首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
p38alpha Mitogen Activated Protein Kinase (MAP kinase) is an intracellular soluble serine threonine kinase. p38alpha kinase is activated in response to cellular stresses, growth factors and cytokines such as interleukin-1 (IL-1) and tumor necrosis factor alpha (TNF-alpha). The central role of p38alpha activation in settings of both chronic and acute inflammation has led efforts to find inhibitors of this enzyme as possible therapies for diseases such as rheumatoid arthritis, where p38alpha activation is thought to play a causal role. Herein, we report structure-activity relationship studies on a series of indole-based heterocyclic inhibitors that led to the design and identification of a new class of p38alpha inhibitors.  相似文献   

2.
The p38 MAP kinase signal transduction pathway is an important regulator of proinflammatory cytokine production and inflammation. Defining the roles of the various p38 family members, specifically p38alpha and p38beta, in these processes has been difficult. Here we use a chemical genetics approach using knock-in mice in which either p38alpha or p38beta kinase has been rendered resistant to the effects of specific inhibitors along with p38beta knock-out mice to dissect the biological function of these specific kinase isoforms. Mice harboring a T106M mutation in p38alpha are resistant to pharmacological inhibition of LPS-induced TNF production and collagen antibody-induced arthritis, indicating that p38beta activity is not required for acute or chronic inflammatory responses. LPS-induced TNF production, however, is still completely sensitive to p38 inhibitors in mice with a T106M point mutation in p38beta. Similarly, p38beta knock-out mice respond normally to inflammatory stimuli. These results demonstrate conclusively that specific inhibition of the p38alpha isoform is necessary and sufficient for anti-inflammatory efficacy in vivo.  相似文献   

3.
2,6-Diamino-3,5-difluoropyridinyl substituted pyridinylimidazoles, -pyrroles, -oxazoles, -thiazoles and -triazoles have been identified as novel p38alpha inhibitors. Pyridinylimidazole 11 potently inhibited LPS-induced TNFalpha in mice, showed good efficacy in the established rat adjuvant (ED(50): 10 mg/kg po b.i.d.) and collagen induced arthritis (ED(50): 5 mg/kg po b.i.d.) with disease modifying properties based on histological analysis of the joints.  相似文献   

4.
A test library with three novel p38alpha inhibitory scaffolds and a narrow set of substituents was prepared. Appropriate combination of substituent and scaffold generated potent p38alpha inhibitors, for example, pyrazolo[3,4-b]pyridine 9, pyrazolo[3,4-d]pyrimidine 18a and pyrazolo[3,4-b]pyrazine 23b with potent in vivo activity upon oral administration in animal models of rheumatoid arthritis.  相似文献   

5.
6.
The synthesis and in vitro p38 alpha activity of a novel series of benzimidazolone inhibitors is described. The p38 alpha SAR is consistent with a mode of binding wherein the benzimidazolone carbonyl serves as the H-bond acceptor to Met109 of p38 alpha in a manner analogous to the pyridine nitrogen of prototypical pyridylimidazole p38 inhibitors. Potent p38 alpha activity comparable to that of several previously reported p38 inhibitors is observed for this novel chemotype.  相似文献   

7.
p38 mitogen-activated protein kinase (MAPK) (p38/p38-alpha/CSBP2/RK) has been implicated in the regulation of many proinflammatory pathways. Because of this, it has received much attention as a potential drug target for controlling diseases such as rheumatoid arthritis, endotoxic shock, inflammatory bowel disease, osteoporosis, and many others. A number of small molecule inhibitors of this kinase have been described, and in this paper we have used surface plasmon resonance to directly measure and quantitate their binding to p38. Despite the relatively low molecular mass (approximately 400 Da) of these inhibitors, specific binding can be observed. For the two most potent inhibitors studied, SB 203580 and RWJ 67657, dissociation constants, K(d)'s, of 22 and 10 nm, respectively, were obtained. These values closely match the IC(5)0 values observed in a cell-based TNF alpha release assay implying that p38 plays a major role in TNF alpha release. The association and dissociation rates for the binding of these inhibitors to p38 have also been quantitated. SB 203580 and RWJ 67657 have very similar association rates of around 8 x 10(5) m(-1) x s(-1), and the differences in affinity are determined by different dissociation rates. The weaker binding compounds have dissociation rates similar to SB 203580, but the association rates vary by an order of magnitude or more. The direct measurement of compounds binding to p38 may help in understanding the difference between potency and efficacy for these inhibitors. This in turn may yield clues on how to develop better inhibitors.  相似文献   

