首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Biallelic mutations in the NBS1 gene are responsible for the Nijmegen breakage syndrome (NBS), a rare autosomal recessive disorder characterized by chromosome instability and hypersensitivity to ionising radiation (IR). Epidemiological data evidence that the NBS1 gene can be considered a susceptibility factor for cancer development, as demonstrated by the fact that almost 40% of NBS patients have developed a malignancy before the age of 21. Interestingly, also NBS1 heterozygotes, which are clinically asymptomatic, display an elevated risk to develop some types of malignant tumours, especially breast, prostate and colorectal cancers, lymphoblastic leukaemia, and non-Hodgkin’s lymphoma (NHL). So far, nine mutations in the NBS1 gene have been found, at the heterozygous state, in cancer patients. Among them, the 657del5, the I171V and the R215W mutations are the most frequently described. The pathogenicity of these mutations is presumably connected with their occurrence in the highly conserved BRCT tandem domains of the NBS1 protein, which are present in a large superfamily of proteins, and are recognized as major mediators of processes related to cell-cycle checkpoint and DNA repair.This review will focus on the current state-of-knowledge regarding the correlation between carriers of NBS1 gene mutations and the proneness to the development of malignant tumours.Key Words: NBS1, 657del5 mutation, R215W mutation, I171V mutation, IVS11+2insT mutation, heterozygous, cancer predisposition, lymphoma, breast cancer, prostate cancer, colorectal cancer.  相似文献   

2.
We report a Japanese patient with Creutzfeldt-Jakob disease (CJD) with a V203I homozygous mutation of the prion protein gene (PRNP). A 73-year-old woman developed rapidly progressive gait disturbance and cognitive dysfunction. Four months after the onset, she entered a state of an akinetic mutism. Gene analysis revealed a homozygous V203I mutation in the PRNP. Familial CJD with a V203I mutation is rare, and all previously reported cases had a heterozygous mutation showing manifestations similar to those of typical sporadic CJD. Although genetic prion diseases with homozygous PRNP mutations often present with an earlier onset and more rapid clinical course than those with heterozygous mutations, no difference was found in clinical phenotype between our homozygous case and reported heterozygous cases.  相似文献   

3.
Germline mutations in the tumor suppressor gene TP53 occur in the majority of families with Li-Fraumeni syndrome, who are at an increased risk for a wide spectrum of early onset cancers. Several genetic polymorphisms in TP53 modify its effect on cancer risk. While some studies indicate that the TP53 PIN3 deletion allele (D) accelerate tumor onset in carriers with TP53 germline mutations, other studies have shown that the TP53 PIN3 insertion allele (I) confers a significantly higher risk of developing cancer than D allele. To further determine the effects of the TP53 PIN3 polymorphism on cancer development among TP53 germline mutations and to evaluate if those are differenence between male and female carriers, we studied a total of 152 germline mutation carriers with available DNA samples that can be used for genotyping. Our results indicate that the TP53 PIN3 polymorphism has a sex-specific effect on the risk of cancer in TP53 mutation carriers, conferring cancer risk in men (P = 0.0041) but not women with DI or II genotypes.  相似文献   

4.
Nijmegen breakage syndrome (NBS) with NBS1 germ-line mutation is a human autosomal recessive disease characterized by genomic instability and enhanced cancer predisposition. The NBS1 gene codes for a protein, Nbs1(p95/Nibrin), involved in the processing/repair of DNA double-strand breaks. Hepatocellular carcinoma (HCC) is a complex and heterogeneous tumor with several genomic alterations. Recent studies have shown that heterozygous NBS1 mice exhibited a higher incidence of HCC than did wild-type mice. The objective of the present study is to assess whether NBS1 mutations play a role in the pathogenesis of human primary liver cancer, including HBV-associated HCC and intrahepatic cholangiocarcinoma (ICC). Eight missense NBS1 mutations were identified in six of 64 (9.4%) HCCs and two of 18 (11.1%) ICCs, whereas only one synonymous mutation was found in 89 control cases of cirrhosis and chronic hepatitis B. Analysis of the functional consequences of the identified NBS1 mutations in Mre11-binding domain showed loss of nuclear localization of Nbs1 partner Mre11, one of the hallmarks for Nbs1 deficiency, in one HCC and two ICCs with NBS1 mutations. Moreover, seven of the eight tumors with NBS1 mutations had at least one genetic alteration in the TP53 pathway, including TP53 mutation, MDM2 amplification, p14ARF homozygous deletion and promoter methylation, implying a synergistic effect of Nbs1 disruption and p53 inactivation. Our findings provide novel insight on the molecular pathogenesis of primary liver cancer characterized by mutation inactivation of NBS1, a DNA repair associated gene.  相似文献   

