首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Effects of copper on the activity and oxidative inactivation of yeast glutathione reductase were analyzed. Glutathione reductase from yeast was inhibited by cupric ion and more potently by cuprous ion. Copper ion inhibited the enzyme noncompetitively with respect to the substrate GSSG and NADPH. The Ki values of the enzyme for Cu2+ and Cu+ ion were determined to be 1 and 0.35 μM, respectively. Copper-dependent inactivation of glutathione reductase was also analyzed. Hydrogen peroxide and copper/ascorbate also caused an inactivation with the cleavage of peptide bond of the enzyme. The inactivation/fragmentation of the enzyme was prevented by addition of catalase, suggesting that hydroxyl radical produced through the cuprous ion-dependent reduction of oxygen is responsible for the inactivation/fragmentation of the enzyme. SDS-PAGE and TOF–MS analysis confirmed eight fragments, which were further determined to result from the cleavage of the Met17-Ser18, Asn20-Thr21, Glu251-Gly252, Ser420-Pro421, Pro421-Thr422 bonds of the enzyme by amino-terminal sequencing analysis. Based on the kinetic analysis and no protective effect of the substrates, GSSG and NADPH on the copper-mediated inactivation/fragmentation of the enzyme, copper binds to the sites apart from the substrate-sites, causing the peptide cleavage by hydroxyl radical. Copper-dependent oxidative inactivation/fragmentation of glutathione reductase can explain the prooxidant properties of copper under the in vivo conditions.  相似文献   

2.
Treatment of rabbit muscle pyruvate kinase with iron/ascorbate caused an inactivation with the cleavage of peptide bond. The inactivation or fragmentation of the enzyme was prevented by addition of Mg2+, catalase, and mannitol, but ADP and PEP the substrates did not show any effect. Protective effect of catalase and mannitol suggests that hydroxyl radical produced through the ferrous ion-dependent reduction of oxygen is responsible for the inactivation/fragmentation of the enzyme. SDS-PAGE and TOF-MS analysis confirmed five pairs of fragments, which were determined to result from the cleavage of the Lys114-Gly115, Glu117-Ile118, Asp177-Gly178, Gly207-Val208, and Phe243-Ile244 bonds of the enzyme by amino-terminal sequencing analysis. Protection of the enzyme by Mg2+ implies the identical binding sites of Fe2+ and Mg2+, but the cleavage sites were discriminated from the cofactor Mg2+-binding sites. Considering amino acid residues interacting with metal ions and tertiary structure, Fe2+ ion may bind to Asp177 neighboring to Gly207 and Glu117 neighboring to Lys114 and Phe243, causing the peptide cleavage by hydroxyl radical. Iron-dependent oxidative inactivation/fragmentation of pyruvate kinase can explain the decreased glycolytic flux under aerobic conditions. Intracellular free Mg2+ concentrations are responsible for the control of cellular respiration and glycolysis.  相似文献   

3.
The inactivation of dihydroorotate dehydrogenase by gamma irradiation in dilute aqueous solution has been investigated. The activity of the enzyme decreased exponentially as a function of the absorbed dose under aerated and nitrous oxide-saturated conditions. The contributions of the individual radical species derived from water radiolysis were estimated from the inactivation results observed under aerated, argon-saturated, and nitrous oxide-saturated conditions. The hydrogen atom and hydroxyl radical were found to be important in enzyme inactivation. The effect of selected inorganic radical anions such as Br.2-, I.2-, and (SCN).2- on the enzyme activity was also studied, and the results implicate the possible involvement of cysteine and tyrosine residues in the catalytic activity of dihydroorotate dehydrogenase. Changes in the kinetic parameters (Michaelis-Menten constant, Km, and maximal velocity, Vmax) due to irradiation under the conditions investigated suggest that radiation-induced inactivation is due to modification of the substrate binding sites and that of the active site residues in the enzyme. Evidence for the reduction of iron-sulfur centers in the enzyme during the inactivation process has been put forward from the difference spectrum of the irradiated dihydroorotate dehydrogenase. It has also been shown by electrophoretic studies that radiation-induced inactivation was not due to any fragmentation of the protein structure or the formation of any intermolecular crosslinking.  相似文献   

