首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Several unusual oligosaccharides have been isolated from the honeydew of Sphacelia sorghi McRae. These include 1-O-β-D-fructofuranosyl-D-mannitol, 5-O-β-D-fructofuranosyl-D-arabinitol, 1,6-di-O-β-D-fructofuranosyl-D-mannitol, 1,5-di-O-β-D-fructofuranosyl-D-arabinitol, and 1-O-β-D-fructofuranosyl-6-O-[β-D-fructofuranosyl-(2→6)-β-D-fructofuranosyl]-D-mannitol. In addition to these oligosaccharides, D-glucose, D-fructose, D-arabinitol, D-mannitol, sucrose, and 6-O-β-D-fructofuranosyl-D-glucose were also found in the honeydew. The structures of the previously undescribed oligosaccharides were determined by periodate oxidation studies, their cleavage by β-D-fructofuranosidase, optical rotation measurements, and methylation analysis by combined gas-liquid chromatography-mass spectrometry. The position of linkage in the arabinitol-containing disaccharide was determined by incorporation of D-[1-3H]-arabinitol into a β-D-fructofuranosyl-D-arabinitol in vivo. The release of tritium-labeled formaldehyde during periodate oxidation of the product demonstrated that the β-D-fructofuranosyl moiety was linked to position 5 of the D-[1-3H]-arabinitol.  相似文献   

2.
The stereoselective glycosylation of a model alcohol (cyclohexanol) by derivatives of 2-azido-2-deoxy-d-galactopyranose was studied under various conditions. 2-Azido-3,4,6-tri-O-benzyl-2-deoxy-β-d-galactopyranosyl chloride (9) was found to be the most efficient glycosylating agent for the synthesis of oligosaccharides containing 2-acetamido-2-deoxy-α-d-galactopyranose residues, and gave a tetrasaccharide, which is a determinant of the blood-group A (Type 1), i.e., O-α-l-fucopyranosyl-(1→2)-[O-2-acetamido-2-deoxy-α-d- galactopyranosyl-(1→3)]-O-β-d-galactopyranosyl-(1→3)-2-acetamido-2-deoxy-d-glucose, and its trisaccharide fragment, O-2-acetamido-2-deoxy-α-d-galactopyranosyl-(1→3)-O-β-d-galactopyranosyl-(1→3)-2-acetamido-2-deoxy-d-glucose. In the course of this synthesis, the determinant trisaccharide related to the H blood-group, i.e., O-α-l-fucopyranosyl-(1→2)-O-β-d-galactopyranosyl-(1→3)-2-acetamido-2- deoxy-d-glucose, was also obtained.  相似文献   

3.
Three spirostanol and two furostanol glycosides were isolated from a methanol extract of the roots of Asparagus curillus and characterized as 3-O-[α-l-arabinopyranosyl (1→4)- β-d-glucopyranosyl]-(25S)-5β-spirostan-3β-ol, 3-O-[{α-l-rhamnopyranosyl (1→2)} {α-l-arabinopyranosyl (1→4)}-β-d-glucopyranosyl]-(25S)-5β-spirostan- 3β-ol, 3-O-[{β-d-glucopyranosyl (1→2)} {α-l-arabinopyranosyl (1→4)}-β- d-glucopyranosyl]-(25S)-5β-spirostan-3β-ol, 3-O-[{β-d-glucopyranosyl (1→2)} {α-l-arabinopyranosyl (1→4)}-β-d-glucopyranosyl]-26-O-[β-d-glucopyranosyl]- 22α-methoxy-(25S)-5β-furostan-3β, 26-diol and 3-O-[{β-d-glucopyranosyl (1→2)} {α-l-arabinopyranosyl (1→4)}-β-d-glucopyranosyl]-26-O-[β-d-glucopyranosyl]- (25S)-5β-furostan-3β, 22α, 26-triol respectively.  相似文献   

