首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Carbohydrate research》1987,162(2):199-207
The 2,1′-O-isopropylidene derivative (1) of 3-O-acetyl-4,6-O-isopropylidene-α-d-glucopyranosyl 6-O-acetyl-3,4-anhydro-β-d-lyxo-hexulofuranoside and 2,3,4-tri-O-acetyl-6-O-trityl-α-d-glucopyranosyl 3,4-anhydro-1,6-di-O-trityl-β-d-lyxo-hexulofuranoside have been synthesised and 1 has been converted into 2,3,4,6-tetra-O-acetyl-α-d-glucopyranosyl 1,6-di-O-acetyl-3,4-anhydro-β-d-lyxo-hexulofuranoside (2). The SN2 reactions of 2 with azide and chloride nucleophiles gave the corresponding 2,3,4,6-tetra-O-acetyl-α-d-glucopyranosyl 1,3,6-tri-O-acetyl-4-azido-4-deoxy-β-d-fructofuranoside (6) and 2,3,4,6-tetra-O-acetyl-α-d-glucopyranosyl 1,3,6-tri-O-acetyl-4-chloro-4-deoxy-β-d-fructofuranoside (8), respectively. The azide 6 was catalytically hydrogenated and the resulting amine was isolated as 2,3,4,6-tetra-O-acetyl-α-d-glucopyranosyl 4-acetamido-1,3,6-tri-O-acetyl-4-deoxy-β-d-fructofuranoside. Treatment of 5 with hydrogen bromide in glacial acetic acid followed by conventional acetylation gave 2,3,4,6-tetra-O-acetyl-α-d-glucopyranosyl 1,3,6-tri-O-acetyl-4-bromo-4-deoxy-β-d-fructofuranoside. Similar SN2 reactions with 2,3,4,6-tetra-O-acetyl-α-d-glucopyranosyl 1,6-di-O-acetyl-3,4-anhydro-β-d-ribo-hexulofuranoside (12) resulted in a number of 4′-derivatives of α-d-glucopyranosyl β-d-sorbofuranoside. The regiospecific nucleophilic substitution at position 4′ in 2 and 12 has been explained on the basis of steric and polar factors.  相似文献   

2.
3,4,6-Tri-O-acetyl-d-galactal, on treatment in 1,2-dichloroethane with alcohols and stannic chloride as catalyst, readily undergoes allylic rearrangement-substitution, forming alkyl 4,6-di-O-acetyl-2,3-dideoxy-α-d-threo-hex-2-enopyranosides in yields of 43-92%. Alkyl 3,4,6-tri-O-acetyl-2-deoxy-αβ-d-lyxo-hexopyranosides are formed as side-products in yields of 2-14 %. Stannic chloride-catalysis is also useful in allylic rearrangement of 3,4,6-tri-O-acetyl-1,5-anhydro-2-deoxy-d-arabino- hex-l-enitol (3,4,6-tri-O-acetyl-d-glucal) which, with methanol or ethanol, affords the corresponding alkyl 4,6-di-O-acetyl-2,3-dideoxy-α-d-erythro-hex-2-enopyranosides in yields of 83 and 94%.  相似文献   

3.
《Carbohydrate research》1986,153(1):17-24
1,5-Anhydro-2-deoxy-d-arabino- (d-glucal), 1,5-anhydro-2-deoxy-d-lyxo- (d-galactal), and 3,4,6-tri-O-acetyl-1,5-anhydro-2-deoxy-d-lyxo-hex-1-enitol (3,4,6-tri-O-acetyl-d-galactal) (3) were fluorinated in water and organic solvent-water with molecular fluorine and, for 18F-labelled compounds, with [18F]fluorine. Chemical yields of 40 and 10% were obtained for 2-deoxy-2-fluoro-d-glucose and 2-deoxy-2-fluoro-d-mannose, respectively, and 35 and 5% for 2-deoxy-2-fluoro-d-galactose (12) and 2-deoxy-2-fluoro-d-talose (13), respectively. In the fluorination of 3, the chemical yields of 12 and 13 were 38 and 6%, respectively. An l.c. separation of 2-deoxy-2-fluoro-d-hexoses is described.  相似文献   