8.
Benzoylpyridines and benzophenones were synthesized and evaluated in vitro as p38alpha inhibitors and in vivo in several models of rheumatoid arthritis. Oral activity was found to depend upon substitution: 1,1-dimethylpropynylamine substituted benzophenone 10b (IC50: 14 nM) and pyridinoyl substituted benzimidazole 17b (IC50: 21 nM) showed highest efficacy and selectivity with ED50s of 9.5 and 8.6 mg/kg p.o. in CIA.  相似文献   

9.
Activated microglia have been suggested to produce a cytotoxic cytokine, tumor necrosis factor alpha (TNF alpha), in many pathological brains. Thus, determining the molecular mechanism of this induction and suppression has been the focus of a great deal of research. Using lipopolysaccharide (LPS) as an experimental inducer of TNF alpha, we investigated the regulatory mechanism by which TNFalpha is induced or suppressed in microglia. We found that LPS-induced TNF alpha is suppressed by pretreatment with the p38 mitogen-activated protein kinase (p38MAPK) inhibitor SB203580. Similar suppression was achieved by pretreatment with specific protein kinase C (PKC) inhibitors, G?6976, myristoylated pseudosubstrate (20-28), and bisindolylmaleimide. These results suggest that PKC alpha activity as well as p38MAPK activity is associated with TNF alpha induction in LPS-stimulated microglia. The requirement of PKC alpha in LPS-dependent TNFalpha induction was verified in PKC alpha-downregulated microglia which could be induced by phorbol-12-myristate-13-acetate pretreatment. Simultaneously, PKC alpha was found to be requisite for the activation of p38MAPK in LPS-stimulated microglia. In addition, the PKC alpha levels in the LPS-stimulated microglia were observed to decrease in response to the p38MAPK inhibitor, indicating that the PKC alpha levels are regulated by the p38MAPK activity. We therefore concluded that PKC alpha and p38MAPK are interactively linked to the signaling cascade inducing TNFalpha in LPS-stimulated microglia, and that in this cascade, PKC alpha is requisite for the activation of p38MAPK, leading to the induction of TNF alpha.  相似文献   

10.
We previously showed that sphingosine inhibits prostaglandin F(2alpha) (PGF(2alpha))-stimulated interleukin-6 synthesis in osteoblast-like MC3T3-E1 cells. In the present study, we investigated the effect of sphingosine on phospholipase C-catalyzing phosphoinositide hydrolysis induced by PGF(2alpha) in these cells. Sphingosine inhibited the inositol phosphates formation by PGF(2alpha) or NaF, a GTP-binding protein activator. Sphingosine induced the phosphorylation of p38 mitogen-activated protein (MAP) kinase but did not affect the phosphorylation of p42/p44 MAP kinase. SB203580 and PD169316, inhibitors of p38 MAP kinase, rescued the inhibitory effect of sphingosine on the formation of inositol phosphates by PGF(2alpha) or NaF. These results indicate that sphingosine inhibits PGF(2alpha)-induced phosphoinositide hydrolysis by phospholipase C via p38 MAP kinase in osteoblasts.  相似文献   

