首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Oliveira  A.L.M.  Urquiaga  S.  Döbereiner  J.  Baldani  J.I. 《Plant and Soil》2002,238(2):205-215
We investigated the effects of an autumn sowing of contrasting cover crops (oats, rye and a combination of oats and rye) on soil aggregate stability, mycorrhizal colonization, phosphorus uptake and yield of sweet corn planted the following summer. Rye is a common cover crop in the middle Atlantic region of the United States of America. It grows slowly in the autumn, survives the winter, grows rapidly in the spring and flowers in the summer. Thus, herbicide is commonly used to kill rye prior to planting spring crops. Oats, in contrast, grows rapidly in the autumn but is killed by frost during the winter. Thus, with oats, potentially less herbicide is needed to prepare the field for spring planting. When compared to fallow, oats was as effective as rye in increasing mycorrhizal colonization of sweet corn, density of mycorrhizal hyphae, and soil aggregate stability. An oats cover crop may thus be a viable alternative to rye. The combination of cover crops (rye and oats), however, was significantly better than single species of cover crops in terms of sweet corn mycorrhizal colonization, P uptake and yield of sweet corn.  相似文献   

2.
Rosecrance  R.C.  McCarty  G.W.  Shelton  D.R.  Teasdale  J.R. 《Plant and Soil》2000,227(1-2):283-290
N mineralization, N immobilization and denitrification were determined for vetch, rye and rye-vetch cover crops using large packed soil cores. Plants were grown to maturity from seed in cores. Cores were periodically leached, allowing for quantification of NO3 and NH4 + production, and denitrification incubations were conducted before and after cover crop kill. Gas permeable tubing was buried at two depths in cores allowing for quantification of N2O in the soil profile. Cover crops assimilated most soil N prior to kill. After kill, relative rates of N mineralization were vetch > rye-vetch mixture > fallow > rye. After correcting for N mineralization from fallow cores, net N mineralization was observed in vetch and rye-vetch cores, while net N immobilization was observed in rye cores. Denitrification incubations were conducted 5, 15 and 55 days after kill, with adjustment of cores to 75% water filled pore space (WFPS). The highest denitrification was observed in vetch cores 5 days after kill, when soil NO3 and respiration rates were high. Substantially lower denitrification was observed on subsequent measurement dates and in other treatments probably due to either limited NO3 or organic carbon in the soil. On day 5, 3%, 23%, 31% and 31% of the N2O was recovered in the headspace of fallow, vetch, rye and rye-vetch cores, respectively. The rest was stored in the soil profile. In a field study using intact soil cores, denitrification rates also peaked 1 week after cover crop kill and decreased significantly thereafter. Results suggest greater potential N losses from vetch than rye or rye-vetch cover crops due to rapid N-mineralization in conjunction with denitrification and potential leaching, prior to significant crop N-assimilation. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

3.
The growing interest in the use of alternative biomass products for fuel production requires a thorough understanding of the environmental impacts associated with the production of these bioenergy crops. Corn silage is a potential bioenergy feedstock; however, water quality implications for its utilization as a biofeedstock are not understood. The objective of this work was to evaluate water quality impacts associated with corn silage production. The GLEAMS-NAPRA model was used to quantify runoff, percolation, erosion, nitrate-nitrogen, total phosphorus, and pesticide losses attributed to the production of corn silage with and without winter cover crops for two tillage options (conventional tillage and no till) on three Indiana soils. Results revealed that corn silage would generate greater annual surface runoff (1 to 6 mm) and percolation (1 to 20 mm) compared with corn grain and grain plus stover cropping systems. Silage/winter cereal rye cover crop reduced annual surface runoff and percolation and was strongly influenced by increases in evapotranspiration, when compared with continuous silage production. Silage managed with winter cereal rye cover crop influenced water quality by reducing annual nitrate losses with runoff from a low of 14 % to a high of 27 %, with relatively no effect because of tillage management. No-till practice on silage system produced significantly greater phosphorus losses (7.46 to 18.07 kg/ha) in comparison to silage/cereal rye, corn grain, and grain plus stover harvest (p?<?0.05). For every 1,000 l of ethanol produced from corn silage, erosion losses ranged from 0.07 to 0.95 t/ha for conventional tillage practices and from 0.06 to 0.83 t/ha for no-till practices. The feasibility of cropping systems such as corn silage/cereal rye could contribute to large-scale biomass production but should be further investigated.  相似文献   

