首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Despite intensive experimentation to develop effective and safe vaccines against the human immunodeficiency viruses and other pathogenic lentiviruses, it remains unclear whether an immune response that does not afford protection may, on the contrary, produce adverse effects. In the present study, the effect of genetic immunization with the env gene was examined in a natural animal model of lentivirus pathogenesis, infection of cats by the feline immunodeficiency virus (FIV). Three groups of seven cats were immunized by intramuscular transfer of plasmid DNAs expressing either the wild-type envelope or two envelopes bearing mutations in the principal immunodominant domain of the transmembrane glycoprotein. Upon homologous challenge, determination of plasma virus load showed that the acute phase of viral infection occurred earlier in the three groups of cats immunized with FIV envelopes than in the control cats. Genetic immunization, however, elicited low or undetectable levels of antibodies directed against envelope glycoproteins. These results suggest that immunization with the FIV env gene may result in enhancement of infection and that mechanisms unrelated to enhancing antibodies underlay the observed acceleration.  相似文献   

2.
All six cats passively immunized with sera from either feline immunodeficiency virus (FIV)-vaccinated cats or cats infected with FIV (Petaluma strain) were protected from homologous FIV infection at a challenge dose that infected all six control cats. Passive immunization with sera from cats vaccinated with uninfected allogeneic T cells used to grow the vaccine virus did not protect either of two cats against the same FIV challenge. These results suggest that antiviral humoral immunity, perhaps in synergy with anticellular antibodies, may be responsible for previously reported vaccine protection.  相似文献   

3.
Specific-pathogen-free cats, immunized with a 22-amino-acid synthetic peptide designated V3.3 and derived from the third variable region of the envelope glycoprotein of the Petaluma isolate of feline immunodeficiency virus (FIV), developed high antibody titers to the V3.3 peptide and to purified virus, as assayed by enzyme-linked immunoassays, as well as neutralizing antibodies, as assayed by the inhibition of syncytium formation in Crandell feline kidney cells. V3.3-immunized animals and control cats were challenged with FIV and then monitored for 12 months; V3.3 immunization failed to prevent FIV infection, as shown by virus isolation, anti-whole virus and anti-p24 immunoglobulin G antibody responses, and positive PCRs for gag and env gene fragments. Sequence analysis of the V3 region showed no evidence for the emergence of escape mutants that might have contributed to the lack of protection. The sera of the V3.3-hyperimmunized cats and two anti-V3.3 monoclonal antibodies neutralized FIV infectivity for Crandell feline kidney cells at high antibody dilutions but paradoxically failed to completely neutralize FIV infectivity at low dilutions. Moreover, following FIV challenge, V3.3-immunized animals developed a faster and higher antiviral antibody response than control cats. This was probably due to enhanced virus replication, as also suggested by quantitative PCR data.  相似文献   

4.
More than 90% of cats immunized with inactivated whole infected-cell or cell-free feline immunodeficiency virus (FIV) vaccines were protected against intraperitoneal infection with 10 50% animal infectious doses of either homologous FIV Petaluma (28 of 30 cats) or heterologous FIV Dixon strain (27 of 28 cats). All 15 control cats were readily infected with either strain of FIV. Protection appears to correlate with antiviral envelope antibody levels by a mechanism yet to be determined.  相似文献   

5.
Cats were immunized with a 46-residue multiepitopic synthetic peptide of feline immunodeficiency virus (FIV) comprising immunodominant epitopes present in the third variable domain of the envelope glycoprotein, transmembrane glycoprotein (TM), and p24 Gag core protein, using Quil A as an adjuvant. All vaccinated cats developed a humoral response which recognized the synthetic peptide immunogen and the intact viral core and envelope proteins. A FIV Gag- and Env-specific effector cytotoxic T-lymphocyte response was also detected in the peripheral blood of vaccinated cats, which peaked at week 30. This response appeared to be major histocompatibility complex restricted. Epitope mapping studies revealed that both the cellular and humoral immune responses were directed principally to a peptide within the TM glycoprotein, CNQNQFFCK. However, vaccination did not confer protection when cats were challenged with the Petaluma isolate of FIV at week 35.  相似文献   

