首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The redox potentials for cytochrome c-552 at different ionic strengths, pH 7, have been determined, together with the thermodynamic parameters of the redox reaction. The effects of the electrostatic media on the redox potential of cytochrome c-552 do not depend on the nature of the ions employed. At 25 °C and pH 7 the observed potentials depend on the ionic strength, I, according to the equation: Eobso = 0.280 + .525 (I12(I + I12)). The significance of the ionic strength dependence of the redox potentials and their derived thermodynamic parameters are discussed and compared to those of mammalian cytochrome c. It is concluded that the redox potentials for ionic strength approaching zero are not affected by the overall net charge of the proteins; at finite ionic strengths, the protein charges play a very important role in determining the observed redox potentials.  相似文献   

2.
Thermotropic properties of purified cytochrome c1 and cytochrome c have been studied by differential scanning calorimetry under various conditions. Both cytochromes exhibit a single endothermodenaturation peak in the differential scanning calorimetric thermogram. Thermodenaturation temperatures are ionic strength, pH, and redox state dependent. The ferrocytochromes are more stable toward thermodenaturation than the ferricytochromes. The enthalpy changes of thermodenaturation of ferro- and ferricytochrome c1 are markedly dependent on the ionic strength of the solution. The effect of the ionic strength of solution on the enthalpy change of thermodenaturation of cytochrome c is rather insignificant. The formation of a complex between cytochromes c and c1 at lower ionic strength causes a significant destabilization of the former and a slight stabilization of the latter. The destabilization of cytochrome c upon mixing with cytochrome c1 was also observed at high ionic strength, under which conditions no stable complex was detected by physical separation. This suggests formation of a transient complex between these two cytochromes. When cytochrome c was complexed with phospholipids, no change in the thermodenaturation temperature was observed, but a great increase in the enthalpy change of thermodenaturation resulted.  相似文献   

3.
A protein named oxidation factor can be reversibly removed from succinate-cytochrome c reductase complex and shown to be required for electron transfer between succinate and cytochrome c. This protein is required for reduction of cytochrome c1 and, in the presence of antimycin, for reduction of both cytochromes b and c1. These results are consistent with a protonmotive Q cycle mechanism in which the oxidation factor catalyzes electron transfer from reduced quinone to cytochrome c1 and thus liberates from reduced quinone one of two protons required for energy conservation during electron transfer through the cytochrome b-c1 complex.  相似文献   

4.
A green mutant of Rhodopseudomonas spheroides was isolated in which spectroscopic measurements of the α-band region of cytochromes could be made. It was grown either aerobically or photosynthetically, and the membrane fractions prepared from cells of each type. Anaerobic potentiometric titration at 560 nm minus 542 nm showed the same three redox components, tentatively identified as b-type cytochromes, in membrane fractions from either type of cell. The mid-point potentials were approximately +185, +41 and ?104 mV. In membranes from photosynthetically grown cells the major cytochrome form absorbing at 560 nm had a mid-point potential of +42 mV; in aerobically grown cells the major form had a potential of +185 mV. In both types of cell only one c-type cytochrome was found, with a mid-point potential of +295 mV. An a-type cytochrome was present only in aerobically-grown cells.Substrate-reduced particles from these cells were mixed with air-saturated buffer in a stopped-flow spectrophotometer and the kinetics of oxidation of b- and c-type cytochromes were measured. The same two b-type components, reacting with pseudo first order kinetics, were detected in particles from both aerobically and photosynthetically grown cells (t12 for oxidation 1.3 s and 0.13 s). The c-type cytochrome of particles from aerobically grown cells was oxidised with t12 of 0.97 s; the c-type cytochrome of photosynthetic cells was oxidised faster, with t12 of 0.27 s.These observations have implications on the adaptive formation of electron transport systems that are discussed.  相似文献   

5.
(1) Analysis of the data from steady-state kinetic studies shows that two reactions between cytochrome c and cytochrome c oxidase sufficed to describe the concave Eadie-Hofstee plots (Km ? 1 · 10?8M and Km ? 2 · 10?5M). It is not necessary to postulate a third reaction of Km ? 10?6M. (2) Change of temperature, type of detergent and type of cytochrome c affected both reactions to the same extent. The presence of only a single catalytic cytochrome c interaction site on the oxidase could explain the kinetic data. (3) Our experiments support the notion that, at least under our conditions (pH 7.8, low-ionic strength), the dissociation of ferricytochrome c from cytochrome c oxidase is the rate-limiting step in the steady-state kinetics. (4) A series of models, proposed to describe the observed steady-state kinetics, is discussed.  相似文献   

