首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The hemoglobin of the marine annelid Glycera dibranchiata possesses several unique features: the hemoglobin consists of multiple monomeric and polymeric components, quaternary structure is lacking, the distal histidine is replaced by leucine in at least one monomeric constituent, and 4) the protein exhibits extremely rapid ligand binding kinetics. The effect of these structural modifications on the ligand binding process has been evaluated using resonance Raman spectroscopy to examine the vibrational modes of the porphyrin macrocycle in deoxy and carbonmonoxy equilibrium species of hemoglobin G. dibranchiata in both the unseparated monomeric and polymeric forms and in a single monomeric component designated Fraction II. Significant differences relative to hemoglobin were found in porphyrin pi electron density, vinyl environment, low frequency vibrational modes, and, in particular, the Fe-proximal histidine stretching mode. Spectra of the deoxy heme transients generated within 10 ns of ligand photolysis have also been examined. These clearly indicate large differences in the heme pocket dynamics subsequent to CO photolysis in G. dibranchiata hemoglobins relative to other hemoglobins. The significance of these results in terms of the kinetics and thermodynamics of ligand binding is discussed.  相似文献   

2.
Two-dimensional 1H-NMR methods have been used to assign heme and amino acid proton resonances in both isomeric states of the carbon monoxide complexes of two Glycera dibranchiata monomeric hemoglobins, HbA and HbB. For each hemoglobin, there are small differences in heme pocket structure in the two isomeric forms. The largest structural perturbations associated with heme isomerism involve residues close to pyrrole rings I and II. The positions relative to the heme of phenylalanine CD1 and the proximal histidine ligand are almost unaffected by heme isomerism. These residues probably play a key role in determining the location of the heme within the heme pocket.  相似文献   

3.
Circular dichroism spectra of three monomeric components of Glycera dibranchiata hemoglobins are reported. Contrary to what is found for most hemoglobins and myoglobins, G. dibranchiata hemoglobins display largely negative dichroic spectra in the Soret region. Independent NMR measurements have shown that the same monomeric hemoglobin components contain the heme moiety predominantly (greater than 85%) oriented in a reversed way with respect to the orientation which occurs in most hemoglobins and myoglobins. On the basis of these independent NMR studies, and also of previous data on other invertebrate hemoproteins, a correlation appears evident between reversed heme orientation in hemoglobins and negative ellipticity in the Soret CD spectrum. This represents a simple tool to evaluate this aspect of heme asymmetric environment.  相似文献   

4.
Park HJ  Yang C  Treff N  Satterlee JD  Kang C 《Proteins》2002,49(1):49-60
Erythrocytes of the marine annelid, Glycera dibranchiata, contain a mixture of monomeric and polymeric hemoglobins. There are three major monomer hemoglobin components, II, III, IV (also called GMH2, 3, and 4), that have been highly purified and well characterized. We have now crystallized GMH3 and GMH4 and determined their structures to 1.4-1.8 A resolution. The structures were determined for these two monomer hemoglobins in the oxidized (Fe3+, ferric, or met-) forms in both the unligated and cyanide-ligated states. This work differs from two published, refined structures of a Glycera dibranchiata monomer hemoglobin, which has a sequence that is substantially different from any bona fide major monomer hemoglobins (GMH2, 3, or 4). The high-resolution crystal structures (presented here) and the previous NMR structure of CO-ligated GMH4, provide a basis for interpreting structure/function details of the monomer hemoglobins. These details include: (1) the strong correlation between temperature factor and NMR dynamics for respective protein forms; (2) the unique nature of the HisE7Leu primary sequence substitutions in GMH3 and GMH4 and their impact on cyanide ion binding kinetics; (3) the LeuB10Phe difference between GMH3 and GMH4 and its impact on ligand binding; and (4) elucidation of changes in the structural details of the distal and proximal heme pockets upon cyanide binding.  相似文献   