6.
7.
Human SERINC5 (SER5) protein is a recently described restriction factor against human immunodeficiency virus-1 (HIV-1), which is antagonized by HIV-1 Nef protein. Other retroviral accessory proteins such as the glycosylated Gag (glycoGag) from the murine leukemia virus (MLV) can also antagonize SER5. In addition, some viruses escape SER5 restriction by expressing a SER5-insensitive envelope (Env) glycoprotein. Here, we studied the activity of human and feline SER5 on HIV-1 and on the two pathogenic retroviruses in cats, feline immunodeficiency virus (FIV) and feline leukemia virus (FeLV). HIV-1 in absence of Nef is restricted by SER5 from domestic cats and protected by its Nef protein. The sensitivity of feline retroviruses FIV and FeLV to human and feline SER5 is considerably different: FIV is sensitive to feline and human SER5 and lacks an obvious mechanism to counteract SER5 activity, while FeLV is relatively resistant to SER5 inhibition. We speculated that similar to MLV, FeLV-A or FeLV-B express glycoGag proteins and investigated their function against human and feline SER5 in wild type and envelope deficient virus variants. We found that the endogenous FeLV recombinant virus, FeLV-B but not wild type exogenous FeLV-A envelope mediates a strong resistance against human and feline SER5. GlycoGag has an additional but moderate role to enhance viral infectivity in the presence of SER5 that seems to be dependent on the FeLV envelope. These findings may explain, why in vivo FeLV-B has a selective advantage and causes higher FeLV levels in infected cats compared to infections of FeLV-A only.  相似文献   

8.
A feline immunodeficiency virus (FIV) provirus with a vif gene deletion (FIVDelta vifATGgamma) that coexpresses feline gamma interferon (IFN-gamma) was tested as a proviral DNA vaccine to extend previous studies showing efficacy with an FIV-pPPRDelta vif DNA vaccine. Cats were vaccinated with either FIVDelta vifATGgamma or FIV-pPPRDelta vif proviral plasmid DNA or with both FIV-pPPRDelta vif DNA and a feline IFN-gamma expression plasmid (pCDNA-IFNgamma). A higher frequency of FIV-specific T-cell proliferation responses was observed in cats immunized with either FIVDelta vifATGgamma or FIV-pPPRDelta vif plus pCDNA-IFNgamma, while virus-specific cytotoxic-T-lymphocyte responses were comparable between vaccine groups. Antiviral antibodies were not observed postvaccination. Virus-specific cellular and humoral responses were similar between vaccine groups after challenge with a biological FIV isolate (FIV-PPR) at 13 weeks postimmunization. All vaccinated and unvaccinated cats were infected after FIV-PPR challenge and exhibited similar plasma virus loads. Accordingly, inclusion of plasmids containing IFN-gamma did not enhance the efficacy of FIV-pPPRDelta vif DNA immunization. Interestingly, the lack of protection associated with FIV-pPPRDelta vif DNA immunization contrasted with findings from a previous study and suggested that multiple factors, including timing of FIV-pPPRDelta vif inoculations and challenge, as well as route of challenge virus delivery, may significantly impact vaccine efficacy.  相似文献   

9.
Determining which antigen must be included in AIDS vaccines to confer maximum protection is of utmost importance. In primate models, vaccines consisting of or including accessory viral proteins have yielded conflicting results. We investigated the protective potential of the accessory protein ORF-A of feline immunodeficiency virus (FIV) in cats. All three immunization strategies used (protein alone in alum adjuvant, DNA alone, or DNA prime-protein boost) clearly generated detectable immune responses. Upon challenge with ex vivo homologous FIV, ORF-A-immunized cats showed distinct enhancement of acute-phase infection relative to mock-immunized animals given alum or empty vector DNA. This effect was tentatively attributed to increased expression of the FIV receptor CD134 that was observed in the immunized cats. However, at subsequent sampling points that were continued for up to 10 months postchallenge, the average plasma viral loads of the ORF-A-immunized animals were slightly but consistently reduced relative to those of the control animals. In addition, CD4(+) T lymphocytes in the circulation system declined more slowly in immunized animals than in control animals. These findings support the contention that immunization with lentiviral accessory proteins can improve the host's ability to control virus replication and slow down disease progression but also draw attention to the fact that even simple immunogens that eventually contribute to protective activity can transiently exacerbate subsequent lentiviral infections.  相似文献   