4.
1,5-Anhydro-3,4,6-tri-O-benzoyl-2-deoxy-d-arabino-hex-1-enitol (1) was boiled under reflux with methanol and AG 50W-X8 cation-exchange resin. A two-product mixture of glycosides (2 and 3) was obtained in 38% yield, together with 19% of unreacted material. 1,5-Anhydro-3,6-di-O-benzoyl-2-deoxy-d-arabino-hex-1-enitol (7) was prepared from 1,5-anhydro-2-deoxy-d-arabino-hex-1-enitol by selective benzoylation, from which the corresponding 4-methanesulfonate 8 was obtained. Treatment of 8 with sodium benzoate in hexamethylphosphoric triamide for 72 h at 100° afforded 1,5-anhydro-3,4,6-tri-O-benzoyl-2-deoxy-d-lyxo-hex-1-enitol (9) in 52% yield. An unknown byproduct (B), tentatively shown to be a tri-O-benzoyl-d-hex-2-enopyranose analog, was also isolated in 14% yield. The 270-MHz n.m.r. spectrum of B was analyzed in terms of its J1,3, J2,4, and J4,5 coupling constants in relation to the various configurational and conformational possibilities for hex-2-enopyranoses, and was identified as 1,4,6-tri-O-benzoyl-2,3-dideoxy-α-d-threo-hex-2-enopyranose having the oH5 conformation. The analysis presented should also be applicable to pent-2-enopyranose systems. When 9 was treated with methanol in the presence of AG 50W-X8 cation-exchange resin, a mixture of glycosides 4 and 5 was obtained in 47% yield. The low yields were attributed to methanolysis of the benzoyl groups during the reaction.  相似文献   

5.
Condensation of 4,6-di-O-acetyl-2,3-O-carbonyl-α-d-mannopyranosyl bromide with benzyl 2-acetamido-4,6-O-benzylidene-2-deoxy-α-d-glucopyranoside (2) gave an α-d-linked disaccharide, further transformed by removal of the carbonyl and benzylidene groups and acetylation into the previously reported benzyl 2-acetamido-4,6-O-benzylidene-2-deoxy-3-O-(2,3,4,6-tetra-O-acetyl-α-d-mannopyranosyl)-α-d-glucopyranoside. Condensation of 3,4,6-tri-O-benzyl-1,2-O-(1-ethoxyethylidene)-α-d-glucopyranose or 2-O-acetyl-3,4,6-tri-O-benzyl-α-d-glucopyranosyl bromide with 2 gave benzyl 2-acetamido-3-O-(2-O-acetyl-3,4,6-tri-O-benzyl-β-d-glucopyranosyl)-4,6-O-benzylidene-2-deoxy-α-d-glucopyranoside. Removal of the acetyl group at O-2, followed by oxidation with acetic anhydride-dimethyl sulfoxide, gave the β-d-arabino-hexosid-2-ulose 14. Reduction with sodium borohydride, and removal of the protective groups, gave 2-acetamido-2-deoxy-3-O-β-d-mannopyranosyl-d-glucose, which was characterized as the heptaacetate. The anomeric configuration of the glycosidic linkage was ascertained by comparison with the α-d-linked analog.  相似文献   

6.
Attempts to prepare 1,2:5,6 and 2,3:5,6 di-unsaturated sugars starting from 3,4,6-tri-O-acetyl-1,5-anhydro-1,2-dideo xy-d-arabino-hex-1-enitol or from ethyl 4,6-di-O-acetyl-1,5-anhydro-2,3-dideoxy-α-d-erythro-hex-2-enopyranoside led to 1,5-anhydro-1,2,6-trideoxy-l-threo-hex-5-enitol and its 3,4-diacetate. Hydrogenation and hydrogenolysis of the unsaturated chloro and fluoro derivatives afforded 1,5-anhydro-1,2,6-trideoxy-d-arabino-hexitol and ethyl 4-O-acetyl-2,3,6-trideoxy-α-d-erythro-hexopyranoside.  相似文献   