5.
The x-ray crystal structure of Synechocystis hemoglobin has been solved to a resolution of 1.8 A. The conformation of this structure is surprisingly different from that of the previously reported solution structure, probably due in part to a covalent linkage between the heme 2-vinyl and His117 that is present in the crystal structure but not in the structure solved by NMR. Synechocystis hemoglobin is a hexacoordinate hemoglobin in which the heme iron is coordinated by both the proximal and distal histidines. It is also a member of the "truncated hemoglobin" family that is much shorter in primary structure than vertebrate and plant hemoglobins. In contrast to other truncated hemoglobins, the crystal structure of Synechocystis hemoglobin displays no "ligand tunnel" and shows that several important amino acid side chains extrude into the solvent instead of residing inside the heme pocket. The stereochemistry of hexacoordination is compared with other hexacoordinate hemoglobins and cytochromes in an effort to illuminate factors contributing to ligand affinity in hexacoordinate hemoglobins.  相似文献   

6.
Circular dichroism (CD) and optical rotatory dispersion (ORD) spectra of several liganded derivatives of the monomer and polymer hemoglobin components of the marine annelid, Glycera dibranchiata were measured over the wavelength range 650--195 nm. The differences observed between the monomer and polymer components for the heme dichroic bands in the visible, Soret and ultraviolet wavelength regions seem to result from changes in the heme environment, geometry and coordination state of the central heme iron in these proteins. Within the Soret region, the liganded derivatives of the monomer hemoglobin exhibit predominantly negative circular dichroic bands. The heme band at 260 nm is also absent for the monomer hemoglobin. The ORD and CD spectra in the far-ultraviolet, peptide absorbing region suggest also differences in the alpha-helix content of the monomer and polymer hemoglobins. The values for the single-chain G. dibranchiata hemoglobin are in the expected range (about 70% alpha-helix) as predicted by the X-ray structure of this protein. The lower estimates of the alpha-helix content for the polymer hemoglobin (approx. 50%), may reflect the differences in amino acid composition, primary structure and polypeptide chain foldings. Changes in oxidation state and ligand binding appears to have no pronounced effect on the helicity of either the monomer or polymer hemoglobins. The removal of the heme moiety from the monomer hemoglobin did result in a major decrease in its helix content similar to the loss of heme from myoglobin.  相似文献   

7.
Three major monomeric hemoglobins have been isolated from the erythrocytes of Glycera dibranchiata. Their importance to structure-function studies of heme proteins lies in the fact that they have been shown to possess an exceptional amino acid substitution. In these proteins, the E-7 position is occupied by leucine rather than the more common distal histidine. This substitution alters the polarity of the heme ligand binding environment compared to myoglobin. Due to this, the G. dibranchiata monomer hemoglobins are attracting much attention. However, until now no purity criterion has been developed. Here we demonstrate that, for all of the Glycera monomer hemoglobins, multiple line patterns are shown on high-voltage isoelectric focusing (IEF) gels. Most of these lines are shown to be a consequence of heme-related phenomena and can be understood on the basis of changes in oxidation and ligation state of the heme iron. The multiple line pattern does not indicate significant impurities in the monomer hemoglobin preparations. Similar behavior is also demonstrated for horse heart myoglobin. The multiple line patterns on IEF gels disappear when gels of the apoproteins alone are focused. Single bands occur in this case for all of the monomer hemoglobins except component II, which displays two bands, one major and one minor. The minor band is found to be a modified apoprotein form. It is sensitive to apoprotein handling prior to focusing and depends upon whether the IEF gel is prefocused or not. From this analysis, IEF is shown to be a valuable purity criterion, and the purity of our monomer hemoglobin component II preparation is 97% one globin.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
The pH dependence of infrared and NMR spectroscopic parameters for carbon monoxide bound to human, equine, rabbit and Glycera dibranchiata monomer fraction hemoglobins has been examined. In all cases, the vertebrate hemoglobins exhibit CO vibrations and 13CO chemical shifts which are pH dependent, whereas the invertebrate hemoglobin does not. The Glycera dibranchiata monomer fraction exhibits the highest wavenumber CO vibration (1970 cm-1) and the most shielded chemical shift (206.2 ppm). The pH behavior of the vertebrate CO-hemoglobins is that the heme-coordinated carbon monoxide chemical shifts and principal infrared vibrations tend toward the values observed for the G. dibranchiata CO-hemoglobin fraction. These results are interpreted as originating in protonation of the distal histidine (E-7) in the vertebrate hemoglobins. The anomalous values for Glycera dibranchiata are concluded to be due to the absence of a distal histidine (E-7 His----Leu) in the heme pocket and not to gross structural dissimilarities between the proteins of the different species examined. Primary sequence similarity matrices have been constructed to compare the functional classes of amino acids at homologous positions for the CD and E helices and for the primary heme contacts in human, equine, sperm whale myoglobin, and the Glycera dibranchiata monomer hemoglobin to illustrate this point. They reveal a high correspondence for all globins and do not correlate with the spectroscopic parameters of heme-coordinated CO.  相似文献   