4.
The 8-methoxycarbonyloctyl glycoside of the tetrasaccharide hapten, O-α-l-rhamnopyranosyl-(1→2)-O-α-l-rhamnopyranosyl-(1→3)-O-α-l-rhamnopyranosyl-(1→ 3)-2-acetamido-2-deoxy-β-d-glucopyranoside and the trisaccharide glycoside 8-methoxycarbonyloctyl O-α-l-rhamnopyranosyl-(1→3)-O-α-l-rhamnopyr-anosyl-(1→3)-2-acetamido-2-deoxy-β-d-glucopyranoside were synthesized by sequential Koenigs-Knorr reactions from monosaccharide units. The tetrasaccharide represents the complete skeletal repeating unit of Shigella flexneri serogroup Y lipopolysaccharide. Both oligosaccharide haptens are functionalized for covalent attachment to proteins, cell surfaces, and solid supports. 1H-N.m.r. evidence for the conformations of these oligosaccharides in solution is presented and shown to be consistent with predictions based on the exo-anomeric effect  相似文献   

5.
The oligosaccharides, sodium (methyl 3-deoxy-7-O-β-d-ribofuranosyl-β-d-manno-2-octulopyranosid)onate, methyl 2-O-β-d-ribofuranosyl-β-d-ribofuranoside, and the anomeric sodium [methyl 3-deoxy-7-O-(2-O-β-d-ribofuranosyl-β-d-ribofuranosyl)-α- and -β-d-manno-2-octulopyranosid]onate were prepared from 1-O-acetyl-2,3,5-tri-O-benzoyl-β-d-ribofuranose and the anomeric methyl (methyl 8-O-benzyl-4,5-O-carbonyl-3-deoxy-α- and -β-d-manno-2-octulopyranosid)onate in high purity and in acceptable over-all yields. They constitute a first series of model compounds for spectroscopic and immunochemical studies of the capsular polysaccharides from Escherichia coli strains LP 1092 and K 23. The essential, interglycosidic linkages [β-d-Ribf-(1→7)-α- or -β-d-dOclA, and β-d-Ribf-(1→2)-β-d-Ribf] were formed by a modification of the silver triflate procedure using appropriate d-ribofuranosyl bromide derivatives. The constitutional and configurational assignments were based on the 250-MHz 1H-n.m.r.-spectra of protected derivatives of the oligosaccharides.  相似文献   

6.
From the methanol extract of the fruits of Asparagus adscendens sitosterol-β-d-glucoside, two spirostanol glycosides (asparanin A and B) and two furostanol glycosides (asparoside A and B) were isolated and characterized as 3-O-[β-d-glucopyranosyl (1→2)-β-d-glucopyranosyl]-(25S)-5β-spirostan-3β-ol, 3-O-{[β-d-glucopyranosyl(1→2)][α-l-rhamnopyranosyl(1→4)]-β-d-glucopyranosyl}-(25S)-5β-spirostan-3β-ol,3-O-{[β-d-glucopyranosyl(1→2)][α-l-rhamnopyranosyl(1→4)]-β-d-glucopyranosyl|} -26-O-(β- d-glucopyranosyl)-22α-methoxy-(25S)-5β-furostan-3β,26-diol and 3-O-{[β-d-glucopyranosyl(1→2)][α-l-rhamnopyranosyl(1→4)]-β-d-glucopyranosyl}-26-O-(β-d-glucopyranosyl)- 25S)-5β-furostan-3β,22α, 26-triol, respectively.  相似文献   

7.
《Carbohydrate research》1986,153(1):97-106
The mucilage found in the stem pith of Actinidia deliciosa contains d-glucuronic acid, d-mannose, l-fucose, l-arabinose, and d-galactose in the molar ratios 1.0:1.5:2.0:4.0. The native, carboxyl-reduced, and partially acid-hydrolysed polysaccharides were subjected to methylation analysis. Partial acid hydrolysis of the methylated, carboxyl-reduced glucuronomannan core produced a series of methylated oligosaccharides which, as their alditol derivatives, were isolated by reverse-phase h.p.l.c. and characterised by e.i.- and f.a.b.-m.s. The data suggest that the polysaccharide contains a →4)-β-d-GlcpA-(1→2)-α-d-Manp-(1→ backbone with most of the d-mannosyl and d-glucosyluronic acid residues substituted through positions 3 with oligosaccharides containing l-arabinose, α-l-fucose, and β-d-galactose.  相似文献   