4.
Integrating cover crops (CC) in rotations provides multiple ecological services, but it must be ensured that management does not increase pre-emptive competition with the subsequent crop. This experiment was conducted to study the effect of kill date on: (i) CC growth and N content; (ii) the chemical composition of residues; (iii) soil inorganic N and potentially mineralizable N; and (iv) soil water content. Treatments were fallow and a CC mixture of barley (Hordeum vulgare L.) and vetch (Vicia sativa L.) sown in October and killed on two different dates in spring. Above-ground biomass and chemical composition of CC were determined at harvest, and ground cover was monitored based on digital image analysis. Soil mineral N was determined before sowing and after killing the CC, and potentially mineralizable N was measured by aerobic incubation at the end of the experiment. Soil water content was monitored daily to a depth of 1.1 m using capacitance sensors. Under the present conditions of high N availability, delaying kill date increased barley above-ground biomass and N uptake from deep soil layers; little differences were observed in vetch. Postponing kill date increased the C/N ratio and the fiber content of plant residues. Ground cover reached >80% by the first kill date (∼1250°C days). Kill date was a means to control soil inorganic N by balancing the N retained in the residue and soil, and showed promise for mitigating N losses. The early kill date decreased the risk of water and N pre-emptive competition by reducing soil depletion, preserving rain harvested between kill dates and allowing more time for N release in spring. The soil potentially mineralizable N was enhanced by the CC and kill date delay. Therefore kill date is a crucial management variable for maximizing the CC benefits in agricultural systems.  相似文献   

5.
Volume Contents   总被引:5,自引:1,他引:4  
Rasse  Daniel P.  Smucker  Alvin J.M. 《Plant and Soil》1998,204(2):203-212
Distribution of root systems through soils and recolonization of root channels by successive crops are fundamental, though difficult to study, processes of soil ecology. This article reports a minirhizotron (MR) study of corn and alfalfa root systems throughout the soil profile of Kalamazoo loam (fine-loamy, mixed, mesic Typic Hapludalf) monolith lysimeters for a three-year succession of corn, alfalfa and corn. Multiple-date comparisons within and between years were conducted to estimate total root densities in each soil horizon. Root recolonization was assessed by comparing every video frame of paired minirhizotrons, from recordings conducted one growing season apart. Distributions of corn root systems were modified by tillage practices. In 1994, root populations of corn in the Bt1 horizon peaked 75–90 days after planting (DAP). Numbers of corn roots per m2 in the Bt1 horizon were consistently higher for no-tillage (NT) than for conventional tillage (CT) lysimeters, in 1994 and 1996. Distribution of alfalfa roots within the soil profile was not significantly modified by tillage. However, alfalfa root decomposition rates responded to conventional and no-tillage practices and were specific for each soil horizon. Corn root systems growing in soils previously cropped with alfalfa presented similar patterns of root distribution by horizons as that of the previous alfalfa crop. Successive corn root systems did not display similar distribution patterns throughout the soil profile from one growing season to the next. Proportions of roots of the current crop recolonizing root induced macropores (RIMs) of the previous crop averaged 18% for corn after corn, 22% for alfalfa after corn and 41% for corn after alfalfa, across Bt horizons and tillage treatments. In conclusion, distribution of corn root systems appeared to be modified by tillage practices and root recolonization of RIMs was controlled by the preceding crop.  相似文献   