9.
Phase-sensitive two-dimensional NMR methods have been used to obtain extensive proton resonance assignments for the carbon monoxide complexes of lupin leghemoglobins I and II and soybean leghemoglobin a. The assigned resonances provide information on the solution conformations of the proteins, particularly in the vicinity of the heme. The structure of the CO complex of lupin leghemoglobin II in solution is compared with the X-ray crystal structure of the cyanide complex by comparison of observed and calculated ring current shifts. The structures are generally very similar but significant differences are observed for the ligand contact residues, Phe30, His63 and Val67, and for the proximal His97 ligand. Certain residues are disordered and adopt two interconverting conformations in lupin leghemoglobin II in solution. The proximal heme pocket structure is closely conserved in the lupin leghemoglobins I and II but small differences in conformation in the distal heme pocket are apparent. Larger conformational differences are observed when comparisons are made with the CO complex of soybean leghemoglobin. Altered protein-heme packing is indicated on the proximal side of the heme and some conformational differences are evident in the distal heme pocket. The small conformational differences between the three leghemoglobins probably contribute to the known differences in their O2 and CO association and dissociation kinetics. The heme pocket conformations of the three leghemoglobins are more closely related to each other than to sperm whale myoglobin. The most notable differences between the leghemoglobins and myoglobin are: (a) reduced steric crowding of the ligand binding site in the leghemoglobins, (b) different orientations of the distal histidine, and (c) small but significant differences in proximal histidine coordination geometry. These changes probably contribute to the large differences in ligand binding kinetics between the leghemoglobins and myoglobin.  相似文献   

10.
BACKGROUND: The hemoglobins of the sea lamprey are unusual in that cooperativity and sensitivity to pH arise from an equilibrium between a high-affinity monomer and a low-affinity oligomer. Although the crystal structure of the monomeric cyanide derivative has previously been determined, the manner by which oligomerization acts to lower the oxygen affinity and confer a strong Bohr effect has, until now, been speculative. RESULTS: We have determined the crystal structure of deoxygenated lamprey hemoglobin V by molecular replacement to 2.7 A resolution, in a crystal form with twelve protomers in the asymmetric unit. The subunits are arranged as six essentially identical dimers, with a novel subunit interface formed by the E helices and the AB corner using the standard hemoglobin helical designations. In addition to nonpolar interactions, the interface includes a striking cluster of four glutamate residues. The proximity of the interface to ligand-binding sites implicates a direct effect on ligand affinity. CONCLUSIONS: Comparison of the deoxy structure with that of the cyanide derivative revealed conformational changes that appear to be linked to the functional behavior. Oligomerization is coupled with a movement of the first half of the E helix by up to 1.0 A towards the heme, resulting in steric interference of ligand binding to the deoxy structure. The Bohr effect seems to result from proton uptake by glutamate residues as they are buried in the interface. Unlike human and mollusc hemoglobins, in which modulation of function is due to primarily proximal effects, regulation of oxygen affinity in lamprey hemoglobin V seems to depend on changes at the distal (ligand-binding) side of the heme group.  相似文献   