4.
The changes in the regulation of at mitochondrial NADP-isocitrate dehydrogenase (NADP-ICDH) in a rat heart during have been analysed. Increase of enzyme activity in the cytosol and mitochondria of the heart ischemia was detected. Catalytic properties of the mitochondrial NADP-ICDH at norm and pathology have been compared on homogeneous enzyme preparations. Enzyme from the normoxic and ischemic heart showed the same electrophoretical mobility and molecular mass. Enzyme isolated from the ischemic heart mitochondria demonstrated higher activation energy and lower thermal stability. NADP-isocitrate dehydrogenase at the normoxic and ischemic conditions exhibited different Km for substrates and regulatory behaviour in relation to ATP, ADP, 2-oxoglutarate, citrate, malate, reduced and oxidised glutathione. The inhibitory effect of the Fe2+ and H2O2 mixture associated with the generation of hydroxyl radicals was lower in the ischemic enzyme. We hypothesise that the specific features of regulation behaviour of NADP-ICDH from the ischemic tissues permits the enzyme to supply NADPH to the glutathione reductase/glutathione peroxidase system.  相似文献   

5.
Aims: To investigate the effectiveness of pulsed electric field (PEF) treatment as a new method for inactivation of micro-organisms in complex biomatrices and to assess this by quantifying the inactivation of Escherichia coli seeded in collagen gels. Methods and Results: PEF was applied to E. coli seeded collagen gels in static (nonflowing) chambers. The influence of electric field strength, pulse number and seeded cell densities were investigated. The highest level of inactivation was obtained at the maximum field strength of 45 kV cm−1. For low levels of E. coli contamination (103 CFU ml−1), PEF treatment resulted in no viable E. coli being recovered from the gels. However, PEF treatment of gels containing higher cell densities (≥104 CFU ml−1) did not achieve complete inactivation of E. coli. Conclusions: PEF treatment successfully inactivated E. coli seeded in collagen gels by 3 log10 CFU ml−1. Complete inactivation was hindered at high cell densities by the tailing effect observed. Significance and Impact of the Study: PEF shows potential as a novel, nondestructive method for decontamination of collagen-based matrices. Further investigation is required to ensure its compatibility with other proteins and therapeutic drugs for tissue engineering and drug delivery applications.  相似文献   

6.
Although considerably more oxidation-resistant than other P-type ATPases, the yeast PMA1 H+-ATPase of Saccharomyces cerevisiae SY4 secretory vesicles was inactivated by H2O2, Fe2+, Fe- and Cu-Fenton reagents. Inactivation by Fe2+ required the presence of oxygen and hence involved auto-oxidation of Fe2+ to Fe3+. The highest Fe2- (100 μM) and H2O2 (100 mM) concentrations used produced about the same effect. Inactivation by the Fenton reagent depended more on Fe2+ content than on H2O2 concentration, occurred only when Fe2+ was added to the vesicles first and was only slightly reduced by scavengers (mannitol, Tris, NaN3, DMSO) and by chelators (EDTA, EGTA, DTPA, BPDs, bipyridine, 1, 10-phenanthroline). Inactivation by Fe- and Cu- Fenton reagent was the same; the identical inactivation pattern found for both reagents under anaerobic conditions showed that both reagents act via OH·. The lipid peroxidation blocker BHT prevented Fenton-induced rise in lipid peroxidation in both whole cells and in isolated membrane lipids but did not protect the H+-ATPase in secretory vesicles against inactivation. ATP partially protected the enzyme against peroxide and the Fenton reagent in a way resembling the protection it afforded against SH-specific agents. The results indicate that Fe2+ and the Fenton reagent act via metal-catalyzed oxidation at specific metal-binding sites, very probably SH-containing amino acid residues. Deferrioxamine, which prevents the redox cycling of Fe2+, blocked H+-ATPase inactivation by Fe2+ and the Fenton reagent but not that caused by H2O2, which therefore seems to involve a direct non-radical attack. Fe-Fenton reagent caused fragmentation of the H+-ATPase molecule, which, in Western blots, did not give rise to defined fragments bands but merely to smears.  相似文献   