6.
Nutrient and water management is crucially important in shallow-rooted vegetable production systems characterized by high input and high environmental risk. A 2-year field experiment on greenhouse cucumber double-cropping systems examined the effects of root zone nitrogen management and planting of sweet corn as a catch crop in the summer fallow period on cucumber yield and soil Nmin dynamics compared to conventional practices. Cucumber fruit yields were not significantly affected by root zone N management and catch crop planting despite a decrease in N fertilizer application of 53% compared to conventional N management. Soil Nmin content to a depth of 0.9 m decreased markedly and root zone (0–0.3 m) soil Nmin content was maintained at about 200 kg N ha?1. Root zone N management efficiently and directly reduced apparent N losses by 44% and 45% in 2005 and 2006, respectively. Sweet corn, the summer catch crop, depleted Nmin residue in the soil profile of 1.8 m at harvest of winter–spring season cucumber by 304–333 kg N ha?1, which contributed 19–22% reduction in N loss. Compared to conventional N management, N loss was reduced by 56% under root zone N management and catch crop planting.  相似文献   

7.
The effects of planting date, rye (Secale cereale cv. Wren Abruzzi) and wheat (Triticura aestivum cv. Coker 797), crop destruction, fallow, and soil temperature on managing Meloidogyne incognita race 1 were determined in a 2-year study. More M. incognita juveniles (J2) and egg-producing adults were found in roots of rye planted 1 October than in roots of rye planted 1 November and wheat planted 1 November and 1 December. Numbers of M. incognita adults with and without egg masses were near or below detectable levels in roots of rye planted 1 November and wheat planted 1 November and 1 December. Meloidogyne incognita survived the mild winters in southern Georgia as J2 and eggs. The destruction of rye and wheat as a trap crop 1 March suppressed numbers of J2 in the soil temporarily but did not provide long-term benefits for susceptible crops that followed. In warmer areas where rye and wheat are grown in winter, reproduction of M. incognita may be avoided by delaying planting dates until soil temperature declines below the nematode penetration threshold (18 C), but no long-term benefits should be expected. The temperature threshold may be an important consideration in managing M. incognita population densities in areas having lower winter soil temperatures than southern Georgia.  相似文献   

8.
Crop residues are potential biofuel feedstocks, but residue removal may reduce soil carbon (C). The inclusion of a cover crop in a corn bioenergy system could provide additional biomass, mitigating the negative effects of residue removal by adding to stable soil C pools. In a no‐till continuous corn bioenergy system in the northern US Corn Belt, we used 13CO2 pulse labeling to trace plant C from a winter rye (Secale cereale) cover crop into different soil C pools for 2 years following rye cover crop termination. Corn stover left as residue (30% of total stover) contributed 66, corn roots 57, rye shoots 61, rye roots 50, and rye rhizodeposits 25 g C m?2 to soil. Five months following cover crop termination, belowground cover crop inputs were three times more likely to remain in soil C pools than were aboveground inputs, and much of the root‐derived C was in mineral‐associated soil fractions. After 2 years, both above‐ and belowground inputs had declined substantially, indicating that the majority of both root and shoot inputs are eventually mineralized. Our results underscore the importance of cover crop roots vs. shoots and the importance of cover crop rhizodeposition (33% of total belowground cover crop C inputs) as a source of soil C. However, the eventual loss of most cover crop C from these soils indicates that cover crops will likely need to be included every year in rotations to accumulate soil C.  相似文献   

9.
晋南旱地麦田夏闲期土壤水分和养分变化特征   总被引:3,自引:0,他引:3  
2009-2011年在晋南旱地冬小麦种植区,研究了传统施肥(CF)、推荐施肥(RF)及垄膜沟播(RFFP)处理结合秸秆覆盖措施对夏闲期(6-9月)2 m土层土壤水分、NO3--N,以及0~40 cm土层速效磷、速效钾含量的影响.结果表明: 夏闲期降水可补充旱地麦田2 m土层土壤在冬小麦生长季所消耗的水分,其中94%以上蓄水量集中在0~140 cm土层,休闲效率为6%~27%.夏闲期降水易引起NO3--N下移;357~400 mm的降水量可使NO3--N淋移到100 cm土层,积累峰值在20~40 cm土层.夏闲期秸秆覆盖或地膜与秸秆配合覆盖可有效提高0~40 cm土层速效磷和速效钾含量,3个夏闲期累计增加量分别为17%~45%和36%~49%.不同处理间以垄膜沟播+沟内覆盖秸秆的二元覆盖模式蓄水培肥效果最佳,3个夏闲期2 m土层土壤累计蓄水215 mm,累计矿化氮90 kg·hm-2,耕层土壤速效磷和速效钾含量分别累计增加2.7和83 mg·kg-1,显著高于推荐施肥和传统施肥处理.推荐施肥和传统施肥处理对土壤水分、养分变化的影响无显著差异.  相似文献   