11.
12.
13.
Novel potent trisubstituted pyridazine inhibitors of p38 MAP (mitogen activated protein) kinase are described that have activity in both cell-based assays of cytokine release and animal models of rheumatoid arthritis. They demonstrated potent inhibition of LPS-induced TNF-alpha production in mice and exhibited good efficacy in the rat collagen induced arthritis model.  相似文献   

14.
15.
Heme oxygenase-1 (HO-1) protects endothelial cells (EC) from undergoing apoptosis. This effect is mimicked by CO, generated via the catabolism of heme by HO-1. The antiapoptotic effect of CO in EC was abrogated when activation of the p38alpha and p38beta MAPKs was inhibited by the pyridinyl imidazole SB202190. Using small interfering RNA, p38beta was found to be cytoprotective in EC, whereas p38alpha was not. When overexpressed in EC, HO-1 targeted specifically the p38alpha but not the p38beta MAPK isoform for degradation by the 26S proteasome, an effect reversed by the 26S proteasome inhibitors MG-132 or lactacystin. Inhibition of p38alpha expression was also observed when HO-1 was induced physiologically by iron protoporphyrin IX (hemin). Inhibition of p38alpha no longer occurred when HO activity was inhibited by tin protoporphyrin IX, suggesting that p38alpha degradation was mediated by an end product of heme catabolism. Exogenous CO inhibited p38alpha expression in EC, suggesting that CO is the end product that mediates this effect. The antiapoptotic effect of HO-1 was impaired when p38alpha expression was restored ectopically or when its degradation by the 26S proteasome was inhibited by MG-132. Furthermore, the antiapoptotic effect of HO-1 was lost when p38beta expression was targeted by a specific p38beta small interfering RNA. In conclusion, the antiapoptotic effect of HO-1 in EC is dependent on the degradation of p38alpha by the 26S proteasome and on the expression of p38beta.  相似文献   

16.
Inhibition of p38alpha MAP kinase is a potential approach for the treatment of inflammatory disorders. MKK6-dependent phosphorylation on the activation loop of p38alpha increases its catalytic activity and affinity for ATP. An inhibitor, BIRB796, binds at a site used by the purine moiety of ATP and extends into a "selectivity pocket", which is not used by ATP. It displaces the Asp168-Phe169-Gly170 motif at the start of the activation loop, promoting a "DFG-out" conformation. Some other inhibitors bind only in the purine site, with p38alpha remaining in a "DFG-in" conformation. We now demonstrate that selectivity pocket compounds prevent MKK6-dependent activation of p38alpha in addition to inhibiting catalysis by activated p38alpha. Inhibitors using only the purine site do not prevent MKK6-dependent activation. We present kinetic analyses of seven inhibitors, whose crystal structures as complexes with p38alpha have been determined. This work includes four new crystal structures and a novel assay to measure K(d) for nonactivated p38alpha. Selectivity pocket compounds associate with p38alpha over 30-fold more slowly than purine site compounds, apparently due to low abundance of the DFG-out conformation. At concentrations that inhibit cellular production of an inflammatory cytokine, TNFalpha, selectivity pocket compounds decrease levels of phosphorylated p38alpha and beta. Stabilization of a DFG-out conformation appears to interfere with recognition of p38alpha as a substrate by MKK6. ATP competes less effectively for prevention of activation than for inhibition of catalysis. By binding to a different conformation of the enzyme, compounds that prevent activation offer an alternative approach to modulation of p38alpha.  相似文献   

17.
Two new classes of diphenylether inhibitors of p38alpha MAP kinase are described. Both chemical classes are based on a common diphenylether core that is identified by simulated fragment annealing as one of the most favored chemotypes within a prominent hydrophobic pocket of the p38alpha ATP-binding site. In the fully elaborated molecules, the diphenylether moiety acts as an anchor occupying the deep pocket, while polar extensions make specific interactions with either the adenine binding site or the phosphate binding site of ATP. The synthesis, crystallographic analysis, and biological activity of these p38alpha inhibitors are discussed.  相似文献   