6.
S.P.J. Brooks  P. Nicholls 《BBA》1982,680(1):33-43
Citrate and other polyanion binding to ferricytochrome c partially blocks reduction by ascorbate, but at constant ionic strength the citrate-cytochrome c complex remains reducible; reduction by TMPD is unaffected. At a constant high ionic strength citrate inhibits the cytochrome c oxidase reaction competitively with respect to cytochrome c, indicating that ferrocytochrome c also binds citrate, and that the citrateferrocytochrome c complex is rejected by the binding site at high ionic strength. At lower ionic strengths, citrate and other polyanions change the kinetic pattern of ferrocytochrome c oxidation from first-order towards zero-order, indicating preferential binding of the ferric species, followed by its exclusion from the binding site. The turnover at low cytochrome c concentrations is diminished by citrate but not the Km (apparent non-competitive inhibition) or the rate of cytochrome a reduction by bound cytochrome c. Small effects of anions are seen in direct measurements of binding to the primary site on the enzyme, and larger effects upon secondary site binding. It is concluded that anion-cytochrome c complexes may be catalytically competent but that the redox potentials and/or intramolecular behaviour of such complexes may be affected when enzyme-bound. Increasing ionic strength diminishes cytochrome c binding not only by decreasing the ‘association’ rate but also by increasing the ‘dissociation’ rate for bound cytochrome c converting the ‘primary’ (T) site at high salt concentrations into a site similar kinetically to the ‘secondary’ (L) site at low ionic strength. A finite Km of 170 μM at very high ionic strength indicates a ratio of KMK0M of about 5000. It is proposed that anions either modify the E10 of cytochrome c bound at the primary (T) site or that they perturb an equilibrium between two forms of bound c in favour of a less active form.  相似文献   

7.
Mitochondrial ubiquinol-cytochrome c reductase complex contains small amounts of succinate dehydrogenase. Estimates from electrophoresis indicate there is one dehydrogenase per eight complexes. This dehydrogenase transfers electrons to the b-c1 complex poorly, as judged by low succinate-ubiquinone and succinate-cytochrome c reductase activities. Electron transfer to the b-c1 complex is restored by reconstitution of the complex with phospholipid. This phospholipid dependent restoration of electron transfer indicates that either reconstitutive activity of the dehydrogenase is preserved under conditions where electron transfer is absent, or that addition of phospholipid allows one dehydrogenase to transfer electrons to multiple b-c1 complexes.  相似文献   

8.
Peter Nicholls 《BBA》1976,430(1):13-29
1. Formate inhibits cytochrome c oxidase activity both in intact mitochondria and submitochondrial particles, and in isolated cytochrome aa3. The inhibition increases with decreasing pH, indicating that HCOOH may be the inhibitory species.2. Formate induces a blue shift in the absorption spectrum of oxidized cytochrome aa3 (a3+a33+) and in the half-reduced species (a2+a33+). Comparison with cyanide-induced spectral shifts, towards the red, indicates that formate and cyanide have opposite effects on the aa3 spectrum, both in the fully oxidized and the half-reduced states. The formate spectra provide a new method of obtaining the difference spectrum of a32+ minus a33+, free of the difficulties with cyanide (which induces marked high → low spin spectral shifts in cytochrome a33+) and azide (which induces peak shifts of cytochrome a2+ towards the blue in both α- and Soret regions).3. The rate of formate dissociation from cytochrome a2+a33+-HCOOH is faster than its rate of dissociation from a3+a33+-HCOOH, especially in the presence of cytochrome c. The Ki for formate inhibition of respiration is a function of the reduction state of the system, varying from 30 mM (100% reduction) to 1 mM (100% oxidation) at pH 7.4, 30 °C.4. Succinate-cytochrome c reductase activity is also inhibited by formate, in a reaction competitive with succinate and dependent on [formate]2.5. Formate inhibition of ascorbate plus N,N,N′,N′-tetramethyl-p-phenyl-enediamine oxidation by intact rat liver mitochondria is partially released by uncoupler addition. Formate is permeable through the inner mitochondrial membrane and no differences in ‘on’ or ‘off’ inhibition rates were observed when intact mitochondria were compared with submitochondrial particles.6. NADH-cytochrome c reductase activity is unaffected by formate in submitochondrial particles, but mitochondrial oxidation of glutamate plus malate is subject both to terminal inhibition at the cytochrome aa3 level and to a slow extra inhibition by formate following uncoupler addition, indicating a third site of formate action in the intact mitochondrion.  相似文献   

9.
Two cytochrome b proteins were isolated from succinate-cytochrome c reductase and the cytochrome b-c1 complex. Their molecular weights were determined to be 37,000 and 17,000 daltons by polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate. Spectral properties and amino acid composition of these two proteins are reported in the paper.  相似文献   