7.
The toxicity of H2O2 in Escherichia coli wild type and superoxide dismutase mutants was investigated under different experimental conditions. Cells were either grown aerobically, and then treated in M9 salts or K medium, or grown anoxically, and then treated in K medium. Results have demonstrated that the wild type and superoxide dismutase mutants display a markedly different sensitivity to both modes of lethality produced by H2O2 (i.e. mode one killing, which is produced by concentrations of H2O2 lower than 5 mM, and mode two killing which results from the insult generated by concentrations of H2O2 higher than 10 mM). Although the data obtained do not clarify the molecular basis of H2O2 toxicity and/or do not explain the specific function of superoxide ions in H2O2-induced bacterial inactivation, they certainly demonstrate that the latter species plays a key role in both modes of H2O2 lethality. A mechanism of H2O2 toxicity in E. coli is proposed, involving the action of a hypothetical enzyme which should work as an O2-• generating system. This enzyme should be active at low concentrations of H2O2 (<5 mM) and high concentrations of the oxidant (>5 mM) should inactivate the same enzyme. Superoxide ions would then be produced and result in mode one lethality. The resistance at intermediate H2O2 concentrations may be dependent on the inactivation of such enzyme with no superoxide ions being produced at levels of H2O2 in the range 5–10 mM. Mode two killing could be produced by the hydroxyl radical in concert with superoxide ions, chemically produced via the reaction of high concentrations of H2O2 (>10 mM) with hydroxyl radicals. The rate of hydroxyl radical production may be increased by the higher availability of Fe2+ since superoxide ions may also reduce trivalent iron to the divalent form.  相似文献   

8.
NAD+-specific glyceraldehyde 3-phosphate dehydrogenase (EC 1.2.1.12) from Escherichia coli was purified to homogeneity by a relatively simple procedure involving affinity chromatography on agarose–hexane–NAD+ and repeated crystallization. Rabbit antiserum directed against this protein produced one precipitin line in double-diffusion studies against the pure enzyme, and two lines against crude extracts of wild-type E. coli strains. Both precipitin lines represent the interaction of antibody with determinants specific for glyceraldehyde 3-phosphate dehydrogenase. Nine independent mutants of E. coli lacking glyceraldehyde 3-phosphate dehydrogenase activity all possessed some antigenic cross-reacting material to the wild-type enzyme. The mutants could be divided into three groups on the basis of the types and amounts of precipitin lines observed in double-diffusion experiments; one group formed little cross-reacting material. The cross-reacting material in crude cell-free extracts of several of the mutant strains were also tested for alterations in their affinity for NAD+ and their phosphorylative activity. The cumulative data indicate that the protein in several of the mutant strains is severely altered, and thus that glyceraldehyde 3-phosphate dehydrogenase is unlikely to have an essential, non-catalytic function such as buffering nicotinamide nucleotide or glycolytic-intermediate concentrations. Others of the mutants tested have cross-reacting material which behaved like the wild-type enzyme for the several parameters studied; the proteins from these strains, once purified, might serve as useful analogues of the wild-type enzyme.  相似文献   

9.
A putative mannitol operon of the phosphoenolpyruvate phosphotransferase (PTS) type was cloned from Vibrio cholerae O395, and its activity was studied in Escherichia coli. The 3.9-kb operon comprising three genes is organized as mtlADR. Based on the sequence analysis, these were identified as genes encoding a putative mannitol-specific enzyme IICBA (EIIMtl) component (MtlA), a mannitol-1-phosphate dehydrogenase (MtlD), and a mannitol operon repressor (MtlR). The transport of [3H]mannitol by the cloned mannitol operon in E. coli was 13.8 ± 1.4 nmol/min/mg protein. The insertional inactivation of EIIMtl abolished mannitol and sorbitol transport in V. cholerae O395. Comparison of the mannitol utilization apparatus of V. cholerae with those of Gram-negative and Gram-positive bacteria suggests highly conserved nature of the system. MtlA and MtlD exhibit 75% similarity with corresponding sequences of E. coli mannitol operon genes, while MtlR has 63% similarity with MtlR of E. coli. The cloning of V. cholerae mannitol utilization system in an E. coli background will help in elucidating the functional properties of this operon.  相似文献   

