence of intermediates and/or native state aggregation. However, the transitions are symmetric, suggesting that intermediates are absent, the DSC data do not fit models that include aggregation, and analytical ultracentrifugation (AUC) data show that native eglin c is monomeric. Instead, the AUC data show that eglin c solutions are nonideal. Analysis of the AUC data gives a second virial coefficient that is close to values calculated from theory and the DSC data are consistent with the behavior expected for nonideal solutions. We conclude that the concentration dependence is caused by differential nonideality of the native and denatured states. The nondeality arises from the high charge of the protein at acid pH and is exacerbated by low buffer concentrations. Our conclusion may explain differences between van't Hoff and calorimetric denaturation enthalpies observed for other proteins whose behavior is otherwise consistent with the classical two-state model.  相似文献   

4.
To investigate the structural stability of proteins, we analyzed the thermodynamics of an artificially designed 30-residue peptide. The designed peptide, NH2-EELLPLAEALAPLLEALLPLAEALAPLLKK-COOH (PERI COIL-1), with prolines at i + 7 positions, forms a pentameric alpha-helical structure in aqueous solution. The thermal denaturation curves of the CD at 222 nm (pH 7.5) show an unusual cold denaturation occurring well above 0 degrees C and no thermal denaturation is observable under 90 degrees C. This conformational change is reversible and depends on peptide concentration. A 2-state model between the monomeric denatured state (5D) and the pentameric helical state (H5) was sufficient to analyze 5 thermal denaturation curves of PERI COIL-1 with concentrations between 23 and 286 microM. The analysis was carried out by a nonlinear least-squares method using 3 fitting parameters: the midpoint temperature, Tm, the enthalpy change, delta H(Tm), and the heat capacity change, delta Cp. The association number (n = 5) was determined by sedimentation equilibrium and was not used as a fitting parameter. The heat capacity change suggests that the hydrophobic residues are buried in the helical state and exposed in the denatured one, as it occurs normally for natural globular proteins. On the other hand, the enthalpy and the entropy changes have values close to those found for coiled-coils and are quite distinct from typical values reported for natural globular proteins. In particular, the enthalpy change extrapolated at 110 degrees C is about 3 kJ/mol per amino acid residue, i.e., half of the value found for globular proteins.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
The thermal denaturation of lysozyme was studied at pH 2 in aqueous mixtures of methanol, ethanol, and 1-propanol by high sensitivity differential scanning calorimetry (DSC). The most obvious effect of alcohols was the lowering of Td, the temperature of denaturation, increasingly with higher alcohol concentration and longer alkyl chain. Both the calorimetric and van't Hoff enthalpies of denaturation initially increased and then decreased with increasing alcohol concentration, the ratio of the two enthalpies being nearly unity, 1.007 +/- 0.011, indicating the validity of the two-state approximation for the unfolding of lysozyme in these solvent systems. The reversibility of the denaturation was demonstrated by the reversibility of the DSC curves and the complete recovery of enzymic activity on cooling. The changes in heat capacity on unfolding decreased with increasing alcohol concentration for each alcohol. Experimentally determined values of denaturation temperature and of entropy and heat capacity changes were used to derive the additional thermodynamic parameters delta G degrees and delta S degrees for denaturation as a function of temperature for each alcohol--water mixture. Comparison of the thermodynamic parameters with those reported [Pfeil, W., & Privalov, P.L. (1976) Biophys. Chem. 4, 23--50] in aqueous solution at various values of pH and guanidine hydrochloride concentration showed that these latter changes have no effect on the heat capacity changes, whereas the addition of alcohols causes a sharp decrease.  相似文献   