7.
《Carbohydrate research》1986,153(1):33-43
Dimeric 3,4,6-tri-O-acetyl-2-deoxy-2-nitro-α-d-galactopyranosyl chloride reacts with pyrazole in acetonitrile to give 1-(3,4,6-tri-O-acetyl-2-deoxy-2-hydroxyimino-α-d-lyxo-, -β-d-lyxo-, and -β-d-xylo-hexopyranosyl)pyrazole. The stereospecificity of the reaction depends on the temperature and its duration. Transformations of the type α-d-lyxo-←β-d-lyxoα β-d-xylo have been observed. The condensation products were modified at C-2 or C-3. The following derivatives have thus been obtained: 1-(α-d-galacto-, 2-acetamido-2-deoxy-α-d-galacto-, -α-d-talo-, and -α-d-xylo-hexo-pyranosyl)pyrazole, (Z)- and (E)-1-(3-azido-2,3-dideoxy-2-hydroxyimino-α- and -β-d-lyxo- and -α-d-xylo-hexopyranosyl)pyrazole, 1-(3-acetamido-2-acetoxyimino-4,6-di-O-acetyl-2,3-dideoxy-α- and -β-d-lyxo-hexopyranosyl)pyrazole, as well as (Z)- and (E)-1-(2,3-dideoxy-2-hydroxyimino-α-d-threo-hexopyranosyl)pyrazoles.  相似文献   

8.
Reaction of the C-2 mercurated methyl hexopyranoside acetates 1–3 with an excess of iodine resulted in nearly quantitative replacement of mercury by iodine with retention and inversion of configuration at C-2. Similar replacement was observed with 2-acetoxymercuri-3,4,6-tri-O-acetyl-2-deoxy-α-d-glucopyranose (4). In the iodinolysis of 2-acetoxymercuri-1,3,4,6-tetra-O-acetyl-2-deoxy-α-d-glucopyranose (5) in methanol, however, replacement at C-2 was accompanied to a considerable extent by solvolysis of the 1-acetoxyl group, and a mixture of 1,2-trans isomers of methyl 3,4,6-tri-O-acetyl-2-deoxy-2-iodo-hexopyranosides having the d-gluco and d-manno configurations was obtained, together with 1,3,4,6-tetra-O-acetyl-2-deoxy-2-iodo-α-d-mannopyranose.  相似文献   

9.
Acetolysis of methyl 3-O-(2-acetamido-3,4,6-tri-O-acetyl-2-deoxy-β-d-glucopyranosyl)-2,4,6-tri-O-acetyl-α-d-galactopyranoside afforded 3-O-(2-acetamido-3,4,6-tri-O-acetyl-2-deoxy-β-d-glucopyranosyl)-1,2,4,6-tetra-O-acetyl-d-galactopyranose (2). Treatment of 2 in dichloromethane with hydrogen bromide in glacial acetic acid gave 3-O-(2-acetamido-3,4,6-tri-O-acetyl-2-deoxy-β-d-glucopyranosyl)- 2,4,6-tri-O-acetyl-α-d-galactopyranosyl bromide (3). The α configuration of 3 was indicated by its high, positive, specific rotation, and supported by its 1H-n.m.r. spectrum. Reaction of 3 with Amberlyst A-26-p-nitrophenoxide resin in 1:4 dichloromethane-2-propanol furnished p-nitrophenyl 3-O-(2-acetamido-3,4,6- tri-O-acetyl-2-deoxy-β-d-glucopyranosyl)-2,4,6-tri-O-acetyl-β-d-galactopyranoside (7). Compound 7 was also obtained by the condensation (catalyzed by silver trifluoromethanesulfonate-2,4,6-trimethylpyridine) of 3,4,6-tri-O-acetyl-2-deoxy-2-phthalimido-β-d-glucopyranosyl bromide with p-nitrophenyl 2,4,6-tri-O-acetyl-β-d-galactopyranoside, followed by the usual deacylation-peracetylation procedure. O-Deacetylation of 7 in methanolic sodium methoxide furnished the title disaccharide (8). The structure of 8 was established by 13C-n.m.r. spectroscopy.  相似文献   