8.
Partial hydrolysis of a larch arabino(4-O-methylglucurono)xylan afforded two series of oligouronides composed of 4-O-methyl- d-glucuronic acid and d-xylose residues. The first series included aldouronic acids up to the aldopentaouronic acid. Methylation analysis indicated that the aldopentao- and aldotetrao-uronic acids were mixtures of isomers. One aldotetraouronic acid was isolated and identified as O-β-d-Xylp-(1 → 4)-O-β-d-Xylp-(1 → 4)-O-(4-O-Me-α-d-GlcAp)-(1 → 2)-d-Xyl. The two isomeric aldotriouronic acids were separated from each other. The acids of the second series, which were composed of two uronic acids and 2-4 d-xylose residues, were identified as follows: O-β-d-Xylp-(1 → 4)-O-(4-O-Me-α-d-GlcAp)-(1 → 2)-O-β-d-Xylp-(1 → 4)-O(4-O-Me-α-d-GlcAp)-(1 → 2)-O-β-d-Xylp-(1 → 4)-d-Xyl, O-(4-O-Me-α-d-GlcAp)-(1 → 2)-O-β-d-Xylp-(1 → 4)-O-(4-O-Me-α-d-GlcAp)-(1 → 2)-O-β-d-Xylp-(1 → 4)-O-β-d -Xylp-(1 → 4)-D-Xyl, O-(4-O-Me-α-d-GlcAp)-(1 → 2)-O-β-d-Xylp-(1 → 4)-O-(4-O-Mec-α-d-GlcAp)-(1 → 2)-O-β-d-Xylp-(1 → 4)-D-Xyl, and O-(4-O-Me-α-d-GlcAp)-(1 → 2)-O-β-d-Xylp-(1 → 4)-O-(4-O-Me-α-d-GlcAp)-(1 → 2)-D-Xyl. The first three compounds were new acidic oligosaccharides. The 4-O-methyl-d-glucuronic acid in the second series was present in a larger proportion than in the first series, indicating that a large proportion of the uronic acid side-chains were located on two contiguous D-xylose residues in the backbone of the softwood xylan.  相似文献   

9.
Two new saponins, agavasaponin E and agavasaponin H have been isolated from the methanolic extract of Agave americana leaves and their structures elucidated. Agavasaponin E is 3-O-[β-d-xylopyranosyl-(1→2glc1)-α-l-rhamnopyranosyl-(1→4)-α-l-rhamnopyranosyl-(1→3glc 1)-β-d-glucopyranosyl-(1→4)-β-d-glucopyranosyl-(1→4)-α-d-galactopyranosyl]-(25R)-5α-spirostan-12-on-3β-ol, whereas agavasaponin H is 3-O-[β-d-xylopyranosyl-(1→2 glc 1)-α-l-rhamnopyranosyl-(1→4)-α-l-rhamnopyranosyl-(1→3 glc 1)-β-d-glucopyranosyl-(1→4)-β-d-glucopyranosyl-(1→4)-β-d-galactopyranosyl]-26-O-[β-d-glucopyranosyl]-(25R)-5α-furostan-12-on-3β,22α,26-triol.  相似文献   

10.
The main component of the mucilage in the bulbs of Suisen (Narcissus tazetta L., var. chinensis Roem) has been shown to be a glucomannan composed of D-glucose and D-mannose in the ratio of 2:3 and having a relatively low degree of branching. Acetolysis of the polysaccharide led to the isolation of β-(1→4)-β-(1→3)-linked oligosaccharides composed of D-mannose and/or D-glucose residues. The average chain length (c.1.) of the polysaccharide was determined by methylation analysis to be about 22.  相似文献   