6.
The influence of cation concentration on the thermal denaturation of DNA restriction fragments from the E. coli lac regulatory region and from pVH51, ranging in size from 43- to 880- bp, is described. Upon increasing the ionic strength, the melting transitions broaden in a cooperative manner at salt concentrations characteristic for the specific fragment. For three fragments studied in detail, the salt concentration dependence at the midpoint varied between 0.03 and 0.19 M Na+. Along with the broadening, the melting transitions become more symmetrical. This result is discussed with respect to the irreversibility of melting transitions at low ionic strength. After a cooperative broadening, the shape of the melting curves remains constant up to salt concentrations of 0.5 M Na+. The dTM/dlog[Na+] values for three fragments fall between 15.7 and 16.7. An easily applicable approximation of the van't Hoff equation is used to evaluate the enthalpies of 13 transitions arising from the denaturation of 43 to 600 bp. The results of this analysis are compared to calculations of the expected enthalpies based on calorimetric measurements. The TMs of most transitions were directly related to the base composition, but several deviations from the predicted behavior were observed. The possible influences of fragment length and sequence on the thermal stability are discussed. The experimental and mathematical procedure to resolve a thermal denaturation transition with a width f 0.17 +/- 0.01 degrees and its distinction from another preceeding transition only approximately 0.15 degrees away in an 880-bp Hae III fragment from pVH51 is described. This transition is about half as wide as the smallest one reported to date.  相似文献   

7.
Rhodopsin-containing retinal rod disk membranes from cattle have been examined by differential scanning calorimetry. Under conditions of 67 mM phosphate pH 7.0, unbleached rod outer segment disk membranes gave a single major endotherm with a temperature of denaturation (Tm) of 71.9 +/- 0.4 degrees C and a thermal unfolding calorimetric enthalpy change (delta Hcal) of 700 +/- 17 kJ/mol rhodopsin. Bleached rod outer segment disk membranes (membranes that had lost their absorbance at 498 nm after exposure to orange light) gave a single major endotherm with a Tm of 55.9 +/- 0.3 degrees C and a delta Hcal of 520 +/- 17 kJ/mol opsin. Neither bleached nor unbleached rod outer segment disk membranes gave endotherms upon thermal rescans. When thermal stability is examined over the pH range of 4-9, the major endotherms of both bleached and unbleached rod outer segment disk membranes were found to show maximum stability at pH 6.1. The observed delta Hcal values for bleached and unbleached rod outer segment disk membranes exhibit membrane concentration dependences which plateau at protein concentrations beyond 1.5 mg/mL. For partially bleached samples of rod outer segment disk membranes, the calorimetric enthalpy change for opsin appears to be somewhat dependent on the degree of bleaching, indicating intramembrane nearest neighbor interactions which affect the unfolding of opsin. Delta Hcal and Tm are particularly useful for assessing stability and testing for completeness of regeneration of rhodopsin from opsin. Other factors such as sample preparation and the presence of low concentrations of ethanol also affect the delta Hcal values while the Tm values remain fairly constant. This shows that the delta Hcal is a sensitive parameter for monitoring environmental changes of rhodopsin and opsin.  相似文献   

8.
The equilibrium behaviour of the bovine phosphatidylethanolamine-binding protein (PEBP) has been studied under various conditions of pH, temperature and urea concentration. Far-UV and near-UV CD, fluorescence and Fourier transform infrared spectroscopies indicate that, in its native state, PEBP is mainly composed of beta-sheets, with Trp residues mostly localized in a hydrophobic environment; these results suggest that the conformation of PEBP in solution is similar to the three-dimensional structure determined by X-ray crystallography. The pH-induced conformational changes show a transition midpoint at pH 3.0, implying nine protons in the transition. At neutral pH, the thermal denaturation is irreversible due to protein precipitation, whereas at acidic pH values the protein exhibits a reversible denaturation. The thermal denaturation curves, as monitored by CD, fluorescence and differential scanning calorimetry, support a two-state model for the equilibrium and display coincident values with a melting temperature Tm = 54 degrees C, an enthalpy change DeltaH = 119 kcal.mol-1 and a free energy change DeltaG(H2O, 25 degrees C) = 5 kcal.mol-1. The urea-induced unfolding profiles of PEBP show a midpoint of the two-state unfolding transition at 4.8 M denaturant, and the stability of PEBP is 4.5 kcal.mol-1 at 25 degrees C. Moreover, the surface active properties indicate that PEBP is essentially a hydrophilic protein which progressively unfolds at the air/water interface over the course of time. Together, these results suggest that PEBP is well-structured in solution but that its conformation is weakly stable and sensitive to hydrophobic conditions: the PEBP structure seems to be flexible and adaptable to its environment.  相似文献   