10.
Increasing soil organic carbon (SOC) via organic inputs is a key strategy for increasing long‐term soil C storage and improving the climate change mitigation and adaptation potential of agricultural systems. A long‐term trial in California's Mediterranean climate revealed impacts of management on SOC in maize‐tomato and wheat–fallow cropping systems. SOC was measured at the initiation of the experiment and at year 19, at five depth increments down to 2 m, taking into account changes in bulk density. Across the entire 2 m profile, SOC in the wheat–fallow systems did not change with the addition of N fertilizer, winter cover crops (WCC), or irrigation alone and decreased by 5.6% with no inputs. There was some evidence of soil C gains at depth with both N fertilizer and irrigation, though high variation precluded detection of significant changes. In maize?tomato rotations, SOC increased by 12.6% (21.8 Mg C/ha) with both WCC and composted poultry manure inputs, across the 2 m profile. The addition of WCC to a conventionally managed system increased SOC stocks by 3.5% (1.44 Mg C/ha) in the 0–30 cm layer, but decreased by 10.8% (14.86 Mg C/ha) in the 30–200 cm layer, resulting in overall losses of 13.4 Mg C/ha. If we only measured soil C in the top 30 cm, we would have assumed an increase in total soil C increased with WCC alone, whereas in reality significant losses in SOC occurred when considering the 2 m soil profile. Ignoring the subsoil carbon dynamics in deeper layers of soil fails to recognize potential opportunities for soil C sequestration, and may lead to false conclusions about the impact of management practices on C sequestration.  相似文献   

11.
为提高宁南旱区坡耕地土壤保水能力、减少水土流失,于2007-2010年在10°~15°坡耕地上,以传统无条带种植模式为对照,研究条带隔年休闲轮种模式对农田土壤水分动态、水土流失特征和水分利用效率的影响.结果表明:经过4年休闲轮种,条带处理比传统无条带种植处理显著增加0 ~200 cm土层土壤含水量4.9%~7.0%;条带轮种比无条带模式有效保蓄雨季休闲期降水,明显改善了作物生育前期的土壤水分状况,条带处理0~200 cm土层土壤含水量比对照显著增加5.4%~8.5%.与对照相比,条带休闲轮种处理地表径流减少0.7 ~3.2 m3·hm-2,泥沙量减少0.2~1.9 t·hm-2,土壤全N损失量减少42.1% ~73.3%,作物水分利用效率提高6.1% ~24.9%,降水利用效率提高6.3% ~15.3%.  相似文献   