5.
A study was made of the expression and inheritance of the sy11 mutation, which alters homologous chromosome synapsis in meiotic prophase I of rye. The abnormal phenotype proved to be determined by a recessive allele of a single sy11 gene. Univalents and multivalents were observed in homozygotes for the mutant allele. Analysis of the synaptonemal complex revealed a combination of homologous and nonhomologous synapsis in the mutant. The nonhomologous synapsis frequency significantly decreased in the course of meiotic prophase I in the mutant. The number of chiasmata per bivalent in metaphase I was 1.1 ± 0.01 versus 1.8 ± 0.01 in wild-type plants, and the number of univalents was 2.7 ± 0.06 versus 0.5 ± 0.05 in wild-type plants. As a result, a broad range of abnormalities was observed at subsequent stages of meiosis and led to the formation of defective microspores. Mutant plants were semisterile.  相似文献   

6.
In this paper we describe the production and analysis of mice carrying a 110-kb transgene that encompasses the wild-type Foxn1 genomic locus. Mutations in Foxn1 cause the nude phenotype. We show that in the hair follicles, transgenic mice with increased Foxn1 gene dosage exhibited increased Foxn1 expression that was restricted correctly to the nascent, post-mitotic cells of the differentiating hair cortex and hair cuticle lineages. We also demonstrate for the first time that a Foxn1 transgene rescues completely both the hair follicle and the thymus defects in animals that are also homozygous for the nude mutation at the endogenous Foxn1 locus, causing the development of a full coat of hair and a normal population of peripheral blood T lymphocytes. We conclude that sufficient cis-acting regulatory information resides within this 110-kb transgene to direct reliable and appropriate tissue-specific expression of the Foxn1 gene.  相似文献   

7.
Although the association of germline BRCA2 mutations with pancreatic adenocarcinoma is well established, the role of BRCA1 mutations is less clear. We hypothesized that the loss of heterozygosity at the BRCA1 locus occurs in pancreatic cancers of germline BRCA1 mutation carriers, acting as a “second-hit” event contributing to pancreatic tumorigenesis. Seven germline BRCA1 mutation carriers with pancreatic adenocarcinoma and nine patients with sporadic pancreatic cancer were identified from clinic- and population-based registries. DNA was extracted from paraffin-embedded tumor and nontumor samples. Three polymorphic microsatellite markers for the BRCA1 gene, and an internal control marker on chromosome 16p, were selected to test for the loss of heterozygosity. Tumor DNA demonstrating loss of heterozygosity in BRCA1 mutation carriers was sequenced to identify the retained allele. The loss of heterozygosity rate for the control marker was 20%, an expected baseline frequency. Loss of heterozygosity at the BRCA1 locus was 5/7 (71%) in BRCA1 mutation carriers; tumor DNA was available for sequencing in 4/5 cases, and three demonstrated loss of the wild-type allele. Only 1/9 (11%) sporadic cases demonstrated loss of heterozygosity at the BRCA1 locus. Loss of heterozygosity occurs frequently in pancreatic cancers of germline BRCA1 mutation carriers, with loss of the wild-type allele, and infrequently in sporadic cancer cases. Therefore, BRCA1 germline mutations likely predispose to the development of pancreatic cancer, and individuals with these mutations may be considered for pancreatic cancer-screening programs.  相似文献   