9.
Physical properties of inner histone-DNA complexes.   总被引:6,自引:6,他引:0       下载免费PDF全文
Chicken-erythrocyte inner histone tetramer has been complexed with several natural and synthetic DNA duplexes by salt-gradient dialysis at various protein/DNA ratios. The resulting complexes, in low-ionic-strength buffer, have been examined by electron microscopy, circular dichroism, and thermal denaturation. Electron microscopy reveals nucleosomes (nu bodies) randomly arranged along DNA fibers, including poly(dA-dT)-poly(dA-dT), poly(dI-dC)-poly(dI-dC), but not poly(dA)-poly(dT). Circular dichroism studies showed prominent histone alpha-helix and "suppression" of nucleic acid ellipticity (lambda less than 240 nm). Thermal denaturation experiments revealed Tm behavior comparable to that of H1- (or H5-) depleted chromatin. Tm III and Tm IV increased linearly with G + C%(natural DNAs), but were virtually independent of the histone/DNA ratio; therefore, the melting of nucleosomes along a DNA chain is insensitive to adjacent "spacer" DNA lengths. This suggests that Tm III and Tm IV arise from the melting of different domains of DNA associated with the core nu body.  相似文献   

10.
The unfolding process of human serum albumin between pH 5.4 and 9.9 was studied by chemical and thermal denaturations. The experimental results showed that there is no correlation between the stability of albumin at different pH values determined by both methods. The free energy change of unfolding versus concentration of guanidine showed a close dependence on the pH, suggesting that the variation of the electrical charge of albumin influences the final state of the unfolded form of the protein. Spectroscopic techniques, such as native fluorescence of the protein and circular dichroism, demonstrated that the unfolded state of the protein obtained from both methods possesses a different helical content. The solvophobic effect and the entropy of the chains have no influence on the final unfolding state when the protein is unfolded by thermal treatment, while, when the protein is unfolded by chemical denaturants, both effects depend on the medium pH. The results indicate that guanidine and urea interact with albumin by electrostatic forces, yielding a randomly coiled conformation in its unfolded state, while thermal denaturation produces a molten globule state and the aggregation of the protein; therefore, both methods yield different structurally unfolded states of the albumin.  相似文献   

11.
D Shortle  A K Meeker  E Freire 《Biochemistry》1988,27(13):4761-4768
By use of intrinsic fluorescence to determine the apparent equilibrium constant Kapp as a function of temperature, the midpoint temperature Tm and apparent enthalpy change delta Happ on reversible thermal denaturation have been determined over a range of pH values for wild-type staphylococcal nuclease and six mutant forms. For wild-type nuclease at pH 7.0, a Tm of 53.3 +/- 0.2 degrees C and a delta Happ of 86.8 +/- 1.4 kcal/mol were obtained, in reasonable agreement with values determined calorimetrically, 52.8 degrees C and 96 +/- 2 kcal/mol. The heat capacity change on denaturation delta Cp was estimated at 1.8 kcal/(mol K) versus the calorimetric value of 2.2 kcal/(mol K). When values of delta Happ and delta Sapp for a series of mutant nucleases that exhibit markedly altered denaturation behavior with guanidine hydrochloride and urea were compared at the same temperature, compensating changes in enthalpy and entropy were observed that greatly reduce the overall effect of the mutations on the free energy of denaturation. In addition, a correlation was found between the estimated delta Cp for the mutant proteins and the d(delta Gapp)/dC for guanidine hydrochloride denaturation. It is proposed that both the enthalpy/entropy compensation and this correlation between two seemingly unrelated denaturation parameters are consequences of large changes in the solvation of the denatured state that result from the mutant amino acid substitutions.  相似文献   