12.
Biculture of nonlegumes and legumes could serve as cover crops for increasing main crop yield, while reducing NO3 leaching. This study, conducted from 1994 to 1999, determined the effect of monocultured cereal rye (Secale cereale L.), annual ryegrass (Lolium multiflorum), and hairy vetch (Vicia villosa), and bicultured rye/vetch and ryegrass/vetch on N availability in soil, corn (Zea mays L.) yield, and NO3-N leaching in a silt loam soil. The field had been in corn and cover crop rotation since 1987. In addition to the cover crop treatments, there were four N fertilizer rates (0, 67, 134, and 201 kg N ha(-1), referred to as N0, N1, N2, and N3, respectively) applied to corn. The experiment was a randomized split-block design with three replications for each treatment. Lysimeters were installed in 1987 at 0.75 m below the soil surface for leachate collection for the N 0, N 2, and N 3 treatments. The result showed that vetch monoculture had the most influence on soil N availability and corn yield, followed by the bicultures. Rye or ryegrass monoculture had either no effect or an adverse effect on corn yield and soil N availability. Leachate NO3-N concentration was highest where vetch cover crop was planted regardless of N rates, which suggests that N mineralization of vetch N continued well into the fall and winter. Leachate NO3-N concentration increased with increasing N fertilizer rates and exceeded the U.S. Environmental Protection Agency's drinking water standard of 10 mg N l(-1) even at recommended N rate for corn in this region (coastal Pacific Northwest). In comparisons of the average NO3-N concentration during the period of high N leaching, monocultured rye and ryegrass or bicultured rye/vetch and ryegrass/vetch very effectively decreased N leaching in 1998 with dry fall weather. The amount of N available for leaching (determined based on the presidedress nitrate test, the amount of N fertilizer applied, and N uptake) correlated well with average NO3-N during the high N leaching period for vetch cover crop treatment and for the control without the cover crops. The correlation, however, failed for other cover crops largely because of variable effectiveness of the cover crops in reducing NO3 leaching during the 5 years of this study. Further research is needed to determine if relay cover crops planted into standing summer crops is a more appropriate approach than fall seeding in this region to gain sufficient growth of the cover crop by fall. Testing with other main crops that have earlier harvest dates than corn is also needed to further validate the effectiveness of the bicultures to increase soil N availability while protecting the water quality.  相似文献   

13.
Biological nitrogen fixation in mixed legume-cereal cropping systems   总被引:5,自引:1,他引:5  
Cereal/legume intercropping increases dry matter production and grain yield more than their monocultures. When fertilizer N is limited, biological nitrogen fixation (BNF) is the major source of N in legume-cereal mixed cropping systems. The soil N use patterns of component crops depend on the N source and legume species. Nitrogen transfer from legume to cereal increases the cropping system's yield and efficiency of N use. The use of nitrate-tolerant legumes, whose BNF is thought to be little affected by application of combined N, may increase the quantity of N available for the cereal component. The distance between the cereal and legume root systems is important because N is transferred through the intermingling of root systems. Consequently, the most effective planting distance varies with type of legume and cereal. Mutual shading by component crops, especially the taller cereals, reduces BNF and yield of the associated legume. Light interception by the legume can be improved by selecting a suitable plant type and architecture. Planting pattern and population at which maximum yield is achieved also vary among component species and environments. Crops can be mixed in different proportions from additive to replacement or substitution mixtures. At an ideal population ratio a semi-additive mixture may produce higher gross returns.  相似文献   

14.
Eutrophication of freshwater bodies is frequently attributed to elevated phosphorus (P) concentrations in surface runoff from P-enriched agricultural soils. Forage and grain-cropping systems were compared for their effectiveness at remediating P-enriched soils. At each of four locations, one of three forage systems (Forage I = cereal rye silage and corn silage annually; Forage II = alfalfa; Forage III = annual ryegrass and corn silage annually) and the grain system (corn, small grain, and soybean rotation) were maintained for 3 yr on soils with five distinct initial soil P concentrations that were established by using four annual applications (1994-1997) of five different rates (0, 100, 200, 300, and 400 kg total P ha(-1) y(-1)) of poultry manure, dairy manure, or commercial fertilizer. Across all manure P treatments at all locations, the forage systems had greater removal of P than the grain system. Soil P concentration changes (2001-2004) did not reflect differences in crop P removal. Few significant reductions in soil P concentration were observed for either crop system. When reductions did occur, they were for the more highly enriched soil P treatments. No significant reductions in soil P concentration have occurred for the lowest manure P treatments. Considerable variability in crop P concentrations was observed among species at locations and among years produced. However, crop P concentrations did increase uniformly as soil P concentration increased, indicating that luxury consumption of P does occur in agronomic species produced on P-enriched soils.  相似文献   