18.
The p38 alpha mitogen-activated protein kinase (MAPK) is essential in controlling the production of many proinflammatory cytokines, and its specific inhibitor can effectively block their production for treating human diseases. To effectively identify highly specific p38 alpha inhibitors in vivo, we developed an ex vivo mouse blood cell-based assay by flow cytometry to measure the intracellular p38 alpha kinase activation. We first attempted to identify the individual blood cell population in which the p38 alpha kinase pathway is highly expressed and activated. Based on CD11b, combined with Ly-6G cell surface expression, we identified two distinct subsets of non-neutrophilic myeloid cells, CD11b(Med)Ly-6G(-) and CD11b(Lo)Ly-6G(-), and characterized them as monocytes and natural killer (NK) cells, respectively. Then, we demonstrated that only monocytes, not NK cells, expressed a high level of p38 alpha kinase, which was rapidly activated by anisomycin stimulation as evidenced by the phosphorylation of both p38 and its substrate, MAPKAP-K2 (MK2). Finally, the p38 alpha kinase pathway activation in monocytes was fully inhibited by a highly selective p38 alpha kinase inhibitor dose-dependently in vitro and in vivo. In conclusion, we demonstrated an effective method for separating blood monocytes from other cells and for detecting the expression level and activation of the p38 alpha kinase pathway in monocytes, which provided a new approach for the rapid identification of specific p38 alpha inhibitors.  相似文献   

19.
S100A8 and S100A9, two Ca2+-binding proteins of the S100 family, are secreted as a heterodimeric complex (S100A8/A9) from neutrophils and monocytes/macrophages. Serum and synovial fluid levels of S100A8, S100A9, and S100A8/A9 were all higher in patients with rheumatoid arthritis (RA) than in patients with osteoarthritis (OA), with the S100A8/A9 heterodimer being prevalent. By two-color immunofluorescence labeling, S100A8/A9 antigens were found to be expressed mainly by infiltrating CD68+ macrophages in RA synovial tissue (ST). Isolated ST cells from patients with RA spontaneously released larger amounts of S100A8/A9 protein than did the cells from patients with OA. S100A8/A9 complexes, as well as S100A9 homodimers, stimulated the production of proinflammatory cytokines, such as tumor necrosis factor alpha, by purified monocytes and in vitro-differentiated macrophages. S100A8/A9-mediated cytokine production was suppressed significantly by p38 mitogen-activated protein kinase (MAPK) inhibitors and almost completely by nuclear factor kappa B (NF-κB) inhibitors. NF-κB activation was induced in S100A8/A9-stimulated monocytes, but this activity was not inhibited by p38 MAPK inhibitors. These results indicate that the S100A8/A9 heterodimer, secreted extracellularly from activated tissue macrophages, may amplify proinflammatory cytokine responses through activation of NF-κB and p38 MAPK pathways in RA.  相似文献   

20.
Antagonist studies show that spinal p38 mitogen-activated protein kinase plays a crucial role in spinal sensitization. However, there are two p38 isoforms found in spinal cord and the relative contribution of these two to hyperalgesia is not known. Here we demonstrate that the isoforms are distinctly expressed in spinal dorsal horn: p38alpha in neurons and p38beta in microglia. In lieu of isoform selective inhibitors, we examined the functional role of these two individual isoforms in nociception by using intrathecal isoform-specific antisense oligonucleotides to selectively block the expression of the respective isoform. In these rats, down-regulation of spinal p38beta, but not p38alpha, prevented nocifensive flinching evoked by intraplantar injection of formalin and hyperalgesia induced by activation of spinal neurokinin-1 receptors through intrathecal injection of substance P. Both intraplantar formalin and intrathecal substance P produced an increase in spinal p38 phosphorylation and this phosphorylation (activation) was prevented when spinal p38beta, but not p38alpha, was down-regulated. Thus, spinal p38beta, probably in microglia, plays a significant role in spinal nociceptive processing and represents a potential target for pain therapy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号