10.
A gene library of poly (vinyl alcohol) (PVA)-degrading Pseudomonas sp. strain VM15C was constructed in Escherichia coli with the vector pUC18. Screening of this library with a chromogenic PVA dehydrogenase assay resulted in the isolation of a clone that carries the gene (pdh) for the PVA dehydrogenase, and the entire nucleotide sequence of its structural gene was determined. The gene encodes a protein of 639 amino acid residues (68,045 Da) and in the deduced amino acid sequence, some putative functional sites, a signal sequence, a heme c-binding site, and a PQQ-binding site, were detected. The amino acid sequence showed low similarity to other types of quinoprotein dehydrogenases. PVA dehydrogenase expressed in E. coli clones required PQQ. Ca2+, and Mg2+ stimulated the activity. PVA-dependent heme c reduction occurred with exogenous PQQ in cell extracts of the E. coli clone. The PVA dehydrogenase in the E. coli clone was localized in the cytoplasm.  相似文献   

11.
The effect of ionic substituents in zinc and aluminum phthalocyanine molecules and of membrane surface charge on the interaction of dyes with artificial membranes and enterobacterial cells, as well as on photosensitization efficiency was studied. It has been shown that increasing the number of positively charged substituents enhances the extent of phthalocyanine binding to Escherichia coli cells. This, along with the high quantum yield of singlet oxygen generation, determines efficient photodynamic inactivation of Gram-negative bacteria by zinc and aluminum octacationic phthalocyanines. The effect of Ca2+ and Mg2+ cations and pH on photodynamic inactivation of enterobacteria in the presence of octacationic zinc phthalocyanine has been studied. It has been shown that effects resulting in lowering negative charge on outer membrane protect bacteria against photoinactivation, which confirms the crucial role in this process of the electrostatic interaction of the photosensitizer with the cell wall. Electrostatic nature of binding is consistent with mainly electrostatic character of dye interactions with artificial membranes of different composition. Lower sensitivity of Proteus mirabilis to photodynamic inactivation, compared to that of E. coli and Salmonella enteritidis, due to low affinity of the cationic dye to the cells of this species, was found.  相似文献   

12.
Escherichia coli recA protein directs the inactivation of the repressor of Salmonella typhimurium phage P22 in vitro. As is true for repressor of the E. coli phage λ, inactivation of P22 repressor is accompanied by proteolytic cleavage of the repressor into two detectable fragments.We have investigated the kinetics of inactivation of the λ and P22 repressors in vitro. The fraction of λ repressor inactivated per unit time decreases as its concentration in the reaction is increased. However, high concentrations of λ repressor do not inhibit the inactivation of P22 repressor. Thus, it does not appear that the inactivation system is saturated by λ repressor, but rather that λ repressor is a less efficient substrate at higher concentrations.  相似文献   

13.
In the brain of rats exposed to 5–7 hypoglycemic comas, at the 2nd day after the last coma, an increase of NADP-isocitrate dehydrogenase activity and acceleration of catabolism of adenyl nucleotides as well as a decrease of activities of NADH-dehydrogenase, mitochondrial NADP-isocitrate dehydrogenase, glucose-6-phosphate dehydrogenase, glutathione reductase, and superoxide dismutase were found, whereas no changes of the rate of glycolysis were revealed. After placing sections of brain large hemispheres from experimental animals into hypoosmotic medium supplied with Fe2+ and ascorbate, the release of lactate dehydrogenase was increased. A considerable increase of concentration of malonic dialdehyde is observed in brain sections of experimental rats. The obtained results indicate that disturbances of energy metabolism and activation of processes of lipid peroxidation are involved in pathogenesis of post-hypoglycemic encephalopathy.  相似文献   

