首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The biosynthesis of the functional, endogenous cyclic AMP antagonist, prostaglandylinositol cyclic phosphate (cyclic PIP) is performed by the plasma membrane-bound enzyme cyclic PIP synthase, which combines prostaglandin E (PGE) and activated inositol phosphate (n-IP) to cyclic PIP. The Km values of the enzyme for the substrates PGE and n-IP are in the micromolar range. The plasma membrane-bound synthase is activated by fluoride, by the stable GTP analog GMP-PNP, by protamine or biguanide, by noradrenaline, and by insulin. The activation by protamine or biguanide and fluoride (10 mM) is additive, which may indicate the presence of two different types of enzyme, comparable to phospholipase Cbeta and phospholipase Cgamma. Plasma membrane-bound cyclic PIP synthase is inhibited by the protein tyrosine kinase inhibitor tyrphostin B46 with an IC50 of 1.7 microM. However, the solubilized and gel-filtrated enzyme is no longer inhibited by tyrphostin, indicating that the activity of cyclic PIP synthase is connected with the activity of a membrane-bound protein tyrosine kinase. Cyclic PIP synthase activity of freshly prepared plasma membranes is unstable. Upon freezing and rethawing of liver plasma membranes, this instability is increased about 2-fold. Protein tyrosine phosphatase inhibitors [vanadate, fluoride (50-100 mM)] stabilize the enzyme activity, but protease inhibitors do not, indicating that inactivation of the enzyme is connected with protein tyrosine dephosphorylation. Cyclic PIP synthase is present in all tissues tested, like brain, heart, intestine, kidney, liver, lung, skeletal muscle, spleen, and testis. Apart from liver, cyclic PIP synthase activity in most tissues is rather low, but it can be increased up to 5-fold when protein tyrosine phosphatase inhibitors like vanadate are present in the homogenization buffer. Preincubation of cyclic PIP synthase of liver plasma membranes with the tyrosine kinase src kinase causes a 2-fold increase of cyclic PIP synthase activity, though this is certainly not the physiological role played by src kinase in intact cells. The data indicate that cyclic PIP synthase can be activated by two separate mechanisms: by a G protein or by protein tyrosine phosphorylation.  相似文献   

2.
Biochemical and immunochemical studies were undertaken to quantify the effects of cyclic AMP on cyclic AMP-dependent protein kinase subunit levels in nuclei of H4IIE hepatoma cells. Dibutyryl cyclic AMP (10 microM) caused a significant biphasic (10 and 120 min after stimulation) increase in total nuclear protein kinase activity. The increase observed 10 min after dibutyryl cyclic AMP stimulation was primarily due to an approx. 3-fold increase of catalytic (C) subunit activity, whereas the change observed 120 min after stimulation consisted of an increase in both C subunit and cyclic AMP-independent protein kinase activities. Analysis of nuclear protein extracts by photoaffinity labelling with 8-azido cyclic [32P]AMP identified only the type II regulatory subunit (RII), but not the type I regulatory subunit (RI). Analysis of nuclear RII variants by two-dimensional gel electrophoresis demonstrated that dibutyryl cyclic AMP caused the appearance of two RII variant forms which were not present in the nuclei of unstimulated cells. Using affinity-purified polyclonal antibodies and immunoblotting procedures, we identified an approx. 2-fold increase in the RII and C subunits in nuclear extracts of dibutyryl cyclic AMP-treated hepatoma cells. Finally, the RI, RII and C subunits were quantified by an e.l.i.s.a. which indicated that dibutyryl cyclic AMP increased nuclear RII and C subunits levels biphasically, reaching peak values 10 and 120 min after the initial stimulation. Nuclear RI subunit levels were not affected. These results provide qualitative as well as quantitative evidence for a modulation by cyclic AMP of the nuclear RII and C subunit levels in rat H4IIE hepatoma cells, and indicate a relatively rapid but temporarily limited dibutyryl cyclic AMP-induced translocation of the RII and C subunits to nuclear sites.  相似文献   