12.
The effects of the neutral salt concentration, pH, and coexistence of myosin on the denaturation of F-actin without ATP at low temperature were studied using the DNase I inhibition assay. The percent denaturation of F-actin gradually increased with a decrease in pH from 8.0 to 5.2, on incubation for 2 weeks in the presence of 50 mM KCl at 0 degrees C. This change was much faster in 0.5 M KCl and more than 75% of the F-actin became denatured on incubation for 1 week at pH 5.2. The buffer composition was found to exert a strong influence on the denaturation of F-actin. That is, there was a tendency for the denaturation of F-actin at pH 6.0 to be faster in MES[2-(N-morpholino)ethanesulfonic acid]-NaOH buffer than in sodium phosphate buffer, the critical concentrations of actin in 0.5 M KCl being 0.31 mg/ml for MES-NaOH buffer and 0.15 mg/ml for sodium phosphate buffer. A sigmoidal relationship was found between the percent denaturation of F-actin and the KCl concentration added, the greatest change occurring at KCl concentrations between 0.25 and 0.75 M. The time courses of the denaturation of F-actin showed that the percent denaturation rose at first and that in time the rate of the increase decreased. In the case of pH 8.0 and 0.5 M KCl, it took about 1 week for the denaturation rate to begin to drop. The pH of 6.0 further promoted the instability of F-actin exposed to high KCl concentrations.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
The effect of interactions of sorbitol with ribonuclease A (RNase A) and the resulting stabilization of structure was examined in parallel thermal unfolding and preferential binding studies with the application of multicomponent thermodynamic theory. The protein was stabilized by sorbitol both at pH 2.0 and pH 5.5 as the transition temperature, Tm, was increased. The enthalpy of the thermal denaturation had a small dependence on sorbitol concentration, which was reflected in the values of the standard free energy change of denaturation, delta delta G(o) = delta G(o) (sorbitol) - delta G(o)(water). Measurements of preferential interactions at 48 degrees C at pH 5.5, where protein is native, and pH 2.0 where it is denatured, showed that sorbitol is preferentially excluded from the denatured protein up to 40%, but becomes preferentially bound to native protein above 20% sorbitol. The chemical potential change on transferring the denatured RNase A from water to sorbitol solution is larger than that for the native protein, delta mu(2D) > delta mu(2N), which is consistent with the effect of sorbitol on the free energy change of denaturation. The conformity of these results to the thermodynamic expression of the effect of a co-solvent on denaturation, delta G(o)(W) + delta mu(D)(2)delta G(o)(S) + delta mu(2D), indicates that the stabilization of the protein by sorbitol can be fully accounted for by weak thermodynamic interactions at the protein surface that involve water reversible co-solvent exchange at thermodynamically non-neutral sites. The protein structure stabilizing action of sorbitol is driven by stronger exclusion from the unfolded protein than from the native structure.  相似文献   

14.
The enthalpy deltaH, entropy deltaS, and the temperature Tm of the conformational transition of poly[d (A-T)] from the ordered to the randomly oriented state have been determined at pH 6.8 with the help of an adiabatic differential scanning calorimeter in Na2SO4 solutions of increasing ionic strength. Spectrophotometric denaturation experiments supplemented the calorimetric measurements. All thermodynamic parameters were found to vary strongly with salt concentration: both deltaH and Tm increase linearly with the logarithm of the mean molal activity alpha plus or minus of Na2SO4. However, whereas the dependence of Tm on salt activity remains linear over the entire salt concentration range employed deltaH decreases abruptly in the most concentrated Na2SO4 solutions. The entropy of melting changes with salt concentration in a pattern similar to that displayed by deltaH. The data on deltaH as well as data derived from the maximum slopes of the calorimetric heat denaturation curves were used to calculate the cooperative length Lh, the stacking free energy epsilon, and the cooperativity parameter sigma of poly[d(A-T)] as a function of ionic strength. Lh decreases with increasing salt concentration whereas sigma increases. Epsilon assumes more positive values with increasing salt molality. These changes then are in agreement with the generally held belief that an increase in salt concentration leads to an increase in the "loop" content of the copolymer.  相似文献   