14.
Cell survival curves have been obtained for Escherichia coli B (E. coli B) after the sonication of suspensions of the bacteria with continuous wave ultrasound at a fixed frequency of 2 MHz between peak intensities of 8.7 and 2.25 W cm?2. It was found that under suitable conditions the survival curves were reproducible and it also was found that there was a clear relationship between the rate of inactivation and the peak acoustic intensity of the ultrasound. There appeared to be a lower threshold of peak intensity below which no inactivation was observed.  相似文献   

15.
Mammalian lactate dehydrogenase and phosphofructokinase are more susceptible in vitro to superoxide and hydroxyl (·OH) radicals than pyruvate kinase and glucose-6-phosphate dehydrogenase, suggesting that differential inactivation of regulatory enzymes contributes to the metabolic disintegration in stenoxic tissues during transient hypoxia. Like-wise, creatine kinase in smooth muscle from porcine ileum is significantly reduced by hypoxia-reoxygenation ex vivo from 300 (±18.2 SE,n=8) to 196 U·g wet wt-1 (±16.7,P0.001, ANOVA). Conversely, arginine kinase, from the myocardium ofLimulus polyphemus, a species that tolerates anoxia for days was 2.9-fold less susceptible to oxidative inactivation. To examine whether preservation of kinase function is related to euryoxic capacity, a combination of non-invasive31P-NMR spectroscopy and enzyme-linked assays was used to follow ATP and phosphagen status during hypoxia-reoxygenation in porcine ileum smooth muscle,L. polyphemus myocardium, and the myocardium ofArgopecten irradians, a scallop species tolerant of hypoxia for only 24 h. Despite wide differences in phylogeny, euryoxic capacity and oxidative vulnerability of the phosphagen kinases, in all three tissues, the phosphagen pool recovered concomitant with ATP during reoxygenation, thereby revealing competent kinase function. In the mammalian tissue, such preservation of kinase function is facilitated by a 2400-fold excess of enzyme activity.  相似文献   

16.
Thermostable dipeptidase from Bacillus stearothermophilus, a typical metalloenzyme containing 1.0g atom of Zn per mole of subunit of the dimeric enzyme was markedly activated by exogenous divalent metal ions such as Mn2+, Co2+, and Cd2+ . In contrast, several others including Ba2+, Hg2+, and Cu2+ considerably inhibited the enzyme, even the inherent metal, Zn2+, being slightly inhibitory. To study the metal-binding properties of this dipeptidase, the enzyme was completely resolved to the inactive, Zn-free apoenzyme by treatment with EDTA in the presence of guanidine hydrochloride in a weakly acidic buffer. The apoenzyme was readily reconstituted by incubation with either Zn2+, Mn2+, or Co2+, restoring the catalytic activity. The Mn-reconstituted enzyme had nearly twice the activity of the original Zn-enzyme. Combined with kinetic analyses of reconstitution of the apoenzyme with metal ions, these results show that the enzyme has two non-identical metal-binding sites, each with a different property. Furthermore, substitution of Mn2+ or Co2+ for Zn2+ considerably lowered the thermostability of the enzyme without affecting the overall conformation of the enzyme protein, suggesting that the prosthetic Zn is playing dual roles in conformational stability and catalysis of the thermostable dipeptidase.  相似文献   

17.
Ubiquinol-1 in aerated aqueous solution inactivates several enzymes--alanine aminotransferase, alkaline phosphatase, Na+/K(+)-ATPase, creatine kinase and glutamine synthetase--but not isocitrate dehydrogenase and malate dehydrogenase. Ubiquinone-1 and/or H2O2 do not affect the activity of alkaline phosphatase and glutamine synthetase chosen as model enzymes. Dioxygen and transition metal ions, even if in trace amounts, are essential for the enzyme inactivation, which indeed does not occur under argon atmosphere or in the presence of metal chelators. Supplementation with redox-active metal ions (Fe3+ or Cu2+), moreover, potentiates alkaline phosphatase inactivation. Since catalase and peroxidase protect while superoxide dismutase does not, hydrogen peroxide rather than superoxide anion seems to be involved in the inactivation mechanism through which oxygen active species (hydroxyl radical or any other equivalent species) are produced via a modified Haber-Weiss cycle, triggered by metal-catalyzed oxidation of ubiquinol-1. The lack of efficiency of radical scavengers and the almost complete protection afforded by enzyme substrates and metal cofactors indicate a 'site-specific' radical attack as responsible for the oxidative damage.  相似文献   