11.
Two oligofurostanosides and two spirostanosides, isolated from a methanol extract of Asparagus adscendens (leaves), were characterized as 3-O-[{α-l-rhamnopyranosyl (1 → 4)} {α-l-rhamnopyranosyl (1 → 6)}-β-d-glucopyranosyl]-26-O-[β-d-glucopyranosyl]-22α-methoxy-(25S)-furost-5-en-3β,26-diol (Adscendoside A), 3-O-[{α-l-rhamnopyranosyl (1 → 4)} {α-l-rhamnopyranosyl (1 → 6)}-β-d-glucopyranosyl]-26-O-[β-d-glucopyranosyl]-(25S)-furost-5-en-3β,22α,26-triol-(Adscendoside B), 3-O-[{α-l-rhamnopyranosyl (1 → 6)}-β-d-glucopyranosyl]-(25S)-spirostan-5-en-3β-ol (Adscendin A) and 3-O-[{α-l-rhamnopyranosyl (1 → 4)} {α-l-rhamnopyranosyl (1 → 6)}-β-d-glucopyr anosyl]-(25S)-spirostan-5-en-3β-ol (Adscendin B), respectively. Adscendin B and Adscendoside A are the artefacts of Adscendoside B formed through hydrolysis and methanol extraction respectively.bl]  相似文献   

12.
Two new saponins beshornin and beshornoside have been isolated from the methanolic extract of Beshorneria yuccoides leaves and their structures elucidated. Beshornin is 3-O-[α-l-rhamnopyranosyl-(1 → 4)-β-d-glucopyranosyl- (1 → 2)-[α-l-rhamnopyranosyl-(1 -+ 4)-P-D-glucopyranosyl-(1 → 3)]-β-d-glucopyranosyl-(1 → 4)-β-d- galactopyranosyl-(25R)-5α-spirostan-3β-ol, whereas beshornoside is 3-O-[α-l-rhamnopyranosyl-(1 → 4)- β-d)-glycopyranosyl-(1 → 2)]-[α-l-rhamnopyranosyl-(1 → 4)-β-d-glucopyranosyl-(1 → 3)]-β-d-glucopyranosyl- (1 → 4)-β-d-galactopyranosyl 26-O-[β-d]-glucopyranosyl-(25R)-5α-furostan-3β,22α,26-triol.  相似文献   

13.
《Carbohydrate research》1986,145(2):201-218
A galactan, isolated from the spawn of the snail Lymnaea stagnalis, contained d-galactose and 0.9% of nitrogen, but neither l-galactose nor phosphate groups. The [α]D20 values of the galactan and its first Smith-degradation product were +19.5° and +20°, respectively. During each of two consecutive Smith-degradations of the galactan, 1 mol of periodate was consumed and 0.45 mol of formic acid was liberated per mol of “anhydrogalactose” unit. Methylation analyses of the galactan and its first Smith-degradation product yielded equal proportions of 2,3,4,6-tetra-O-methyl- and 2,4-di-O-methyl-galactose. Only small quantities of 2,4,6- (4.9 mol%) and 2,3,4-tri-O-methylgalactose (0.7 mol%) were formed from the galactan, whereas the first Smith-degraded product gave 15.6 and 20.4 mol%, respectively. The product of the second Smith-degradation disintegrated and the following oligosaccharides were identified: β-d-Gal-(1→1)-l-Gro, β-d-Gal-(1→3)-β-d-Gal-(1→1)-l-Gro, β-d-Gal-(1→6)-β-d-Gal-(1→1)-l-Gro, β-d-Gal-(1→6)-d-Gal-β-d-Gal-(1→3)-β-d-Gal-(1→1)-l-Gro, β-d-Gal-(1→3)-[β-d-Gal-(1→6)]-β-d-Gal-(1→1)-l-Gro, β-d-Gal-(1→3)-β-d-Gal-(1→6)-β-d-Gal-(1→1)-l-Gro, and β-d-Gal-(1→3)-β-d-Gal-(1→3)-β-d-Gal-(1→1)-l-Gro. Thus, the galactan is highly branched with the backbone containing sequences of either exclusively (1→6)-linked or of more or less regularly alternating (1→3)- and (1→6)-linked units. The side chains vary in length and in the degree of branching. In immunoprecipitin studies, a high degree of species-specificity was seen when various snail galactans were tested with the antiserum to the Lymnaea stagnalis galactan.  相似文献   