8.
Imisun and CLPlus are two imidazolinone (IMI) tolerance traits in sunflower (Helianthus annuus L.) determined by the expression of different alleles at the same locus, Ahasl1-1 and Ahasl1-3, respectively. This paper reports the level of tolerance expressed by plants containing both alleles in a homozygous, heterozygous and in a heterozygous stacked state to increasing doses of IMI at the enzyme and whole plant levels. Six genotypes of the Ahasl1 gene were compared with each other in three different genetic backgrounds. These materials were treated at the V2–V4 stage with increasing doses of imazapyr (from 0 to 480 g a.i. ha–1) followed by an assessment of the aboveground biomass and herbicide phytotoxicity. The estimated dose of imazapyr required to reduce biomass accumulation by 50% (GR50) differed statistically for the six genotypes of the Ahasl1 gene. Homozygous CLPlus (Ahasl1-3/Ahasl1-3) genotypes and materials containing a combination of both tolerant alleles (Imisun/CLPlus heterozygous stack, Ahasl1-1/Ahasl1-3) showed the highest values of GR50, 300 times higher than the susceptible genotypes and more than 2.5 times higher than homozygous Imisun materials (Ahasl1-1/Ahasl1-1). In vitro AHAS enzyme activity assays using increasing doses of herbicide (from 0 to 100 μM) showed similar trends, where homozygous CLPlus materials and those containing heterozygous stacks of Imisun/CLPlus were statistically similar and showed the least level of inhibition of enzyme activity to increasing doses of herbicide. The degree of dominance for the accumulation of biomass after herbicide application calculated for the Ahasl1-1 allele indicated that it is co-dominant to recessive depending on the imazapyr dose used. By the contrary, the Ahasl1-3 allele showed dominance to semi dominance according to the applied dose. This last allele is dominant over Ahasl1-1 over the entire range of herbicide rates tested. At the level of enzymatic activity, however, both alleles showed recessivity to semi-recessivity with respect to the wild-type allele, even though the Ahasl1-3 allele is dominant over Ahasl1-1 at all the herbicides rates used.  相似文献   

9.
Comparative biochemical and histopathological evidence suggests that a deficiency in the glycogen branching enzyme, encoded by the GBE1 gene, is responsible for a recently identified recessive fatal fetal and neonatal glycogen storage disease (GSD) in American Quarter Horses termed GSD IV. We have now derived the complete GBE1 cDNA sequences for control horses and affected foals, and identified a C to A substitution at base 102 that results in a tyrosine (Y) to stop (X) mutation in codon 34 of exon 1. All 11 affected foals were homozygous for the X34 allele, their 11 available dams and sires were heterozygous, and all 16 control horses were homozygous for the Y34 allele. The previous findings of poorly branched glycogen, abnormal polysaccharide accumulation, lack of measurable GBE1 enzyme activity and immunodetectable GBE1 protein, coupled with the present observation of abundant GBE1 mRNA in affected foals, are all consistent with the nonsense mutation in the 699 amino acid GBE1 protein. The affected foal pedigrees have a common ancestor and contain prolific stallions that are likely carriers of the recessive X34 allele. Defining the molecular basis of equine GSD IV will allow for accurate DNA testing and the ability to prevent occurrence of this devastating disease affecting American Quarter Horses and related breeds.The nucleotide sequence data reported in this article have been submitted to GenBank and have been assigned the accession numbers AY505107–AY505110.  相似文献   

10.
Stunted lemma palea 1 (slp1) is a rice mutant that displays dwarfism, shortened inflorescence lengths, severely degenerated lemmas/paleas, and sterility. The SLP1 locus was mapped between markers RM447 and D275 in the distal region of the long arm of chromosome 8, using the F2 progeny derived from the cross between the Slp1/slp1 mutant (Oryza sativa subsp. japonica) and the variety Taichung Native 1 (TN1, O. sativa subsp. indica). The SLP1 locus was further delimited to a 46.4-kb genomic region containing three putative genes: OsSPL16, OsMADS45, and OsMADS37. Comparisons of the sequence variations and expression levels of the three candidate genes between wild-type plants and homozygous slp1 mutants suggested that a missense mutation in the sixth amino acid of the OsSPL16 protein was likely responsible for the slp1 mutant phenotypes.  相似文献   