3.
Plasma membranes can be isolated without disruption of cells by the plasma membrane vesiculation technique (Scott, R.E. (1976) Science 194, 743–745). A major advantage of this technique is that it avoids contamination of plasma membranes with intracellular membrane components. Using this method, we prepared plasma membranes from L6 myoblasts grown in tissue culture and studied the characteristics of the protein phosphorylation system.We found that these plasma membrane preparations contain protein kinase which is tightly bound to the membrane and cannot be removed by washing in EDTA or in high ionic strength salt solutions. This protein kinase activity can catalyze the phosphorylation of several exogenous substrates with decreasing efficiency as acceptors of phosphate: calf thymus histones f2b, protamine and caseine. Cyclic AMP causes a dose-dependent stimulation of protein kinase activity; the highest stimulation (4-fold) is achieved at concentration 10?5 M cyclic AMP. Cyclic AMP-dependent stimulation can be completely inhibited by heat-stable protein kinase inhibitor isolated from rabbit skeletal muscle. On the other hand, cyclic GMP does not affect the activity of protein kinase.Plasma membrane-bound protein kinase also catalyzes the phosphorylation of endogenous membrane protein substrates and this is also stimulated by addition of cyclic AMP. Analysis of plasma membrane proteins by sodium dodecyl sulfate (SDS)-polyacrylamide gel electrophoresis showed that specific polypeptides are phosphorylated by cyclic AMP-independent and by cyclic AMP-dependent protein kinase systems.The results of these studies demonstrate the presence of endogenous cyclic AMP-dependent and -independent protein phosphorylating systems (enzyme activity and substrates) in purified plasma membrane preparations. These data provide a basis for further investigations on the role of plasma membrane missing data  相似文献   

4.
After human platelets were lysed by freezing and thawing in the presence of EDTA, about 35% of the total cyclic AMP-dependent protein kinase activity was specifically associated with the particulate fraction. In contrast, Ca2+-activated phospholipid-dependent protein kinase was found exclusively in the soluble fraction. Photoaffinity labelling of the regulatory subunits of cyclic AMP-dependent protein kinase with 8-azido-cyclic [32P]AMP indicated that platelet lysate contained a 4-fold excess of 49 000-Da RI subunits over 55 000-Da RII subunits. The RI and RII subunits were found almost entirely in the particulate and soluble fractions respectively. Chromatography of the soluble fraction on DEAE-cellulose demonstrated a single peak of cyclic AMP-dependent activity with the elution characteristics and regulatory subunits characteristic of the type-II enzyme. A major enzyme peak containing Ca2+-activated phospholipid-dependent protein kinase was eluted before the type-II enzyme, but no type-I cyclic AMP-dependent activity was normally observed in the soluble fraction. The particulate cyclic AMP-dependent protein kinase and associated RI subunits were solubilized by buffers containing 0.1 or 0.5% (w/v) Triton X-100, but not by extraction with 0.5 M-NaCl, indicating that this enzyme is firmly membrane-bound, either as an integral membrane protein or via an anchor protein. DEAE-cellulose chromatography of the Triton X-100 extracts demonstrated the presence of both type-I cyclic AMP-dependent holoenzyme and free RI subunits. These results show that platelets contain three main protein kinase activities detectable with histone substrates, namely a membrane-bound type-I cyclic AMP-dependent enzyme, a soluble type-II cyclic AMP-dependent enzyme and Ca2+-activated phospholipid-dependent protein kinase, which was soluble in lysates containing EDTA.  相似文献   

5.
Plasma membranes can be isolated without disruption of cells by the plasma membrane vesiculation technique (Scott, R.E. (1976) Science 194, 743-745). A major advantage of this technique is that it avoids contamination of plasma membranes with intracellular membrane components. Using this method, we prepared plasma membranes from L6 myoblasts grown in tissue culture and studied the characteristics of the protein phosphorylation system. We found that these plasma membrane preparations contain protein kinase which is tightly bound to the membrane and cannot be removed by washing in EDTA or in high ionic strength salt solutions. This protein kinase activity can catalyze the phosphorylation of several exogenous substrates with decreasing efficiency as acceptors of phosphate: calf thymus histones f2b, protamine and caseine. Cyclic AMP causes a dose-dependent stimulation of protein kinase activity; the highest stimulation (4-fold) is achieved at concentration 10(-5) M cyclic AMP. Cyclic AMP-dependent stimulation can be completely inhibited by heat-stable protein kinase inhibitor isolated from rabbit skeletal muscle. On the other hand, cyclic GMP does not affect the activity of protein kinase. Plasma membrane-bound protein kinase also catalyzes the phosphorylation of endogenous membrane protein substrates and this is also stimulated by addition of cyclic AMP. Analysis of plasma membrane proteins by sodium dodecyl sulfate (SDS)-polyacrylamide gel electrophoresis showed that specific polypeptides are phosphorylated by cyclic AMP-independent and by cyclic AMP-dependent protein kinase systems. The results of these studies demonstrate the presence of endogenous cyclic AMP-dependent and -independent protein phosphorylating systems (enzyme activity and substrates) in purified plasma membrane preparations. These data provide a basis for further investigations on the role of plasma membrane phosphorylation as a regulator of membrane functions including those that may control cellular differentiation.  相似文献   