10.
Attempts at vaccine development for feline immunodeficiency virus (FIV) have been extensive, both because this is a significant health problem for cats and because FIV may be a useful vaccine model for human immunodeficiency virus. To date, only modest success, producing only short-term protection, has been achieved for vaccine trials in controlled laboratory settings. It is unclear how relevant such experiments are to prevention of natural infection. The current study used a vaccine that employs cell-associated FIV-M2 strain fixed with paraformaldehyde. Subject cats were in a private shelter where FIV was endemic, a prevalence of 29 to 58% over an 8-year observation period. Cats roamed freely from the shelter through the surrounding countryside but returned for food and shelter. After ensuring that cats were FIV negative, they were immunized using six doses of vaccine over a 16-month period and observed for 28 months after the initiation of immunization. Twenty-six cats (12 immunized and 14 nonimmunized controls) were monitored for a minimum of 22 months. Immunized cats did not experience significant adverse effects from immunization and developed both antibodies and cellular immunity to FIV, although individual responses varied greatly. At the conclusion of the study, 0 of 12 immunized cats had evidence of FIV infection, while 5 of 14 control cats were infected. Thus, the vaccine was safe and immunogenic and did not transmit infection. Furthermore, vaccinated cats did not develop FIV infection in a limited clinical trial over an extended time period. Thus, the data suggest that a fixed, FIV-infected cell vaccine has potential for preventing natural FIV infection in free-roaming cats.  相似文献   

11.
The role of cellular immunity in the establishment and progression of immunosuppressive lentivirus infection remains equivocal. To develop a model system with which these aspects of the host immune response can be studied experimentally, we examined the response of cats to a hybrid peptide containing predicted T-and B-cell epitopes from the gag and env genes of feline immunodeficiency virus (FIV). Cats were immunized with an unmodified 17-residue peptide incorporating residues 196 to 208 (from gag capsid protein p24) and 395 to 398 (from env glycoprotein gp120) of the FIV Glasgow-8 strain by using Quil A as an adjuvant. Virus-specific lymphocytotoxicity was measured by chromium-51 release assays. The target cells were autologous or allogeneic skin fibroblasts either infected with recombinant FIV gag vaccinia virus or pulsed with FIV peptides. Effector cells were either fresh peripheral blood mononuclear cells or T-cell lines stimulated with FIV peptides in vitro. Cytotoxic effector cells from immunized cats lysed autologous, but not allogeneic, target cells when they were either infected with recombinant FIV gag vaccinia virus or pulsed with synthetic peptides comprising residues 196 to 205 or 200 to 208 plus 395. Depletion of CD8+ T cells, from the effector cell population abrogated the lymphocytotoxicity. Immunized cats developed an antibody response to the 17-residue peptide immunogen and to recombinant p24. However, no antibodies which recognized smaller constituent peptides could be detected. This response correlated with peptide-induced T-cell proliferation in vitro. This study demonstrates that cytotoxic T lymphocytes specific for FIV can be induced following immunization with an unmodified short synthetic peptide and defines a system in which the protective or pathological role of such responses can be examined.  相似文献   

12.
It has been shown that cats can be protected against infection with the prototypic Petaluma strain of feline immunodeficiency virus (FIV(PET)) using vaccines based on either inactivated virus particles or replication-defective proviral DNA. However, the utility of such vaccines in the field is uncertain, given the absence of consistent protection against antigenically distinct strains and the concern that the Petaluma strain may be an unrepresentative, attenuated isolate. Since reduction of viral pathogenicity and dissemination may be useful outcomes of vaccination, even in the absence of complete protection, we tested whether either of these vaccine strategies ameliorates the early course of infection following challenge with heterologous and more virulent isolates. We now report that an inactivated virus vaccine, which generates high levels of virus neutralizing antibodies, confers reduced virus loads following challenge with two heterologous isolates, FIV(AM6) and FIV(GL8). This vaccine also prevented the marked early decline in CD4/CD8 ratio seen in FIV(GL8)-infected cats. In contrast, DNA vaccines based on either FIV(PET) or FIV(GL8), which induce cell-mediated responses but no detectable antiviral antibodies, protected a fraction of cats against infection with FIV(PET) but had no measurable effect on virus load when the infecting virus was FIV(GL8). These results indicate that the more virulent FIV(GL8) is intrinsically more resistant to vaccinal immunity than the FIV(PET) strain and that a broad spectrum of responses which includes virus neutralizing antibodies is a desirable goal for lentivirus vaccine development.  相似文献   

13.
Whole inactivated virus (WIV) vaccines derived from the FL4 cell line protect cats against challenge with feline immunodeficiency virus (FIV). To investigate the correlates of protective immunity induced by WIV, we established an immunization regimen which protected a proportion of the vaccinates against challenge. A strong correlation was observed between high virus neutralizing antibody titers and protection following challenge. To investigate further the immune mechanisms responsible for immunity, all of the vaccinates were rechallenged 35 weeks following the initial challenge. Results of virus isolation from peripheral blood mononuclear cells indicated that 9 of 10 vaccinates were protected from viremia following the second challenge, suggesting that vaccine-induced immunity to FIV persisted for at least 8 months. However, more stringent analysis for evidence of infection revealed that 5 of 10 vaccinates harbored virus in lymphoid tissues. Unlike the protection observed immediately following vaccination, which correlated positively with virus neutralizing antibody titer, the ability to resist a second challenge with FIV was more closely correlated with the induction of Env-specific cytotoxic T-cell activity. The results indicate that both virus-specific humoral immunity and cellular immunity play a role in the protection induced in cats by WIV immunization but their relative importance may be dependent on the interval between vaccination and exposure to virus.  相似文献   