11.
We analyzed the Hr gene of a hairless mouse strain of unknown origin (HR strain, http://animal.nibio.go.jp/e_hr.html) to determine whether the strain shares a mutation with other hairless strains, such as HRS/J and Skh:HR-1, both of which have an Hrhr allele. Using PCR with multiple pairs of primers designed to amplify multiple overlapping regions covering the entire Hr gene, we found an insertion mutation in intron 6 of mutant Hr genes in HR mice. The DNA sequence flanking the mutation indicated that the mutation in HR mice was the same as that of Hrhr in the HRS/J strain. Based on the sequence, we developed a genotyping method using PCR to determine zygosities. Three primers were designed: S776 (GGTCTCGCTGGTCCTTGA), S607 (TCTGGAACCAGAGTGACAGACAGCTA), and R850 (TGGGCCACCATGGCCAGATTTAACACA). The S776 and R850 primers detected the Hrhr allele (275-bp amplicon), and S607 and R850 identified the wild-type Hr allele (244-bp amplicon). Applying PCR using these three primers, we confirmed that it is possible to differentiate among homozygous Hrhr (longer amplicons only), homozygous wild-type Hr(shorter amplicons only), and heterozygous (both amplicons) in HR and Hos:HR-1 mice. Our genomic analysis indicated that the HR, HRS/J, and Hos:HR-1 strains, and possibly Skh:HR-1 (an ancestor of Hos:HR-1) strain share the same Hrhr gene mutation. Our genotyping method will facilitate further research using hairless mice, and especially immature mice, because pups can be genotyped before their phenotype (hair coat loss) appears at about 2 weeks of age.  相似文献   

12.
13.
Campomelic dysplasia (CD; MIM 114290), an autosomal dominant skeletal malformation syndrome with XY sex reversal, is caused by heterozygous de novo mutations in and around the SOX9 gene on 17q. We report a patient with typical signs of CD, including sex reversal, who was, surprisingly, homozygous for the nonsense mutation Y440X. Since neither parent carried the Y440X mutation, possible mechanisms explaining the homozygous situation were a de novo mutation followed by uniparental isodisomy, somatic crossing over, or gene conversion. As the patient was heterozygous for six microsatellite markers flanking SOX9, uniparental isodisomy and somatic crossing over were excluded. Analysis of intragenic single-nucleotide polymorphisms suggested that the homozygous mutation arose by a mitotic gene conversion event involving exchange of at least 440 nucleotides and at most 2,208 nucleotides between a de novo mutant maternal allele and a wild-type paternal allele. Analysis of cloned alleles showed that homozygous mutant cells constituted about 80% of the leukocyte cell population of the patient, whereas about 20% were heterozygous mutant cells. Heterozygous Y440X mutations, previously described in three CD cases, have been identified in seven additional cases, thus constituting the most frequent recurrent mutations in SOX9. These patients frequently have a milder phenotype with longer survival, possibly because of the retention of some transactivation activity of the mutant protein on SOX9 target genes, as shown by cell transfection experiments. The fact that the patient survived for 3 months may thus be explained by homozygosity for a hypomorphic rather than a complete loss-of-function allele, in combination with somatic mosaicism. This is, to our knowledge, the first report of mitotic gene conversion of a wild-type allele by a de novo mutant allele in humans.  相似文献   

14.
We aim to develop a cultured cell model, to serve as a system with which the altered circadian phenotypes produced by the clock gene variations could be studied in vitro. Tau mutation, which shortens the circadian period of hamsters and mice, was introduced into the CK1ε locus of cultured Rat1-R12 cells by gene targeting mediated by a recombinant adeno-associated virus (rAAV) vector. After transduction of Rat1-R12 cells with rAAV, about 0.14% of the drug-resistant cells underwent gene targeting at CK1ε locus. Of the three clones isolated, only one carried the targeted allele of tau mutation and two carried the targeted wild-type allele. The clone with the targeted tau mutant allele exhibited a significantly shorter circadian period compared to the clone with targeted wild-type allele. rAAV-mediated gene targeting in cultured somatic cells is a convenient and powerful tool for analyzing the phenotypic outcome of clock gene variations, and for elucidating the pathogenesis of the disorders associated with abnormal circadian rhythmicity.  相似文献   