11.
Summary Hagfish hemoglobin has three main components, one of which is Hb III. It is monomeric and consists of 148 amino acid residues (M = 17 350). Its complete primary structure, previously published, is discussed here. The proximal amino acid (F8) of the heme linkage is histidine as always in the hemoglobins, but the regularly expected distal histidine E7 is substituted by glutamine. This substitution, leading to a new kind of heme linkage, has hitherto only been demonstrated in opossum hemoglobin. It is suggested that E7, Gln, is directed out of the heme pocket, and that the adjacent Ell, Ile, is directed toward the inside of the pocket, giving the distal heme contact instead of histidine.Myxine Hb III has an additional tail of 9 amino acid residues at its N-terminal end, as has the hemoglobin ofLampetra fluviatilis. The genetic codes ofMyxine andLampetra hemoglobins show 117 differences, in spite of many morphological resemblances between hagfish and lamprey. Their primary hemoglobin structures show differences substantial enough to bo compatible with the divergence of the two families some 400–500 million years ago.  相似文献   

12.
The 1H nuclear magnetic resonance spectral characteristics of the cyano-Met form of Chironomus thummi thummi monomeric hemoglobins I, III and IV in 1H2O solvent are reported. A set of four exchangeable hyperfine-shifted resonances is found for each of the two heme-insertion isomers in the hyperfine-shifted region downfield of ten parts per million. An analysis of relaxation, exchange rates and nuclear Overhauser effects leads to assignments for all these resonances to histidine F8 and the side-chains of histidine E7 and arginine FG3. It is evident that in aqueous solution, the side-chain from histidine E7 does not occupy two orientations, as found for the solid state, rather the histidine E7 side-chain adopts a conformation similar to that of sperm whale myoglobin or hemoglobin A, oriented into the heme pocket and in contact with the bound ligand. Evidence is presented to show that the allosteric transition in the Chironomus thummi thummi hemoglobins arises from the "trans effect". An analysis of the exchange with bulk solvent of the assigned histidine E7 labile proton confirms that the group is completely buried within the heme pocket in a manner similar to that found for sperm whale cyano-Met myoglobin, and that the transient exposure to solvent is no more likely than in mammalian myoglobins with the "normal" distal histidine orientation. Finally, a comparison of solvent access to the heme pocket of the three monomeric C. thummi thummi hemoglobins, as measured from proton exchange rates of heme pocket protons, is made and correlated to binding studies with the diffusible small molecules such as O2.  相似文献   

13.
The genome of the cold-adapted bacterium Pseudoalteromonas haloplanktis TAC125 contains multiple genes encoding three distinct monomeric hemoglobins exhibiting a 2/2 ??-helical fold. In the present work, one of these hemoglobins is studied by resonance Raman, electronic absorption and electronic paramagnetic resonance spectroscopies, kinetic measurements, and different bioinformatic approaches. It is the first cold-adapted bacterial hemoglobin to be characterized. The results indicate that this protein belongs to the 2/2 hemoglobin family, Group II, characterized by the presence of a tryptophanyl residue on the bottom of the heme distal pocket in position G8 and two tyrosyl residues (TyrCD1 and TyrB10). However, unlike other bacterial hemoglobins, the ferric state, in addition to the aquo hexacoordinated high-spin form, shows multiple hexacoordinated low-spin forms, where either TyrCD1 or TyrB10 can likely coordinate the iron. This is the first example in which both TyrCD1 and TyrB10 are proposed to be the residues that are alternatively involved in heme hexacoordination by endogenous ligands.  相似文献   