14.
To test the potential of a multigene DNA vaccine against lentivirus infection, we generated a defective mutant provirus of feline immunodeficiency virus (FIV) with an in-frame deletion in pol (FIVΔRT). In a first experiment, FIVΔRT DNA was administered intramuscularly to 10 animals, half of which also received feline gamma interferon (IFN-γ) DNA. The DNA was administered in four 100-μg doses at 0, 10, and 23 weeks. Immunization with FIVΔRT elicited cytotoxic T-cell (CTL) responses to FIV Gag and Env in the absence of a serological response. After challenge with homologous virus at week 26, all 10 of the control animals became seropositive and viremic but 4 of the 10 vaccinates remained seronegative and virus free. Furthermore, quantitative virus isolation and quantitative PCR analysis of viral DNA in peripheral blood mononuclear cells revealed significantly lower virus loads in the FIVΔRT vaccinates than in the controls. Immunization with FIVΔRT in conjunction with IFN-γ gave the highest proportion of protected cats, with only two of five vaccinates showing evidence of infection following challenge. In a second experiment involving two groups (FIVΔRT plus IFN-γ and IFN-γ alone), the immunization schedule was reduced to 0, 4, and 8 weeks. Once again, CTL responses were seen prior to challenge in the absence of detectable antibodies. Two of five cats receiving the proviral DNA vaccine were protected against infection, with an overall reduction in virus load compared to the five infected controls. These findings demonstrate that DNA vaccination can elicit protection against lentivirus infection in the absence of a serological response and suggest the need to reconsider efficacy criteria for lentivirus vaccines.  相似文献   

15.
Two ALVAC (canarypox virus)-based recombinant viruses expressing the feline leukemia virus (FeLV) subgroup A env and gag genes were assessed for their protective efficacy in cats. Both recombinant viruses contained the entire gag gene. ALVAC-FL also expressed the entire envelope glycoprotein, while ALVAC-FL(dl IS) expressed an env-specific gene product deleted of the putative immunosuppressive region. Although only 50% of the cats vaccinated with ALVAC-FL(dl IS) were protected against persistent viremia after oronasal exposure to a homologous FeLV isolate, all cats administered ALVAC-FL resisted the challenge exposure. Significantly, protection was afforded in the absence of detectable FeLV-neutralizing antibodies. These results represent the first effective vaccination of cats against FeLV with a poxvirus-based recombinant vector and have implications that are relevant not only to FeLV vaccine development but also to developing vaccines against other retroviruses, including human immunodeficiency virus.  相似文献   

16.
In order to map linear B epitopes in feline immunodeficiency virus (FIV) envelope glycoproteins (Env), a random library of FIV Env polypeptides fused to beta-galactosidase and expressed in Escherichia coli was screened by using sera from experimentally FIV-infected cats. We mapped five antibody-binding domains in the surface envelope glycoprotein (SU1 to SU5) and four in the transmembrane envelope glycoprotein (TM1 to TM4). Immunological analysis with 48 serum samples from naturally or experimentally infected cats of diverse origins revealed a broad group reactivity for epitopes SU2, TM2, and TM3, whereas SU3 appeared as strictly type specific. To study selection pressures acting on the identified immunogenic domains, we analyzed structural constraints and distribution of synonymous and nonsynonymous mutations (amino acids unchanged or changed). Two linear B epitopes (SU3 and TM4) appeared to be submitted to positive selection for change, a pattern of evolution predicting their possible involvement in antiviral protection. These experiments provide a pertinent choice of oligopeptides for further analysis of the protective response against FIV envelope glycoproteins, as a model to understand the role of antibody escape in lentiviral persistence and to design feline AIDS vaccines.  相似文献   