10.
《Carbohydrate research》1986,154(1):49-62
1,3,4,6-Tetra-O-acetyl-2-deoxy-2-isothiocyanato-α-d-glucopyranose, produced from 1,3,4,6-tetra-O-acetyl-2-amino-2-deoxy-α-d-glucopyranose hydrochloride, thiophosgene, and calcium carbonate, was condensed with alkyl- and aryl-amines in ether to afford the crystalline 1,3,4,6-tetra-O-acetyl-2-[3-alkyl(aryl)-thioureido]-2-deoxy-α-d-glucopyranoses (2). Compounds 2 and the β anomers 3 were converted in high yield into 2-alkyl(aryl)amino-(3,4,6-tri-O-acetyl-1,2-dideoxy-α-d-glucopyrano)[2,1-d]-2-thiazoline hydrobromides (4) by hydrogen bromide-promoted cyclisation. The O-deacetylated thiazoline hydrobromide 5 was also isolated and converted into 2-[N-(4-methoxyphenyl)acetamido]-(3,4,6-tri-O-acetyl-1,2-dideoxy-α-d-glucopyrano)[2,1-d]-2-thiazoline (8). Conformational studies of 4 and 8 were made by 1H-n.m.r. spectroscopy.  相似文献   

11.
《Carbohydrate research》1987,171(1):289-300
tributylstannyllithium treatment of 3,4,6-tri-O-benzyl-2-deoxy-α-d-arabino-hexopyranosyl chloride (2) provided selectively tributyl (3,4,6-tri-O-benzyl-2-deoxy-β-d-arabino-hexopyranosyl)stannane (3) in 85% yield. Isomeric tributyl (3,4,6-tri-O-benzyl-2-deoxy-α-d-arabino-hexopyranosyl)stannane (6) could be prepared in 70% yield by reductive lithiation of 2 and reaction with tributyltin chloride. Tin—lithium exchange reaction, performed on 3 and 6 with butyllithium in oxolane at −78°, generated the corresponding, configurationally stable 2-deoxy-β- and -α-d-hexopyranosyllithium compounds which reacted with electrophilic compounds with retention of configuration. Addition to these glycosyllithium reagents to prochiral carbonyl compounds gave variable degrees of facial selectivity. A significant diastereofacial discrimination (10:1) was observed by condensation of 3,4,6-tri-O-benzyl-2-deoxy-α-d-arabino-hexopyranosyllithium reagent with hexanal and isobutyraldehyde. The structure of all C-glycopyranosyl compounds obtained was established by 1H-n.m.r. spectroscopy.  相似文献   

12.
O-α-d-Mannopyranosyl-(1→6)-O-(2-acetamido-2-deoxy-β-d-glucopyranosyl)-(1→4)-2-acetamido-N-(l-aspart-4-oyl)-2-deoxy-β-d-glucopyranosylamine (12), used in the synthesis of glycopeptides and as a reference compound in the structure elucidation of glycoproteins, was synthesized via condensation of 2,3,4,6-tetra-O-acetyl-α-d-mannopyranosyl bromide with 2-acetamido-4-O-(2-acetamido-3-O-acetyl-2-deoxy-β-d-glucopyranosyl)-3,6-di-O-acetyl-2-deoxy-β-d-glucopyranosyl azide (5) to give the intermediate, trisaccharide azide 7. [Compound 5 was obtained from the known 2-acetamido-4-O-(2-acetamido-3,4,6-tri-O-acetyl-2-deoxy-β-d-glucopyranosyl)-3,6-di-O-acetyl-2-deoxy-β-d-glucopyranosyl azide by de-O-acetylation, condensation with benzaldehyde, acetylation, and removal of the benzylidene group.] The trisaccharide azide 6 was then acetylated, and the acetate reduced in the presence of Adams' catalyst. The resulting amine was condensed with 1-benzyl N-(benzyloxycarbonyl)-l-aspartate, and the O-acetyl, N-(benzyloxycarbonyl), and benzyl protective groups were removed, to give the title compound.  相似文献   