14.
Genome of the model dicot flowering plant, Arabidopsis thaliana, a popular tool for understanding molecular biology of plant physiology, encodes all three classes of plant hemoglobins that differ in their sequence, ligand binding and spectral properties. As such these globins are of considerable attention. Crystal structures of few members of plant class I nonsymbiotic hemoglobin have been described earlier. Here we report the crystal structure of Arabidopsis class I hemoglobin (AHb1) to 2.2 ? and compare its key features with the structures of similar nonsymbiotic hemoglobin from other species. Crystal structure of AHb1 is homologous to the related members with similar globin fold and heme pocket architecture. The structure is homodimeric in the asymmetric unit with both distal and proximal histidines coordinating to the heme iron atom. Residues lining the dimeric interface are also conserved in AHb1 with the exception of additional electrostatic interaction between H112 and E113 of each subunit and that involving Y119 through two water molecules. In addition, differences in heme pocket non-covalent interactions, a novel Ser residue at F7 position, Xe binding site variability, internal cavity topology differences, CD loop conformation and stability and other such properties might explain kinetic variability in AHb1. Detailed cavity analysis of AHb1 showed the presence of a novel long tunnel connecting the distal pockets of both the monomers. Presence of such tunnel, along with conformational heterogeneity observed in the two chains, might suggest cooperative ligand binding and support its role in NO scavenging. This article is part of a Special Issue entitled: Oxygen Binding and Sensing Proteins.  相似文献   

15.
Heroux MS  Mohan AD  Olsen KW 《IUBMB life》2011,63(3):214-220
The truncated hemoglobin of Mycobacterium tuberculosis (Mt-trHbO) is a small heme protein belonging to the hemoglobin superfamily. Truncated hemoglobins (trHbs) are believed to have functional roles such as terminal oxidases and oxygen sensors involved in the response to oxidative and nitrosative stress, nitric oxide (NO) detoxification, O?/NO chemistry, O? delivery under hypoxic conditions, and long-term ligand storage. Based on sequence similarities, they are classified into three groups. Experimental studies revealed that all trHbs display a 2-on-2 α-helical sandwich fold rather than the 3-on-3 α-helical sandwich fold of the classical hemoglobin fold. Using locally enhanced sampling (LESMD) molecular dynamics, the ligand-binding escape pathways from the distal heme binding cavity of Mt-trHbO were determined to better understand how this protein functions. The importance of specific residues, such as the group II and III invariant W(G8) residue, can be seen in terms of ligand diffusion pathways and ligand dynamics. LESMD simulations show that the wild-type Mt-trHbO has three diffusion pathways while the W(G8)F Mt-trHbO mutant has only two. The W(G8) residue plays a critical role in ligand binding and stabilization and helps regulate the rate of ligand escape from the distal heme pocket. Thus, this invariant residue is important in creating ligand diffusion pathways and possibly in the enzymatic functions of this protein.  相似文献   

16.
The X-ray crystal structure of the fluoride derivative of Aplysia limacina ferric myoglobin has been solved and refined at 2.0 A resolution; the crystallographic R-factor is 13.6%. The fluoride ion binds to the sixth co-ordination position of the heme iron, 2.2 A from the metal. Binding of the negatively charged ligand on the distal side of the heme pocket of this myoglobin, which lacks the distal His, is associated with a network of hydrogen bonds that includes the fluoride ion, the residue Arg66 (E10), the heme propionate III, three ordered water molecules and backbone or side-chain atoms from the CD region. A comparison of fluoride and oxygen dissociation rate constants of A. limacina myoglobin, sperm whale (Physeter catodon) myoglobin and Glycera dibranchiata monomeric hemoglobin, suggests that the conformational readjustment of Arg66 (E10) in A. limacina myoglobin may represent the molecular basis for ligand stabilization, in the absence of a hydrogen-bond donor residue at the distal E7 position.  相似文献   

17.
The infrared spectra for carbon monoxide complexed to hemoglobins were examined in the C-O stretch region. Deconvolution of the spectra requires four bands and supports the presence of four distinct conformers at the ligand binding site. Most typical hemoglobins exhibit only one predominant conformer for each subunit represented by a band at 1951 cm-1 in contrast to myoglobins, which typically exist in two major conformations. Several hemoglobins with an enlarged heme pocket are shown to shift the C-O frequency into the higher frequency conformer regions. Many factors, including pH, temperature, solvents, and divalent metals, are also shown to be capable of expanding the heme pocket. Only very specific structural changes that can reduce the size of the heme pocket will result in the lower frequency conformers. The weighted averages of the multiple CO vibrational frequencies are linearly related to the single 13CO NMR chemical shift values and to the exponential of fast CO on-rates. Conformer interconversion occurs at a rate greater than 10(4) s-1. The infrared C-O stretch spectra provide qualitative and quantitative information on the structural dynamics, stability, and ligand binding properties of hemoglobins.  相似文献   