17.
Immunogenicity and protective activity of four cell-based feline immunodeficiency virus (FIV) vaccines prepared with autologous lymphoblasts were investigated. One vaccine was composed of FIV-infected cells that were paraformaldehyde fixed at the peak of viral expression. The other vaccines were attempts to maximize the expression of protective epitopes that might become exposed as a result of virion binding to cells and essentially consisted of cells mildly fixed after saturation of their surface with adsorbed, internally inactivated FIV particles. The levels of FIV-specific lymphoproliferation exhibited by the vaccinees were comparable to the ones previously observed in vaccine-protected cats, but antibodies were largely directed to cell-derived constituents rather than to truly viral epitopes and had very poor FIV-neutralizing activity. Moreover, under one condition of testing, some vaccine sera enhanced FIV replication in vitro. As a further limit, the vaccines proved inefficient at priming animals for anamnestic immune responses. Two months after completion of primary immunization, the animals were challenged with a low dose of homologous ex vivo FIV. Collectively, 8 of 20 vaccinees developed infection versus one of nine animals mock immunized with fixed uninfected autologous lymphoblasts. After a boosting and rechallenge with a higher virus dose, all remaining animals became infected, thus confirming their lack of protection.  相似文献   

18.
Recombinant Listeria monocytogenes has many attractive characteristics as a vaccine vector against human immunodeficiency virus (HIV). Wild-type and attenuated Listeria strains expressing HIV Gag have been shown to induce long-lived mucosal and systemic T-cell responses in mice. Using the feline immunodeficiency virus (FIV) model of HIV we evaluated recombinant L. monocytogenes in a challenge system. Five cats were immunized with recombinant L. monocytogenes that expresses the FIV Gag and delivers an FIV Env-expressing DNA vaccine (LMgag/pND14-Lc-env). Control cats were either sham immunized or immunized with wild-type L. monocytogenes (LM-wt). At 1 year after vaginal challenge, provirus could not be detected in any of the nine tissues evaluated from cats immunized with the recombinant bacteria but was detected in at least one tissue in 8 of 10 control animals. Virus was isolated from bone marrow of four of five LMgag/pND14-Lc-env-immunized cats by use of a stringent coculture system but required CD8(+) T-cell depletion, indicating CD8(+) T-cell suppression of virus replication. Control animals had an inverted CD4:CD8 ratio in mesenteric lymph node and were depleted of both CD4(+) and CD8(+) intestinal epithelial T cells, while LMgag/pND14-Lc-env-immunized animals showed no such abnormalities. Vaginal FIV-specific immunoglobulin A was present at high titer in three LMgag/pND14-Lc-env-immunized cats before challenge and in all five at 1 year postchallenge. This study demonstrates that recombinant L. monocytogenes conferred some control of viral load after vaginal challenge with FIV.  相似文献   

19.
High sequence variability in the envelope gene of human immunodeficiency virus has provoked interest in nonenvelope antigens as potential immunogens against retrovirus infection. However, the role of core protein antigens encoded by the gag gene in protective immunity against retroviruses is unclear. By using recombinant vaccinia viruses expressing the Friend murine leukemia helper virus (F-MuLV) gag gene, we could prime CD4+ T-helper cells and protectively immunize susceptible strains of mice against Friend retrovirus infection. Recovery from leukemic splenomegaly developed more slowly after immunization with vaccinia virus-F-MuLV gag than with vaccinia virus-F-MuLV env; however, genetic nonresponders to the envelope protein could be partially protected with Gag vaccines. Class switching of F-MuLV-neutralizing antibodies from immunoglobulin M to immunoglobulin G after challenge with Friend virus complex was facilitated in mice immunized with the Gag antigen. Sequential deletion of the gag gene revealed that the major protective epitope was located on the N-terminal hydrophobic protein p15.  相似文献   

20.
We previously reported that immunization with recombinant simian immunodeficiency virus SIVmne envelope (gp160) vaccines protected macaques against an intravenous challenge by the cloned homologous virus, E11S. In this study, we confirmed this observation and found that the vaccines were effective not only against virus grown on human T-cell lines but also against virus grown on macaque peripheral blood mononuclear cells (PBMC). The breadth of protection, however, was limited. In three experiments, 3 of 10 animals challenged with the parental uncloned SIVmne were completely protected. Of the remaining animals, three were transiently virus positive and four were persistently positive after challenge, as were 10 nonimmunized control animals. Protection was not correlated with levels of serum-neutralizing antibodies against the homologous SIVmne or a related virus, SIVmac251. To gain further insight into the protective mechanism, we analyzed nucleotide sequences in the envelope region of the uncloned challenge virus and compared them with those present in the PBMC of infected animals. The majority (85%) of the uncloned challenge virus was homologous to the molecular clone from which the vaccines were made (E11S type). The remaining 15% contained conserved changes in the V1 region (variant types). Control animals infected with this uncloned virus had different proportions of the two genotypes, whereas three of four immunized but persistently infected animals had >99% of the variant types early after infection. These results indicate that the protective immunity elicited by recombinant gp160 vaccines is restricted primarily to the homologous virus and suggest the possibility that immune responses directed to the V1 region of the envelope protein play a role in protection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号