15.
The binding of heparin to human antithrombin III (ATIII) was investigated by titration calorimetry (TC) and differential scanning calorimetry (DSC). TC measurements of homogeneous high-affinity pentasaccharide and octasaccharide fragments of heparin in 0.02 M phosphate buffer and 0.15 M sodium chloride (pH 7.3) yielded binding constants of (7.1 +/- 1.3) x 10(5) M-1 and (6.7 +/- 1.2) x 10(6) M-1, respectively, and corresponding binding enthalpies of -48.3 +/- 0.7 and -54.4 +/- 5.4 kJ mol-1. The binding enthalpy of heparin in phosphate buffer (0.02 M, 0.15 M NaCl, pH 7.3) was estimated from TC measurements to be -55 +/- 10 kJ mol-1, while the enthalpy in Tris buffer (0.02 M, 0.15 M NaCl, pH 7.3) was -18 +/- 2 kJ mol-1. The heparin-binding affinity was shown by fluorescence measurements not to change under these conditions. The 3-fold lower binding enthalpy in Tris can be attributed to the transfer of a proton from the buffer to the heparin-ATIII complex. DSC measurements of the ATIII unfolding transition exhibited a sharp denaturation peak at 329 +/- 1 K with a van 't Hoff enthalpy of 951 +/- 89 kJ mol-1, based on a two-state transition model and a much broader transition from 333 to 366 K. The transition peak at 329 K accounted for 9-18% of the total ATIII. At sub-saturate heparin concentrations, the lower temperature peak became bimodal with the appearance of a second transition peak at 336 K. At saturate heparin concentration only the 336 K peak was observed. This supports a two domain model of ATIII folding in which the lower stability domain (329 K) binds and is stabilized by heparin.  相似文献   

16.
Conformational changes of apo A-1, the principal apoprotein of human plasma high density lipoprotein, have been studied by differential scanning calorimetry and ultraviolet difference spectroscopy as a function of temperature, pH, concentration of apoprotein, and urea concentration. Calorimetry shows that apo A-1 (5 to 40 mg/ml, pH 9.2) undergoes a two-state, reversible denaturation (enthalpy = 64 +/- 8.9 kcal/mole), between 43--71 degrees (midpoint temperature, Tm = 54 degrees), associated with a rise in heat capacity (deltaCvd) of 2.4 +/- 0.5 kcal/mole/degrees C. Apo A-1 (0.2 to 0.4 mg/ml, pH 9.2) develops a negative difference spectrum between 42--70 degrees, with Tm = 53 degrees. The enthalpy (deltaH = 59 +/- 5.7 kcal/mole at Tm) and heat capacity change (2.7 +/- 0.9 kcal/mole/degrees C) in the spectroscopic experiments were not significantly different from the calorimetric values. Below pH 9 and above pH 11, the calorimetric Tm and deltaH of denaturation are decreased. In the pH range of reversible denaturation (6.5 to 11.8), delatH and Tm are linearly related, showing that the heat capacity change (ddeltaH/dT) associated with denaturation is independent of Tm. In urea solutions, the calorimetric Tm and deltaH of denaturation are decreased. At 25 degrees, apo A-1 develops a negative difference spectrum between 1.4 and 3 M urea. Fifty per cent of the spectral change occurs in 2.4 M urea, which corresponds to the urea concentration obtained by extrapolation of the calorimetric Tm to 25 degrees. In urea solution of less than 0.75 M there is hyperchromicity at 285 nm (delta epsilon = 264 in 0.75 M urea), indicating strong interaction of aromatic amino acid residues in the native molecule with the solvent. Spectrophotometric titration of apo A-1 shows that 6.6 of the 7 tyrosine groups of apo A-1 titrate at pH less than 11.9, with similar titration curves obtained in aqueous solutions and in 6 M urea. The free energy of stabilization (deltaG) of the native conformation of apo A-1 was estimated, (a) at 37 degrees, using the calorimetric deltaA and deltaCvd, and (b) at 25 degrees, by extrapolation of spectroscopic data to zero urea concentration. The values (deltaG (37 degrees) = 2.4 and deltaG (25 degrees) = 2.7 kcal/mole) are small compared to typical globular proteins, indicating that native apo A-1 has a loosely folded tertiary structure. The low values of deltaG reflect the high degree of exposure of hydrophobic areas in the native protein molecule. The loosely folded conformation of apo A-1 allows extensive binding of lipid, since this can involve both surface hydrophobic sites and hydrophobic areas exposed by a cooperative, low energy unfolding process.  相似文献   