13.
A convenient preparative route involving eleven steps starting from D-glucose is described for the synthesis of D-ristosamine (15) hydrochloride. Methyl 2-deoxy-β-D-arabino-hexopyranoside, prepared from 3,4,6-tri-O-acetyl-1,5-anhydro-2-deoxy-D-arabino-hex- 1-enitol, was benzylidenated, and the product mesylated to give methyl 4,6-O-benzylidene-2-deoxy-3-O-methylsulfonyl-β-D-arabino-hexopyranoside. Azidolysis of this compound and subsequent opening of the 1,3-dioxane ring with N-bromosuccinimide gave methyl 3-azido-4-O-benzoyl-6-bromo-2,3,6-trideoxy-βD-ribo-hexopyranoside. Simultaneous reduction of the azido and bromo groups gave a mixture that was benzoylated to give methyl N,O-dibenzoyl-β-D-ristosaminide and then hydrolyzed to 15 hydrochloride (3-amino-2,3,6-trideoxy-D-ribo-hexopyranose hydrochloride).  相似文献   

14.
《Carbohydrate research》1999,315(1-2):192-197
Acetylation of d-glucono-1,5-lactone and subsequent treatment with triethylamine gave 2,4,6-tri-O-acetyl-d-erythro-hex-2-enono-1,5-lactone. Hydrogenation of the latter in the presence of palladium on carbon yielded 2,4,6-tri-O-acetyl-3-deoxy-d-arabino-hexono-1,5-lactone (5) in almost quantitative yield calculated from gluconolactone. Catalytic hydrogenation of 5 with platinum on carbon in the presence of triethylamine gave 2,4,6-tri-O-acetyl-3-deoxy-d-arabino-hexopyranose in quantitative yield. Deacetylation of 5 gave 3-deoxy-d-arabino-hexono-1,4-lactone, which was converted into 3-deoxy-5,6-O-isopropylidene-2-O-methanesulfonyl-d-arabino-hexono-1,4-lactone (10). The latter was converted into 2-acetamido-2,3-dideoxy-d-erythro-hex-2-enono-1,4-lactone (Leptosphaerin). When 10 was boiled in water in the presence of acid, it gave a high yield of 2,5-anhydro-3-deoxy-d-ribo-hexonic acid.  相似文献   

15.
An approach to stereoselective synthesis of α- or β-3-C-glycosylated l- or d-1,2-glucals starting from the corresponding α- or β-glycopyranosylethanals is described. The key step of the approach is the stereoselective cycloaddition of chiral vinyl ethers derived from both enantiomers of mandelic acid. The preparation of 1,5-anhydro-4,6-di-O-benzyl-2,3-dideoxy-3-C-[(2,3,4,6-tetra-O-benzyl-β-d-glucopyranosyl)methyl]-l-arabino-hex-1-enitol, 1,5-anhydro-4,6-di-O-benzyl-2,3-dideoxy-3-C-[(2,3,4,6-tetra-O-benzyl-β-d-glucopyranosyl)methyl]-d-arabino-hex-1-enitol, and 1,5-anhydro-4,6-di-O-benzyl-2,3-dideoxy-3-C-[(2,3,4-tri-O-benzyl-α-l-fucopyranosyl)methyl]-d-arabino-hex-1-enitol serves as an example of this approach.  相似文献   