15.
The resistance (R) proteins of the TIR- and non-TIR (or CC-) superfamilies possess a nucleotide binding site (NBS) domain. Within an R gene, the NBS is the region of highest conservation, suggesting an essential role in triggering R protein activity. We compared the NBS domain of functional R genes and resistance gene analogs (RGA) amplified from S. caripense genomic DNA via PCR using specific and degenerate primers with its counterpart from other plants. An overall high degree of sequence conservation was apparent throughout the P-loop, kinase-2 and kinase-3a motifs of NBS fragments from all plants. Within the non-TIR class of R genes a prominent sub-class similar to the potato R1 gene conferring resistance to late blight, was detected. All non-TIR-R1-like R gene fragments that were sequenced possessed an intact open reading frame, whereas 22% of all non-TIR-non-R1-like fragments and 59% of all TIR-NBS RGA fragments had an interrupted reading frame or contained transposon-specific sequence. The non-TIR-R1-like fragments had high similarity to Solanaceae R genes and low similarity to RGAs of other plant species including A. thaliana and the cereals. It is concluded that appearance of the non-TIR-R1-like NBS domain represents a relatively recent evolutionary development. Electronic supplementary material Supplementary material is available in the online version of this article at and is accessible for authorized users.  相似文献   

16.
Autosomal recessive spinal muscular atrophy with respiratory distress type 1 (SMARD1) is caused by mutations in the immunoglobulin -binding protein 2 (IGHMBP2) gene. Patients affected by the infantile form of SMARD1 present with early onset respiratory distress. So far, patients with neither juvenile onset nor with larger deletions/rearrangements in IGHMBP2 have been reported. In this study, we investigated one patient with infantile (4 months) and another with juvenile (4.3 years) onset of respiratory distress. Direct sequencing of all exons and flanking intron sequences in both patients revealed a mutation on only one allele. In both patients, we identified genomic rearrangements of the other allele of IGHMBP2 by means of Southern blotting. Putative breakpoints were confirmed by polymerase chain reaction on genomic and cDNA. The patient with juvenile onset had an Alu/Alu mediated rearrangement, which resulted in the loss of ~18.5 kb genomic DNA. At the mRNA level, this caused an in-frame deletion of exons 3–7. The patient with infantile onset had a complex rearrangement with two deletions and an inversion between intron 10 and 14. This rearrangement led to a frameshift at the mRNA level. Our results show that SMARD1 can be caused by genomic rearrangements at the IGHMBP2 gene locus. This may be missed by mere sequence analysis. Additionally, we demonstrate that juvenile onset SMARD1 may also be caused by mutations of IGHMBP2. The complex nature of the genomic rearrangement in the patient with infantile SMARD1 is discussed and a deletion mechanism is proposed.  相似文献   

17.

Background

About 9% of the offspring of a clinically healthy Piétrain boar named ‘Campus’ showed a progressive postural tremor called Campus syndrome (CPS). Extensive backcross experiments suggested a dominant mode of inheritance, and the founder boar was believed to be a gonadal mosaic. A genome-scan mapped the disease-causing mutation to an 8 cM region of porcine chromosome 7 containing the MHY7 gene. Human distal myopathy type 1 (MPD1), a disease partially resembling CPS in pigs, has been associated with mutations in the MYH7 gene.

Results

The porcine MYH7 gene structure was predicted based on porcine reference genome sequence, porcine mRNA, and in comparison to the human ortholog. The gene structure was highly conserved with the exception of the first exon. Mutation analysis of a contiguous genomic interval of more than 22 kb spanning the complete MYH7 gene revealed an in-frame insertion within exon 30 of MYH7 (c.4320_4321insCCCGCC) which was perfectly associated with the disease phenotype and confirmed the dominant inheritance. The mutation is predicted to insert two amino acids (p.Ala1440_Ala1441insProAla) in a very highly conserved region of the myosin tail. The boar ‘Campus’ was shown to be a germline and somatic mosaic as assessed by the presence of the mutant allele in seven different organs.

Conclusion

This study illustrates the usefulness of recently established genomic resources in pigs. We have identified a spontaneous mutation in MYH7 as the causative mutation for CPS. This paper describes the first case of a disorder caused by a naturally occurring mutation in the MYH7 gene of a non-human mammalian species. Our study confirms the previous classification as a primary myopathy and provides a defined large animal model for human MPD1. We provide evidence that the CPS mutation occurred during the early development of the boar ‘Campus’. Therefore, this study provides an example of germline mosaicism with an asymptomatic founder.
  相似文献   