6.
Renal cortical plasma membranes were solubilized with sodium deoxycholate. The membrane-bound cyclic AMP receptors retained biologic activity in the detergent-dispersed state exhibiting the properties of high affinity for cyclic AMP, saturability and specificity. Half-maximal binding of cycle [3H]-AMP to these receptors was found to occur at 0.06 muM and 1.5 pmol of cyclic [3H]AMP was bound per mg membrane protein at saturation (0.5 muM cyclic [3H]AMP). Sodium deoxycholate-solubilized membrane proteins were chromatographed on Biogel A-5m. Cyclic [3H]AMP receptors eluted in the internal volume at positions equivalent to molecular sizes of 50 000 and 20 000 daltons and in the void volume at molecular size greater than 450 000. After photoaffinity labeling the renal membrane receptors with cyclic [3H]AMP, we found peaks of tritium radioactivity which eluted at similar molecular size positions on this Bogel A-5m column. Further treatment of photoaffinity labeled membranes with sodium dodecyl sulfate, mercaptoethanol and urea, followed by polyacrylamide gel electrophoresis, showed bands of tritium-labeled receptor protein with relative mobilities corresponding to molecular sizes of 26 000 and 21 000 daltons. This study shows that porcine renal cortical membranes contain at least two molecular species of cyclic AMP receptors which may be associated with regulation of the membrane-bound cyclic AMP-dependent protein kinase.  相似文献   

7.
Synaptosomal plasma membrane fragments contain a tightly bound protein kinase which can catalyse the phosphorylation of endogenous protein the reaction bein stimulated by cyclic AMP. A fraction enriched in synaptic junctions, which can be isolated from Triton X-100-treated synaptosomal plasma membranes, is also enriched in the cyclic AMP stimulated intrinsic protein kinase. The location of the enzyme in the synaptic junction suggest that cyclic AMP-stimulated phosphorylation may have some role in synaptic transmission.  相似文献   

8.
Synaptosomal plasma membranes from mammalian brain contain protein kinase activity which phosphorylates endogenous membrane proteins and is stimulated by cyclic AMP. Using polyacrylamide gel electrophoresis it was shown that at least ten proteins in the synaptosomal plasma membrane fraction could be phosphorylated by endogenous cyclic AMP-stimulated protein kinase activity. The number of proteins whose phosphorylation was stimulated by cyclic AMP was strongly influenced by the pH and Mg2+ concentration used in the phosphorylation reaction. A complex pattern of cyclic AMP-stimulated protein phosphorylation was obtained only with synaptosomal plasma membranes and a crude microsomal fraction. Mitochondrial and myelin fractions exhibited no cyclic AMP-stimulated protein kinase activity. Investigation of the distribution of substrates for cyclic AMP-stimulated phosphorylation among various brain regions failed to reveal any regional differences.  相似文献   

9.
Synaptosomal plasma membrane fragments contain a tightly bound protein kinase which can catalyse the phosphorylation of endogenous protein the reaction bein stimulated by cyclic AMP. A fraction enriched in synaptic junctions, which can be isolated from Triton X-100-treated synaptosomal plasma membranes, is also enriched in the cyclic AMP stimulated intrinsic protein kinase. The location of the enzyme in the synaptic junction suggests that cyclic AMP-stimulated phosphorylation may have some role in synaptic transmission.  相似文献   