10.
According to previous authors, cytochrome b5, when extracted from bovine liver by a detergent method, is called cytochrome d-b5. On the other hand, the protein obtained after trypsin action, which eliminates an hydrophobic peptide of about 54 residues, is called cytochrome t-b5.Fluorescence polarization of the dansyl phosphatidylethanolamine probe inserted into phospholipid vesicles is very senstive to the binding of proteins, and so is a useful method to study lipid-protein interactions.The chromophore mobility, R, decreases markedly when dipalmitoyl phosphatidylcholine vesicles are incubated with cytochrome d-b5, whereas R does not change for cytochrome c and cytochrome t-b5. This can be interpreted as a strengthening of the bilayer, only due to the interaction of the hydrophobic peptide tail.Interaction of dipalmitoyl phosphatidylcholine vesicles with cytochrome d-b5 occurs either below or above the melting temperature of the aliphatic chains (41 °C). Even for a high protein to lipid molar ratio (1 molecule of protein for 40 phospholipid molecules), the melting temperature is apparently unaffected.Phosphatidylserine and phosphatidylinositol do not interact at pH 7.7 with cytochrome d-b5, because electrostatic forces prevent formation of complexes. At low pH, the interaction with the protein occurs, but the binding is mainly of electrostatic nature.  相似文献   

11.
NADPH reduces both liver microsomal cytochrome P-450 and cytochrome b5. In the presence of CO, ferrous cytochrome P-450 can slowly transfer electrons to amaranth, an azo dye. This reaction is followed by the reoxidation of cytochrome b5 which proceeds at essentially the same rate as does cytochrome P-450 oxidation. It is suggested that cytochrome b5 directly reduces cytochrome P-450 in rat liver microsomes.  相似文献   

12.
Stable ubisemiquinone radical(s) in the cytochrome b?c1-II complex of bovine heart was observed following reduction by succinate in the presence of catalytic amounts of succinate dehydrogenase. The radical was abolished by addition of antimycin A, but a residual radical remained in the presence of excess exogenous Q2. The radical showed an EPR signal of g = 2.0046 ± .003 at X band (~9.4 GHz) with no resolved hyperfine structure and had a line width of 8.1 ± .5 Gauss at 23°C. The Q band (35 GHz) spectra showed wellresolved g-anisotropy and had a field separation between derivative extrema of 26 ± 1 Gauss. This radical is evidently from QP-C. These observations substantiate that the radical is immobilized and bound to a protein. The QP-S radical was demonstrated in the cytochrome b-c1-II complex only in the presence of more than a catalytic amount of succinate dehydrogenase and cytochrome b-c1. This signal was not antimycin a inhibitory. The signal amplitude paralleled the reconstitutive enzymic activity of succinate-cytochrome c reductase from succinate dehydrogenase and the cytochrome b-c1-II complex.  相似文献   

13.
A mathematical analysis is described which measures the effects of actinic light intensity and concentration of an artificial electron donor on the steady-state light-induced redox level of a reaction-center pigment (e.g. P-700) and on the overall light-induced electron flux (e.g. reduction of NADP+). The analysis led to a formulation (somewhat similar to the Michaelis-Menten equation for enzyme kinetics) in which a parameter, I12, is defined as the actinic light intensity that, at a given concentration of electron donor, renders the reaction-center pigment half oxidized and half reduced. To determine the role of a presumed reaction-center pigment, I12 is compared with another parameter, equivalent to I12, that is obtained independently of the reaction-center pigment by measuring the effect of actinic light intensity and concentration of electron donor on the overall electron flow.The theory was tested and validated in a model system with spinach Photosystem I chloroplast fragments by measurements of photooxidation of P-700 and light-induced reduction of NADP+ by reduced 2,6-dichlorophenolindophenol. A possible extension of this mathematical analysis to more general electron-transport systems is discussed.  相似文献   

14.
F.G. Hempel  F.F. Jöbsis 《Life sciences》1979,25(13):1145-1151
The reduction-oxidation reactions of NADH and cytochrome aa3 to incipient oxygen insufficiency caused by nitrogen ventilation or hemorrhagic hypotension were examined in the exposed cerebral cortex of the cat. A comparison of the onset of redox changes with each procedure shows that cytochrome aa3 reduction precedes the reduction of mitochondrial NAD. This constitutes evidence that, in the living brain, NADH maintains its resting oxidation state at lower cellular oxygen tensions than cytochrome aa3 does, consistent with the differences in oxygen affinity these respiratory chain components exhibit during oxygen titration in vitro.  相似文献   