16.
The vicinal cis-oxyamination of ethyl 4,6-di-O-acetyl-2,3-dideoxy-α-D-erythro-hex-2-enopyranoside (1) and of methyl 4-O-acetyl-2,3,6-trideoxy-α-D-erythro-hex-2-enopyranoside (11) as well as of 3,4,6-tri-O-acetyl-1,5-anhydro-2-deoxy-D-arabino-(17) and -D-lyxo-hex-1-enitol (23) with Chloramine T-osmium tetraoxide was investigated (Sharpless reaction). The hex-2-enopyranosides 1 and 11 yielded the corresponding 3-deoxy-3-p-toluenesulfonamido-and 2-deoxy-2-p-toluenesulfonamido-hexopyranosides with the manno configuration in the ratio 2:1. The glycals 17 and 23 reacted with formation of the corresponding α-D-gluco and α-D-galactoN-tosyl-glycosylamines and of the 2-deoxy-2-p-toluenesulfonamidoglycoses in the ratio 3:1. The stereospecifity and the regioselectivity of the reactions are discussed. Quantum chemical calculations on models for the hex-2-enopyranosides 1 and 11 suggest a [3+2] cycloaddition of the N-tosylimido osmium(VIII) oxide in preference to a [2+2] mechanism with participation of the metal species. The preparative importance of the oxyamination reaction is demonstrated by a simple synthesis of N-acetyl-mycosamine.  相似文献   

17.
Fusion of 2-acetamido-3,4,6-tri-O-acetyl-1,5-anhydro-2-deoxy-d-arabino-hex-1-enitol with theophylline, in the presence of boron trifluoride etherate as the catalyst, caused condensation to occur. This reaction afforded a variety of products of nucleosidic character, which were successively separated by repeated chromatography on silica gel. The structures of the products were determined, on the basis of X-ray crystallographic analysis (for three compounds) and by means of n.m.r.-spectral data and mass spectrometry, as the following: 7-(2-acetamido-4,6-di-O-acetyl-2,3-dideoxy-β-d-erythro-hex-2-enopyranosyl)theophylline, the corresponding α- and β-d-threo derivatives, and 7-(2-acetamido-6-O-acetyl-2,3-dideoxy-α-d-threo-hex-2-enopyranosyl)theophylline and its β anomer.In addition to these 2′,3′-unsaturated nucleosides having the base linked at C-1′, three products of a new type, having the base attached at C-4′, were also isolated: 7-(methyl 2-acetamido-6-O-acetyl-2,3,4-trideoxy-β-d-erythro-hex-2-enopyranosid-4-yl)theophylline, and the corresponding α-d-threo and α-d-erythro isomers.The correlation of the data obtained by X-ray structure analysis and proton nuclear magnetic spectroscopy, together with their application for the determination of configuration and conformation of these compounds, are discussed. It appears that the 1H-n.m.r. data alone do not suffice for unambiguous and correct structure determination for these classes of compounds.  相似文献   

18.
Addition of 2-amino-2-deoxy-β-D-glucopyranose to dimethyl acetylenedicarboxylate afforded an almost quantitative yield of amorphous 2-deoxy-2-(1,2-dimethoxycarbonylvinyl)amino-D-glucose (5). Acetylation of this adduct gave crystalline 1,3,4,6-tetra-O-acetyl-2-deoxy-2-[(Z)-1,2-dimethoxycarbonylvinyl]amino-α-D-glucopyranose (6a); the corresponding β-D anomer (6b) was obtained by addition of 1,3,4,6-tetra-O-acetyl-2-amino-2-deoxy-β-Dglucopyranose to dimethyl acetylenedicarboxylate. O-Deacetylation of tetra-acetate 6a with barium methoxide in methanol occurred selectively at C-1, yielding enamine 6c derived from 3,4,6-tri-O-acetyl-2-amino-2-deoxy-α-D-glucopyranose. Conversion of the crude adduct 5 into 3-methoxycarbonyl-5-(D-arabino-tetrahydroxybutyl)-2-pyrrolecarboxylic acid (7) took place by heating in water or in slightly basic media in yields up to 83%. Acetylation of 7 gave the tricyclic derivative 8, and its periodate oxidation afforded 5-formyl-3-methoxycarbonyl-2-pyrrolecarboxylic acid (9). Oxidation of 9 with alkaline silver oxide yielded 3-methoxy-carbonyl-2,5-pyrroledicarboxylic acid (10).  相似文献   