18.
A large and phylogenetically diverse group of organisms contain truncated hemoglobins, including the unicellular cyanobacterium Synechocystis (Pesce, A., Couture, M., Dewilde, S., Guertin, M., Yamauchi, K., Ascenzi, P., Moens, L., and Bolognesi, M. (2000) EMBO J. 19, 2424-2434). Synechocystis hemoglobin is also hexacoordinate, with a heme pocket histidine that reversibly coordinates the ligand binding site. Hexacoordinate hemoglobins are ubiquitous in plants and are now being identified in a diverse array of organisms including humans (Arredondo-Peter, R., Hargrove, M. S., Moran, J. F., Sarath, G., and Klucas, R. V. (1998) Plant Physiol. 118, 1121-1125; Trent, J. T., III, Watts, R. A., and Hargrove, M. S. (2001) J. Biol. Chem. 276, 30106-30110). Rate constants for association and dissociation of the hexacoordinating amino acid side chain in Synechocystis hemoglobin have been measured along with bimolecular rate constants for association of oxygen and carbon monoxide following laser flash photolysis. These values were compared with ligand binding initiated by rapid mixing. Site-directed mutagenesis was used to determine the roles of several heme pocket amino acids in facilitating hexacoordination and stabilizing bound oxygen. It is demonstrated that Synechocystis hemoglobin contains a very reactive binding site and that ligand migration through the protein is rapid. Rate constants for hexacoordination by His(46) are also large and facilitated by other heme pocket amino acids including Gln(43).  相似文献   

19.
The evolution of oxygen transport hemoglobins occurred on at least two independent occasions. The earliest event led to myoglobin and red blood cell hemoglobin in animals. In plants, oxygen transport "leghemoglobins" evolved much more recently. In both events, pentacoordinate heme sites capable of inert oxygen transfer evolved from hexacoordinate hemoglobins that have unrelated functions. High sequence homology between hexacoordinate and pentacoordinate hemoglobins in plants has poised them for potential structural analysis leading to a molecular understanding of this important evolutionary event. However, the lack of a plant hexacoordinate hemoglobin structure in the exogenously ligand-bound form has prevented such comparison. Here we report the crystal structure of the cyanide-bound hexacoordinate hemoglobin from barley. This presents the first opportunity to examine conformational changes in plant hexacoordinate hemoglobins upon exogenous ligand binding, and reveals structural mechanisms for stabilizing the high-energy pentacoordinate heme conformation critical to the evolution of reversible oxygen binding hemoglobins.  相似文献   

20.
The Herbaspirillum seropedicae genome sequence encodes a truncated hemoglobin typical of group II (Hs-trHb1) members of this family. We show that His-tagged recombinant Hs-trHb1 is monomeric in solution, and its optical spectrum resembles those of previously reported globins. NMR analysis allowed us to assign heme substituents. All data suggest that Hs-trHb1 undergoes a transition from an aquomet form in the ferric state to a hexacoordinate low-spin form in the ferrous state. The close positions of Ser-E7, Lys-E10, Tyr-B10, and His-CD1 in the distal pocket place them as candidates for heme coordination and ligand regulation. Peroxide degradation kinetics suggests an easy access to the heme pocket, as the protein offered no protection against peroxide degradation when compared with free heme. The high solvent exposure of the heme may be due to the presence of a flexible loop in the access pocket, as suggested by a structural model obtained by using homologous globins as templates. The truncated hemoglobin described here has unique features among truncated hemoglobins and may function in the facilitation of O2 transfer and scavenging, playing an important role in the nitrogen-fixation mechanism. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号