17.
The effects of pH, urea, and alkylureas on the thermal stability ofα-chymotrypsinogen A (α-ctg A) have been investigated by differential scanning calorimetry (DSC) and UV spectroscopy. Heat capacity changes and enthalpies of transition ofα-ctg A in the presence of urea and alkylureas were measured at the transition temperature. Using these data, the corresponding Gibbs free energies, enthalpies, and entropies of denaturation at 25°C were calculated. Comparison of these values shows that at 25°C denaturation with urea is characterized by a significantly smaller enthalpy and entropy of denaturation. At all denaturant concentrations the enthalpy term slightly dominates the entropy term in the Gibbs free energy function. The most obvious effect of alkylureas was lowering of the temperature of transition, which was increasing with alkylurea concentration and the size of alkyl chain. Destabilization of the folded protein in the presence of alkylureas appears to be primarily the result of the weakening of hydrophobic interactions due to diminished solvent ordering around the protein molecules. At pH lower than 2.0,α-ctg A still exists in a very stable form, probably the acid-denatured form (A-form).  相似文献   

18.
When thermal denaturation of conalbumin solutions partially saturated with Fe(III) is observed by differential scanning calorimetry, four endotherms are observed between 40 and 100 degrees. The relative size of these four endotherms is determined by the Fe(III) to conalbumin ration. At a heating rate of 10 degrees/min, in Tris buffer at pH 7.5, observed endotherm temperature maxima and enthalpies of denaturation are: conalbumin, 63 degrees, 320 kcal/mol; intermediate I, 68 degrees, intermediate I, 77 degrees; Fe2-conalbumin, 84 degrees, 630 kcal/mol. These four endotherms are observed over a range of protein concentration from 7 to 100 mg/ml and are unchanged when excess bicarbonate is present. Stoichiometric calculations of both total protein and total iron indicate that each intermediate endotherm results from denaturation of conalbumin molecules containing only one ferric ion. These experimental results are thus consistent with the presence of two different monomeric one-iron conalbumin intermediates. They strongly suggest that the two iron binding sites of conalbumin are not equivalent.  相似文献   

19.
Human acidic fibroblast growth factor (FGF-1) is a powerful mitogen and angiogenic factor with an apparent melting temperature (Tm) in the physiological range. FGF-1 is an example of a protein that is regulated, in part, by stability-based mechanisms. For example, the low Tm of FGF-1 has been postulated to play an important role in the unusual endoplasmic reticulum-independent secretion of this growth factor. Despite the close relationship between function and stability, accurate thermodynamic parameters of unfolding for FGF-1 have been unavailable, presumably due to effects of irreversible thermal denaturation. Here we report the determination of thermodynamic parameters of unfolding (DeltaH, DeltaG, and DeltaCp) for FGF-1 using differential scanning calorimetry (DSC). The thermal denaturation is demonstrated to be two-state and reversible upon the addition of low concentrations of added guanidine hydrochloride (GuHCl). DeltaG values from the DSC studies are in excellent agreement with values from isothermal GuHCl denaturation monitored by fluorescence and circular dichroism (CD) spectroscopy. Furthermore, the results indicate that irreversible denaturation is closely associated with the formation of an unfolding intermediate. GuHCl appears to promote reversible two-state denaturation by initially preventing aggregation of this unfolding intermediate, and at subsequently higher concentrations, by preventing formation of the intermediate.  相似文献   

20.
Enthalpies of phosphorylation of glucose by adenosine 5'-triphosphate have been measured as a function of concentrations of magnesium chloride in TRIS/TRIS-HCl buffer in the pH range 8.64 to 8.98. These measurements are compared with the results of calculations of these enthalpies that use a coupled equilibrium formalism with equilibrium data and enthalpy values selected from the literature. The experimental results span the range of magnesium ion concentrations 1 X 10(-6) to 0.3 mol alpha-1 and show a total variation in the enthalpy of reaction of almost 10 kJ mol-1, with the most exothermic reaction occurring at a magnesium ion concentration of 6.0 X 10(-4) mol alpha-1. The calculated enthalpies of reaction, except for the magnesium ion concentration range 4 X 10(-6) to 5 X 10(-4) mol alpha-1, are, within estimated uncertainty intervals (0.8 to 10.2 kJ mol-1), in agreement with the measured values.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号