18.
Epidemiologic studies have evaluated the association between BRAF mutations and resistance to the treatment of anti-EGFR monoclonal antibodies (MoAb) in patients with metastatic colorectal cancer (mCRC). However, the results are still inconclusive. To derive a more precise estimation of the relationship, we performed this meta-analysis. A total of 11 studies were included in the final meta-analysis. There were seven studies for unselected mCRC patients and four studies for patients with wild type KRAS mCRC. Among unselected mCRC patients, BRAF V600E mutation was detected in 48 of 546 primary tumors (8.8%). The objective response rate (ORR) of patients with mutant BRAF was 29.2% (14/48), whereas the ORR of patients with wild-type BRAF was 33.5% (158/472).The overall RR for ORR of mutant BRAF patients over wild-type BRAF patients was 0.86 (95% CI = 0.57–1.30; P = 0.48). For patients with KRAS wild-type mCRC, BRAF V600E mutation was detected in 40 of 376 primary tumors (10.6%). The ORR of patients with mutant BRAF was 0.0% (0/40), whereas the ORR of patients with wild-type BRAF was 36.3% (122/336). The pooled RR of mutant BRAF patients over wild-type BRAF patients was 0.14 (95% CI = 0.04–0.53; P = 0.004). In conclusion, this meta-analysis provides evidence that BRAF V600E mutation is associated with lack of response in wild-type KRAS mCRC treated with anti-EGFR MoAbs. BRAF mutation may be used as an additional biomarker for the selection of mCRC patients who might benefit from anti-EGFR MoAbs therapy.  相似文献   

19.
为分析DNA损伤修复相关基因NBS1单核苷酸多态性(SNPs)与原发性肝癌遗传易感性的关系,并对高分辨率单链构象多态性(SSCP)检测技术在SNPs分型中的适用性进行评估,本研究对来自中国汉族人群的327例原发性肝癌以及295例阴性对照中NBS1基因常见SNPs的稀有等位基因频率进行检测和分析.此外,对NBS1基因6个常见SNPs分别选择部分样本同时进行直接序列测定,以比较2种方法的检测效果.119例原发性肝癌以及95例肝硬化/慢性肝炎组织标本的SSCP分析结果表明,6个常见NBS1基因SNPs位点(102G>A, 320+208G/A, 553G>C, 1197T>C, 2016A>G和2071-30A>T)中,SNP 1197T>C的稀有等位基因频率为68.1%,显著高于肝硬化/慢性肝炎对照的57.9% (P = 0.0298).对该SNP位点另外采用208份肝细胞癌和200份健康人群血液标本进一步分析, 肝细胞癌SNP 1197T>C的稀有等位基因频率为66.8%,显著高于健康人群对照的58.8% (P = 0.0170).其他5个SNPs的稀有等位基因频率在原发性肝癌与肝硬化/慢性肝炎之间均无显著性差异.高分辨率SSCP分析法与直接序列测定法对所选样本的SNPs基因分型结果完全一致,而且直接测序法对PCR扩增产物质量的要求相对高分辨率SSCP分析更高.研究表明,中国汉族人群NBS1基因SNP 1197T>C可能与原发性肝癌的发生相关,高分辨率SSCP技术准确度与直接测序法相当,且操作更加简便易行,非常适用于大量样本多个已知SNPs的基因分型.  相似文献   

20.
The recessive radioresistance allele gam12 cloned in plasmid pBC4042-gam12 slightly increases the radiation resistance of Escherichia coli wild-type cells. Meanwhile, irradiation by γ-rays induces transition of gam r 12 mutation to the homozygous state and causes a 3.37-fold increase in radiation resistance of these cells. The mutation gam r 12 was located at 22.68 min of the chromosomal map in the region of cspH-cspG gene cluster of cold-shock proteins. Sequence analysis of gam12 allele revealed the nucleotide sequence of cold-shock gene cspG and insertions in the C-terminal part of the gene. Translation of mutant cspG gene can lead to synthesis of a truncated product that represents the N-terminal protein fragment with motifs governing binding with DNA and RNA. Analysis of the Escherichia coli genome revealed motifs recognized by proteins of the cspA family in genes of cold shock, heat shock, SOS regulon, and other systems. These data suggest the possibility of involvement of mutant RNA-chaperones of type CspA′ and CspG′ in the expression of key genes in systems of SOS repair and recombination or auxiliary stress systems, including heat-shock proteins, in radiation resistant mutants of E. coli.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号