10.
Synaptosomal plasma membranes from mammalian brain contain protein kinase activity which phosphorylates endogenous membrane proteins and is stimulated by cyclic AMP. Using polyacrylamide gel electrophoresis it was shown that at least ten proteins in the synaptosomal plasma membrane fraction could be phosphorylated by endogenous cyclic AMP-stimulated protein kinase activity. The number of proteins whose phosphorylation was stimulated by cyclic AMP was strongly influenced by the pH and Mg2+ concentration used in the phosphorylation reaction. A complex pattern of cyclic AMP-stimulated protein phosphorylation was obtained only with synaptosomal plasma membranes and a crude microsomal fraction. Mitochondrial and myelin fractions exhibited no cyclic AMP-stimulated protein kinase activity. Investigation of the distribution of substrates for cyclic AMP-stimulated phosphorylation among various brain regions failed to reveal any regional differences.  相似文献   

11.
Regulation of rat brain (Na+ +K+)-ATPase activity by cyclic AMP   总被引:3,自引:0,他引:3  
The interaction between the (Na+ +K+)-ATPase and the adenylate cyclase enzyme systems was examined. Cyclic AMP, but not 5'-AMP, cyclic GMP or 5'-GMP, could inhibit the (Na+ +K+)-ATPase enzyme present in crude rat brain plasma membranes. On the other hand, the cyclic AMP inhibition could not be observed with purified preparations of (Na+ +K+)-ATPase enzyme. Rat brain synaptosomal membranes were prepared and treated with either NaCl or cyclic AMP plus NaCl as described by Corbin, J., Sugden, P., Lincoln, T. and Keely, S. ((1977) J. Biol. Chem. 252, 3854-3861). This resulted in the dissociation and removal of the catalytic subunit of a membrane-bound cyclic AMP-dependent protein kinase. The decrease in cyclic AMP-dependent protein kinase activity was accompanied by an increase in (Na+ +K+)-ATPase activity. Exposure of synaptosomal membranes containing the cyclic AMP-dependent protein kinase holoenzyme to a specific cyclic AMP-dependent protein kinase inhibitor resulted in an increase in (Na+ +K+)-ATPase enzyme activity. Synaptosomal membranes lacking the catalytic subunit of the cyclic-AMP-dependent protein kinase did not show this effect. Reconstitution of the solubilized membrane-bound cyclic AMP-dependent protein kinase, in the presence of a neuronal membrane substrate protein for the activated protein kinase, with a purified preparation of (Na+ +K+)-ATPase, resulted in a decrease in overall (Na+ +K+)-ATPase activity in the presence of cyclic AMP. Reconstitution of the protein kinase alone or the substrate protein alone, with the (Na+ +K+)-ATPase has no effect on (Na+ +K+)-ATPase activity in the absence or presence of cyclic AMP. Preliminary experiments indicate that, when the activated protein kinase and the substrate protein were reconstituted with the (Na+ +K+)-ATPase enzyme, there appeared to be a decrease in the Na+-dependent phosphorylation of the Na+-ATPase enzyme, while the K+-dependent dephosphorylation of the (Na+ +K+)-ATPase was unaffected.  相似文献   

12.
Rat heart plasma membranes contain a calcium-dependent protein kinase which phosphorylates endogenous protein substrates as well as added histones. The major endogenous protein phosphorylated is of 17 kDa on SDS-polyacrylamide gel electrophoresis. Proteins of 85 kDa and 60 kDa were also phosphorylated. Treatment of a rat heart homogenate with the phorbol ester 12-O-tetradecanoylphorbol 13-acetate increased the recovery of kinase activity in the sarcolemmal membranes by up to 10-fold. The activity in such membranes was no longer calcium dependent. Although several histones were effective substrates for the enzyme, myosin light chain and phosvitin were not phosphorylated. These membranes contain a very active ATP hydrolysing activity which necessitated very brief incubation times to avoid loss of substrate. The membranes also contain cyclic AMP dependent protein kinase activity which is not active unless cyclic AMP is added to the incubations. The calcium dependent endogenous kinase, which is not inhibited by the heat stable inhibitor protein of cyclic AMP-dependent kinase, or by trifluoperazine, has several properties in common with protein kinase C. Preincubation of the sarcolemmal membranes with a high concentration of insulin caused inhibition of the phosphorylation of the endogenous 17 kDa and 85 kDa bands. There was no effect on the phosphorylation of the 60 kDa peptide. This effect of insulin was specific for the hormone and required preincubation of the hormone with the membranes for 20 min.  相似文献   