15.
Cytochrome P-450 was purified from liver microsomes of phenobarbital-pretreated rabbits to a specific content of 16 to 17 nmoles per mg of protein with a yield of about 10 %. The purified cytochrome yielded only a single protein band on sodium dodecylsulfate-urea-polyacrylamide gel electrophoresis, and an apparent molecular weight of about 45,000 was estimated for the protein. The preparation was free of cytochrome b5, NADH-cytochrome b5 reductase, and NADPH-cytochrome c reductase activities. Aniline hydroxylase and ethylmorphine N-demethylase activities could be reconstituted upon mixing the purified cytochrome with an NADPH-cytochrome c reductase preparation (purified by a detergent method) and phosphatidyl choline.  相似文献   

16.
Highly purified divalent and monovalent antibodies against cytochrome b5, anti-b5 immunoglobulin G (IG) and anti-b5 Fab', were used in elucidating the role of this cytochrome in the drug-oxidizing enzyme system of mouse liver microsomes. Anti-b5 IG strongly inhibited not only NADH-supported but also NADPH-supported oxidation of 7-ethoxycoumarin and benzo(a)pyrene, but had no inhibitory action on the oxidation of aniline. Anti-b5 Fab' also inhibited NADH-supported and NADPH-supported benzo(a)pyrene hydroxylation. These observations indicate an essential role of cytochrome b5 in the transfer of electrons not only from NADH but also from NADPH to cytochrome P-450 in the microsomal oxidation of some drugs, but not of aniline.  相似文献   

17.
The resolved flavoprotein and cytochrome b559 components of the NADPH dependent O2?? generating oxidase from human neutrophils were the subject of further study. The resolved flavoprotein, depleted of cytochrome b559, was reduced by NADPH under anaerobic conditions and reoxidized by oxygen. NADPH dependent O2?? generation by the resolved flavoprotein fraction was not detectable, however it was competent in the transfer of electrons from NADPH to artificial electron acceptors. The resolved cytochrome b559, depleted of flavoprotein, demonstrated no measureable NADPH dependent O2?? generating activity and was not reduced by NADPH under anaerobic conditions. The dithionite reduced form of the resolved cytochrome b559 was rapidly oxidized by oxygen, as was the cytochrome b559 in the intact oxidase.  相似文献   

18.
Yael A. Ilan  Gidon Czapski  Dan Meisel 《BBA》1976,430(2):209-224
The method of determination of Redox potentials of radicals, using the pulse radiolysis technique, is outlined. The method is based on the determination of equilibrium constants of electron transfer reactions between the radicals and appropriate acceptors. The limitations of this technique are discussed.The redox potentials of several quinones-semiquinones are calculated, as well as the standard redox potential of the peroxy radical. EoO2O2? = ?0.33 V and the redox oxidation properties of the peroxy radical in various systems and pH are discussed. The value determined for the redox potentials of O2O2? is higher by more than 0.2 V than earlier estimates, which has important implications on the possible role of O2? in biological processes of O2 fixation.  相似文献   

19.
1. In mitochondrial particles antimycin binds to two separate specific sites with dissociation constants Kd1 ≦ 4 · 10?13M and Kd2 = 3 · 10?9M, respectively.2. The concentrations of the two antimycin binding sites are about equal. The absolute concentration for each binding site is about 100 – 150 pmol per mg of mitochondrial protein.3. Antimycin bound to the stronger site mainly inhibits NADH- and succinate oxidase. Binding of antimycin to the weaker binding site inhibits the electron flux to exogenously added cytochrome c after blocking cytochrome oxidase by KCN.4. Under certain conditions cytochrome b and c1 are dispensible components for antimycin-sensitive electron transport.5. A model of the respiratory chain in yeast is proposed which accounts for the results reported here and previously. (Lang, B., Burger, G. and Bandlow, W. (1974) Biochim. Biophys. Acta 368, 71–85).  相似文献   

20.
Cytochrome b5 was extracted and purified from beef liver by a detergent method (cytochrome d-b5). The hydrophilic moiety which carries the heme group (cytochrome t-b5) was prepared by trypsin action upon pure cytochrome d-b5.Single-shelled lecithin liposomes form complexes with cytochromes d-b5 up to a molar ratio of one protein for 35 phospholipids. The lipid-protein complexes were isolated by gel filtration on Sepharose 4B. They are hollow vesicles in which [3H]-glucose can be trapped. Their diameter is greater than that of the initial liposomes.Cytochrome t-b5 does not interact with the vesicles. These results show that the hydrophobic tail is necessary for the binding and that the hydrophilic part of the protein is located on the outer face of the vesicles. This asymmetry is also proved by the action of reducing agents.Experiments with saturated phosphatidylcholines show that the protein interacts with the lipids both below the transition temperature TM. i.e. when the aliphatic chains are in a crystalline state, and above TM, when the alipathic chain are in a fluid state.1H NMR spectra show that even at the maximum cytochrome d-b5 concentration the presence of the proteins does not markedly change the dynamics to the phospholipid molecules. An asymmetric single-shelled vesicle structure is proposed for the complex.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号