14.
Two new saponins, yuccoside C and protoyuccoside C, have been isolated from the methanolic extract of Yucca filamentosa root and their structures elucidated. Yuccoside C is 3-O-[α-d-galactopyranosyl-(1 → 2)-β-d-glucopyranosyl-(1 → 4)-β-d-glucopyranosyl]-(25S)-5β-spirostan-3β-ol, whereas protoyuccoside C is 3-O-[α-d-galactopyranosyl-(1 → 2)-β-d-glucopyranosyl-(1 → 4)-β-d-glucopyranosyl]-26-O-[β-d-glucopyranosy]-(25S)-5β-furostan-3β,22α,26-triol.  相似文献   

15.
Three new saponins, melongosides N, O and P, have been isolated from the methanolic extract of seeds of Solanum melongena and their structures elucidated. Melongoside N is 3-O-[β-D-glucopyranosy l-(1 → 2)-β-D-glucopyranosyl]-26-O-(β-D-glucopyranosyl)-(25R)-5α-furostan-3β,22 α,26-triol, whereas melongoside O is 3-O-[β-D-glucopyranosyl-(1 → 2)β-D-glucopyranosyl]- 26-O-(β-D-glucopyranosyl)-(25R)-furost-5-en-3β,22α,26-triol and melongoside P is 3-O- [β-D-glucopyranosyl-(1 → 2)]-[α-L-rhamnopyranosyl-(1 → 3)]-β-D-glucopyranosyl)-26-O- (β-D-glucopyranosyl)-(25 R)-5α-furostan-3β,22α,26-triol.  相似文献   

16.
Two new furostanol glycosides, trigofoenosides F and G, have been isolated as their methyl ethers from the methanolic extract of Trigonella foenum-graecum seeds (Leguminosae). The structures of the original glycosides have been determined as (25R)-furost-5-en-3β,22,26-triol, 3-O-α-l-rhamnopyranosyl (1 → 2)β-d-glucopyranosyl (1 → 6)β-d-glucopyranoside; 26-O-β-d-glucopyranoside and (25R)-furost-5en-3β,22,26-triol, 3-O-α-L-rhamnopyranosyl (1 → 2) [β-d-xylopyranosyl (1 → 4)]β-d-glucopyranosyl (1 → 6)β-d-glucopyranoside; 26-O-β-d-glucopyranoside, respectively.  相似文献   

17.
《Carbohydrate research》1986,150(1):241-263
The asparagine-linked sugar chains of human milk galactosyltansferase were quantitatively released as oligosaccharides from the polypeptide backbone by hydrazinolysis. They were converted into radioactive oligosaccharides by sodium borotritiate reduction after N-acetylation, and fractionated by paper electrophoresis and by Bio-Gel P-4 column chromatography after sialidase treatment. Structural studies of each oligosaccharides by sequential exoglycosidase digestion and methylation analysis indicated that the galactosyltransferase contains bi, tri-, and probably tetra-antennary, complex-type oligosaccharides having α-d-Manp-(1→3)-[α-d-Manp-(1→6)]-β-d-Manp-(1→4)-β-d-GlcpNAc-(1→4)-α-d-[Fucp-(1→6)]-d- GlcNAc as their common core. Variation is produced by the different locations and numbers of the five different outer chains: β-d-Galp-(1→4)-d-GlcNAc, α-l-Fucp-(1→3)-[β-d-Galp-(1→4)]-d-GlcNAc, α-NeuAc-(2→6)-β-d-Galp-(1→4)-d-GlcNAc, α-l-Fucp-(1→3)-[β-d-Galp-(1→4)]-β-d-GlcpNAc-(1→3)-β-d-Galp-(1→4)-[α-l-Fucp-(1→3)]-d- GlcNAc, and α-NeuAc-(2→6)-β-d-Galp-(1→4)-β-d-GlcpNAc-(1→3)-β-d-Galp-(1→4)-[α-l-Fucp-(1→3)-β-d-GlcNAc.  相似文献   