13.
The ability of membrane preparations from different tissues to catalyse the phosphorylation of their endogenous protein (intrinsic protein kinase activity) was determined. It was found that membrane fragments prepared from a large variety of tissues contain this activity although the actual level varies quite widely. Preparations from vas deferens and brain have nearly ten times more activity than preparations from heart, kidney, or erythrocytes. Plasma membranes from skeletal muscle have no detectable activity. The intrinsic protein kinase activity of membrane fragments from most tissues is stimulated by cyclic AMP although the phosphorylation of proteins in preparations of kidney microsomes or heart plasma membranes, is not affected. cyclic GMP (10 micronM) has no effect on the intrinsic protein kinase activity of any membrane preparation examined. A specific inhibitor of soluble, cyclic AMP-stimulated, protein kinase has no effect on the intrinsic protein kinase activity of any of the membrane preparations examined. This suggests that the intrinsic protein kinase activity of membrane preparations may be due to the presence of a specific protein kinase. It is suggested that an examination of the distribution of membrane-bound intrinsic protein kinase activity among different tissues may be helpful in determining the function of the reaction.  相似文献   

14.
Treatment of hepatocytes with islet activating protein (pertussis toxin) from Bordetella pertussis blocked the ability of insulin to inhibit adenylate cyclase activity both in broken plasma membranes and in intact hepatocytes. Such treatment of intact hepatocytes with pertussis toxin did not prevent insulin from activating the peripheral plasma membrane cyclic AMP phosphodiesterase although it did inhibit the ability of insulin to activate the 'dense-vesicle' cyclic AMP phosphodiesterase. The ability of glucagon pretreatment of hepatocytes to block insulin's activation of the plasma membrane cyclic AMP phosphodiesterase was abolished in pertussis toxin-treated hepatocytes. It is suggested that the ability of insulin to manipulate cyclic AMP concentrations by inhibiting adenylate cyclase and activating the plasma membrane and 'dense-vesicle' cyclic AMP phosphodiesterases involves interactions with the guanine nucleotide regulatory protein system occurring in liver plasma membranes.  相似文献   

15.
1. The fluctuations in rat hepatocyte volume and protein content in response to dietary perturbations (starvation, protein restriction, refeeding) were accompanied by corresponding fluctuations in the amount of the regulatory (R) and catalytic (C) subunits of cyclic AMP-dependent protein kinase. Thus the intracellular concentration of this key enzyme was adjusted to be near constant. 2. The adjustment of cellular R was accomplished almost exclusively by regulating cytosolic RI (R subunit of type I kinase). The preferential down-regulation of cytosolic RI in response to starvation/protein restriction indicates that particulate RI and cytosolic as well as particulate RII are more resistant to breakdown during general catabolism in the hepatocyte. 3. The diet-induced fluctuations of kinase subunits were uniformly distributed in all populations of parenchymatous hepatocytes, regardless of their size and density. It is thus possible to isolate hepatocytes with uniformly altered RI/RII ratio from livers of rats with different feeding regimens. 4. The binding of endogenous cyclic AMP to RI and RII was similar in livers with high RI/RII ratio (fed rats) and low RI/RII ratio (fasted rats) as well as in hepatocytes isolated from fasted rats. Under the conditions of the experiment (short-term stimulation by glucagon), therefore, neither the dietary state nor the RI/RII ratio seemed to affect the apparent affinity of the isoreceptors for cyclic AMP. However, RI appeared to show a slightly higher co-operativity of intracellular cyclic AMP binding than did RII in all states.  相似文献   

16.
Adenylate cyclase activity was detected in plasma membranes, Golgi apparatus, and endoplasmic reticulum from rat liver. Adenylate cyclase activities of purified membranes were determined biochemically by two methods. In one, the synthesis of radioactive cyclic AMP from ATalpha32P was monitored. In the other, the synthesis of cyclic AMP was quantitiated using a protein which specifically binds cyclic AMP. The enzyme activity was responsive to activation by both glucagon and sodium fluoride although differences in degree of activation were noted comparing plasma membrane, Golgi apparatus, and endoplasmic reticulum. Cytochemical studies, using both whole tissue and purified cell fractions and conducted in parallel, confirmed the biochemical results. Deposition of lead phosphate, enhanced by glucagon and NaF with samples incubated with appropriate substrates, was not restricted to plasma membranes of hepatocytes but was present in intracellular membranes as well. Adenylate cyclase of rat hepatocytes appears more widely distributed among internal membranes than previously recognized.  相似文献   