19.
A search for appropriate reaction conditions for the equimolar methoxymercuration of D-glucal triacetate was made by using various mercuric salts, bases, and reaction solvents. Under optimum conditions with mercuric perchlorate, sym-collidine, and acetonitrile, D-glucal triacetate underwent methoxymercuration with an equimolar amount of methanol to afford methyl 3,4,6-tri-O-acetyl-2-deoxy-2-perchloratomercuri-β-D-glucopyranoside (1, 26%) and its α-D-manno isomer (2, 49%). Equimolar oxymercuration of D-glucal triacetate with partially protected sugars, followed by subsequent demercuration of the products with sodium borohydride, afforded α- and β-linked 2′-deoxy disaccharide derivatives in moderate yields. The partially protected sugars used were 1,2,3,4-tetra-O-acetyl-β-D-glucopyranose and 1,2:3,4-di-O-isopropylidene-α-D-galactopyranose, and the corresponding products were O-(3,4,6-tri-O-acetyl-2-deoxy-α-D-arabino-hexopyranosyl)-(1→6)-1,2,3,4-tetra-O-acetyl-D-glucopyranose(4, 23%) and its β-linked isomer (5, 11%) from the former, and O-(3,4,6-tri-O-acetyl-2-deoxy-α-D-arabino-hexapyranosyl)-(1→6)-1,2:3,4-di- O-isopropylidene-α-D-galactopyranose (9, 29%) and its β-linked isomer (10, 10%) from the latter. Deacetylation of these 2′-deoxy disaccharides was effected with methanolic sodium methoxide, but deacetonation was unsuccessful owing to simultaneous cleavage of the glycosidic linkage.  相似文献   

20.
《Carbohydrate research》1987,165(2):207-227
8-Methoxycarbonyloctyl 2-azido-4,6-O-benzylidene-2-deoxy-β-d-mannopyranoside reacted with 2,3,4-tri-O-acetyl-α-l-rhamnopyranosyl bromide to give a disaccharide from the which the glycosyl-acceptor 8-methoxycarbonyloctyl 2-azido-4,6-O-benzylidene-2-deoxy-3-O-(2,4,-di-O-acetyl-α-l-rhamnopyranosyl)-β-d-manno pyranoside (19) was obtained. This glycosyl-acceptor with 2,3,4,6-tetra-O-benzyl-α-d-glucopyranosyl chloride to give trisaccharide derivative 22 and with 2,3,6-tri-O-(α-2H2)benzyl-4-O-(2,3,4,6-tetra-O-(α-2H2)benzyl-α-d-glucopyranosyl)-α-d-glucopyranosyl chloride to give tetrasaccharide derivative 29. Deblocking of 22 yielded 8-methoxycarbonyloctyl O-(α-d-glucopyranosyl)-(1→3)-O-α-l-rhamnopyranosyl-(1→3)-2-acetamido-2-deoxy-β-d-mannopyranoside and deblocking of 29 8-methoxycarbonyloctyle O-α-d-glucopyranosyl-(1→4)-O-α-d-glucopyranosyl-(1→3)-O-α-l-rhamnopyranosyl- (1→3)-2-acetamido-2-deoxy-β-d-mannopyranoside. Both oligosaccharides represent the “repeating unit” of the O-specific chain of the lipopolysaccharide from Aeromonas salmonicida.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号