18.
The influence of limited oxidation of glyceraldehyde-3-phosphate dehydrogenase (D-glyceraldehyde-3-phosphate:NAD+ oxidoreductase (phosphorylating), EC 1.2.1.12), alcohol dehydrogenase (alcohol:NAD+ oxidoreductase, EC 1.1.1.1) and myoglobin by singlet oxygen and by hydroxyl radicals was investigated. The intrinsic fluorescence of glyceraldehyde-3-phosphate dehydrogenase and alcohol dehydrogenase decreased rapidly during oxidation, indicating a conformational change of the protein molecules. The free energy of isothermal unfolding in urea solutions was increased by singlet oxygen, but decreased by hydroxyl radical attack. The velocity of refolding of the denatured protein after dilution of the denaturant was increased by exposure to either singlet oxygen or hydroxyl radicals, with one exception: the velocity of refolding of myoglobin, oxidized by singlet oxygen, was strongly decreased. Hydroxyl radicals produced covalently crosslinked protein aggregates and some fragmentation, whereas singlet oxygen produced only crosslinked aggregates with glyceraldehyde-3-phosphate dehydrogenase and alcohol dehydrogenase. All oxidized proteins were more susceptible to proteolysis by elastase and proteinase K, as compared to the undamaged proteins. Singlet oxygen-induced crosslinked aggregates were degraded very rapidly by elastase. Hydroxyl radical-induced aggregates of glyceraldehyde-3-phosphate dehydrogenase were also degraded very rapidly by this enzyme, but hydroxyl radical-induced aggregates of alcohol dehydrogenase were resistent to enzymatic degradation. The results indicate that limited protein oxidation may have a pronounced influence on several properties of the protein. The effects vary, however, with varying proteins and with the oxidizing species.  相似文献   

19.
Mitochondriall-glycerol-3-phosphate dehydrogenase (E.C. 1.1.99.5.) was studied by chemical modificationin situ with different amino acid side chain specific reagents in mitochondria isolated from hamster brown adipose tissue. The SH-modifying reagents have only slight effect on the enzyme activity. The most effective chemicals were tetranitromethane and diazobenzene sulfonic acid. The enzyme activity can be abolished completely by both of them. In the presence of Ca2+ and/or glycerol-3-phosphate inhibition was greater at the same electrophilic reagent concentration. The effect of Ca2+ and glycerol-3-phosphate is nonadditive on inhibition by these reagents.  相似文献   

20.
DNA photolyase is perhaps the most ancient and direct arsenal in curing the UV-induced dimers formed in the microbial genome. Out of two cofactors of the enzyme, catalytic and light harvesting, differences in the latter have provided basis for categorizing photolyases of prokaryotes as folate and deazaflavin types. In the present study, the homology modeling of DNA photolyase of Enterococcus faecalis was undertaken. The predicted models were structurally compared with the crystal structure coordinates of photolyases from Escherichia coli (folate type) and Anacystis nidulans (deazaflavin type). Discrepancies present in the multiple sequence alignment and tertiary structures, particularly at the light harvesting cofactor (methenyltetrahydrofolic acid, MTHF; 8-hydroxy-5-deazaflavin, 8-HDF) binding sites indicated the mechanistic nature of enterococcal photolyase. Concisely, despite the greater holistic homology with folate-type photolyase, enterococcal photolyase was characterized as deazaflavin-type. The presence of 8-HDF binding sites and groove architecture of substrate binding sites were also found supportive in this regard. The inter cofactor distance and/or orientation also implied to the efficient energy transfer in photolyase of Enterococcus in comparison with E. coli. In addition, we observed relatively high protein deformability in the enterococcal genome, which may favors the repair action of photolyase. The findings are expected to provide molecular insights into the difference in sunlight inactivation rate of two important fecal contamination indicators, namely Enterococcus and E. coli.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号