17.
Summary Renal cortical plasma membranes were separated by free flow electrophoresis into luminal (brush border microvilli) and contraluminal (basal-lateral membrane) fractions. These membranes were found to contain an intrinsic, self-phosphorylating system which consists of a cyclic AMP-dependent protein kinase, a phosphoprotein phosphatase and the substrate(s) of these enzymes. The kinase, but not the phosphatase, was stimulated by cyclic AMP; maximal (1.7-fold) stimulation was effected at a cyclic AMP concentration of 0.1 m. The degree of phosphorylation of the brush borders was six times greater than that of the basal-lateral membranes in the absence of cyclic AMP and 2.3-fold greater in the presence of cyclic AMP. This preferential phosphorylation of the luminal membrane by membrane-associated protein kinase(s) may play a role in the parathyroid hormone-mediated alterations of solute reabsorption in the proximal tubule.  相似文献   

18.
M M Hosey  M Tao 《Biochemistry》1976,15(7):1561-1568
The autophosphorylation of rabbit and human erythrocyte membranes has been studied under various experimental conditions. The phosphopeptides of the erythocyte membranes were identified using sodium dodecyl sulfate-polyacrylamide slab gel electrophoresis followed by ratioautography. The pattern of phosphorylatiion of membrane components differs with respect to the phosphoryl donor used (ATP or GTP) and to the pH at which the reaction is carried out. Both species appear to contain at least two distinct membrane-bound protein kinases. The human erythrocyte membrane contains a cyclic adenosine 3'5'-monophosphate (cyclic AMP)-dependent protein kinase and several substrates for this kinase. Only ATP can be used as a phosphoryl donor for this kinase. In contrast, the rabbit erythrocyte membrane does not contain a cyclic AMP dependent protein kinase but does contain a kinase which utilizes only ATP as the phosphoryl donor and is specific for certain endogenous substrates at low pH. Both the human and rabbit erythrocyte membranes contain a kinase which utilizes GTP, perhaps also ATP, as the phosphoryl donor. The substrates of these kinases are similar in both species.  相似文献   

19.
The effects of adenosine 3':5'-monophosphate (cyclic AMP) on the phosphorylation of membrane proteins in intact rabbit and human erythrocytes were investigated. The addition of cyclic AMP to intact human or rabbit erythrocytes results in an increase in the incorporation of ortho[32P]phosphate into several membrane protein components which are known to serve as substrates for the cyclic-AMP-dependent protein kinases. Thus this increase in protein phsophorylation is probably due to the activation of either soluble or membrane-bound cyclic-AMP-dependent protein kinases. Incubation of human erythrocytes in the presence of ortho [32P]phosphate and cyclic AMP also leads to the phosphorylation of a membrane protein component, band 7, which has not been previously detected in the autophosphorylation of isolated ghosts. Since rabbit erythrocyte membranes do not contain any cyclic-AMP-dependent protein kinase, the results suggest that cytoplasmic kinases also play a role in the phosphorylation of membrane proteins in intact cells.  相似文献   

20.
NADH oxidase activity of rat liver plasma membranes was inhibited by lowconcentrations (1-100 nM) of ATP. The inhibition was amplified by additionof nanomolar concentrations (0.1-10) of cyclic AMP. The inhibition wascomplex and related to a marked increase in the Km for NADH at high NADHconcentrations together with a concomitant decrease in the Vmax. In theabsence of added or residual ATP, cyclic AMP was without effect. Theresponse of cyclic AMP + ATP was inhibited by low concentrations of theselective inhibitor of cyclic AMP-dependent protein kinase, H-89 but not bystaurosporin. The Vmax but not the Km was modified by treating the plasmamembranes with a mild oxidizing agent, N-chlorosuccinamide, or with thereducing agent, dithiothreitol. In the presence of dithiothreitol, the Vmaxwas reduced by cyclic AMP + ATP. In contrast, in the presence ofN-chlorosuccinamide, the Vmax was increased by cyclic AMP + ATP relative tocyclic AMP + ATP alone. Thus, the effect of cyclic AMP + ATP on the Vmaxcould be either an increase or a decrease depending on whether the membraneswere oxidized or reduced. The results demonstrate regulation of NADH oxidaseactivity of rat liver plasma membranes through cyclic AMP-mediatedphosphorylation by membrane-located protein kinase activities where thefinal response is dependent on the oxidation-reduction status of the plasmamembranes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号