18.
《Carbohydrate research》1987,165(2):207-227
8-Methoxycarbonyloctyl 2-azido-4,6-O-benzylidene-2-deoxy-β-d-mannopyranoside reacted with 2,3,4-tri-O-acetyl-α-l-rhamnopyranosyl bromide to give a disaccharide from the which the glycosyl-acceptor 8-methoxycarbonyloctyl 2-azido-4,6-O-benzylidene-2-deoxy-3-O-(2,4,-di-O-acetyl-α-l-rhamnopyranosyl)-β-d-manno pyranoside (19) was obtained. This glycosyl-acceptor with 2,3,4,6-tetra-O-benzyl-α-d-glucopyranosyl chloride to give trisaccharide derivative 22 and with 2,3,6-tri-O-(α-2H2)benzyl-4-O-(2,3,4,6-tetra-O-(α-2H2)benzyl-α-d-glucopyranosyl)-α-d-glucopyranosyl chloride to give tetrasaccharide derivative 29. Deblocking of 22 yielded 8-methoxycarbonyloctyl O-(α-d-glucopyranosyl)-(1→3)-O-α-l-rhamnopyranosyl-(1→3)-2-acetamido-2-deoxy-β-d-mannopyranoside and deblocking of 29 8-methoxycarbonyloctyle O-α-d-glucopyranosyl-(1→4)-O-α-d-glucopyranosyl-(1→3)-O-α-l-rhamnopyranosyl- (1→3)-2-acetamido-2-deoxy-β-d-mannopyranoside. Both oligosaccharides represent the “repeating unit” of the O-specific chain of the lipopolysaccharide from Aeromonas salmonicida.  相似文献   

19.
The O-glycosidically-linked carbohydrate units of glycophorin from bovine erythrocyte membrane were released by alkaline borohydride treatment. These oligosaccharides were separated into the neutral fractions and the acidic fractions by ion-exchange chromatography followed by gel filtration. The two acidic fractions (fractions 10 and 13) which have the smallest molecular weight in acidic oligosaccharides, were further purified by gel filtration on Bio-Gel P-4 column. Two acidic oligosaccharides (fractions 10-I and 10-II), heptasaccharides, were separated by gel filtration on a Bio-Gel P-4 column from fraction 10. These structures were determined by methylation analyses, nitrous acid deamination after hydrazinolysis and Smith degradation after desialylation. In addition, the structures were also analyzed by direct-probe mass spectrometry of the permethylated derivatives before and after desialylation. These studies indicated that one of them (fraction 10-I) was NeuNGcα(2→3)Galβ(1→4)GlcNAcβ(1→3)Galβ(1→4)GlcNAcβ(1→3)Galβ(1→3) GalNAcol and another heptasaccharide (fraction 10-II) was Galβ(1→4)GlcNAcβ(1→3)Galβ(1→3) [NeuNGcα(2→3)Galβ(1→4)GlcNAcβ(1→6)]GalNAcol. Athough another acidic fraction (fraction 13) was obtained as a single peak on a Bio-Gel P-4 column, it appeared to be the mixture of a heptasaccharide, NeuNGcα(2→3)Galβ(1→4)GlcNAcβ(1→3 or 6)[Galβ(1→4)GlcNAcβ(1→6 or 3)]Galβ(1→3)GalNAcol and an oligosaccharide similar to fraction 10-II, by analysis of two products obtained by Smith degradation after desialylation.  相似文献   

20.
Dog glycophorin, the major sialoglycoprotein of dog erythrocyte membranes, contains either N-acetyl- or N-glycolylneuraminic acid, depending upon the strain of dog. Glycolipids also contained the same sialic acid as those found in glycophorin when both materials are prepared from erythrocyte membranes of individual dogs. The O-glycosidic oligosaccharides were released from glycophorin, prepared from individual dogs, by alkaline borohydride treatment, and purified by gel filtration and ion-exchange chromatography. The structures of the reduced oligosaccharides were determined by methylation analysis and gas-liquid chromatography-mass spectrometry. The O-glycosidic oligoscharides identified were one tetrasaccharide - Neu5Ac(2→3)Gal)1→3)[Neu5Ac(2→6)[GalNAcol - two trisaccharides - Neu5Ac(2→3)Gal1→3)GaINAcol and Gal(1→3)[Neu5Ac(2→6)]GalNAcol.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号