15.
Changes in N, P, K, Ca and Mg in soil and rice plants were investigated during a cropping season following a long fallow period in a system of traditional cultivation practised for several centuries, under a village tank irrigation system. Soil, N, P, K, Ca and Mg were not found to be deficient for rice production throughout the season. Flooding did not produce toxic levels of Fe and Na and soil pH remained at 6.4 during the season. The average grain yield (3.5 t/ha) without any addition of chemical fertilizer was almost the same as that from fields under major irrigation systems where fertilizer application (less than the recommended level) was common. The sustainability of soil fertility under the traditional system of rice cultivation appears to be dependent upon long fallow periods. The natural build-up of soil fertility during a three-year fallow was evidently adequate to support a good growth of the crop which produced a yield comparable to that obtained in chemically fertilized, more intensively cropped rice fields under major irrigation systems.  相似文献   

16.
The rotation of maize, Zea mays L., and soybean, Glycine max (L.) Merr., has been the traditional cultural tactic to manage the western corn rootworm, Diabrotica virgifera virgifera LeConte, in the Corn Belt. The reduced effectiveness of this rotation as a pest management tool in east central Illinois, northern Indiana, and southern Michigan can be explained by the shift in the ovipositional behavior of the new variant of western corn rootworm. The objective of this study was to evaluate the influence of maize, soybean, oat, Avena sativa L., stubble, and alfalfa, Medicago sativa L., on the ovarian development and ovipositional preferences of the variant western corn rootworm. Field research was conducted near Urbana, IL, during 1998-2000. Gravid females were present throughout the season in all crops, and due to the prolonged period in which western corn rootworm females can lay eggs, none of the crops were immune from oviposition. Results indicated that the western corn rootworm variant oviposits in maize, soybean, oat stubble, and alfalfa In 1998 and 1999, maize was the preferred oviposition site among crops; however, in 2000, maize, soybean, and oat stubble treatments had similar densities of western corn rootworm eggs. Lack of oviposition preference of the western corn rootworm variant demonstrated in this experiment represents a reasonable explanation of why the effectiveness of the rotation strategy to control western corn rootworm has diminished.  相似文献   

17.
Summary Under some conditions the plow down of forage legumes increases the yield of subsequent crops, which is usually caused by improved soil N. However, better soil structure is also a contributing factor. Three experiments were conducted to measure the effect of legume plow down on the yield of subsequent corn crops grown at the Ottawa Research Station (ORS), Ottawa, Canada. In all experiments, corn yields were not affected by legume species, legume cultivars, and/or planting methods. Corn yields from barley plots receiving 0, 60, or 120 kg N ha−1 did not differ until two years after establishment in one experiment and three years in another. The data from these experiments indicated that soil N was high at the ORS, which may inhibit N2-fixation by forage legumès in the establishment year. Therefore, legume plow down was not beneficial to subsequent crops under these conditions. Two other experiments were conducted to measure the effect of legume plow down on the yield of subsequent barley crops. In both experiments, barley yields in the field were not affected by legume type or legume seeding density. Greenhouse and field data indicated that the two cuts with removal strategy benefitted the most to succeeding crops. Data from the greenhouse test indicated that soil N levels were not low in the establishment year, and that some cultivars improved soil fertility more than others.  相似文献   

18.
Summary Catalase activity of a loamy sand under a 3-year crop rotation in the southeastern U.S.A. was monitored. Corn (Zea mays L.), cotton (Gossypium hirsutum L.), and soybean [Glycine max (L.) Merr.] were the summer crops in the rotation. Winter wheat (Triticum aestivum L.) was planted after corn, and soybean was followed by a winter fallow period. Cotton was followed by a mixture of common vetch (Vicia sativa L.) and crimson clover (Trifolium incarnatum Gibelli & Belli) which was eventually plow-incorporated as a green manure. Highest mean catalase activities were recorded in soil under the wheat, soybean, and winter legume crops; lowest activities were found in soil bearing corn and cotton, and during the winter fallow period. The fertilization regime influenced soil catalase activity independently of the crop. Soil deficient in any of the major elements showed low enzyme activity. Highest activity was found in soil fertilized with P and K, and with N supplied by a winter legume crop. Addition of supplementary mineral nitrogen to this regime reduced catalase activity. Elimination of the winter legume crop from an otherwise complete fertilization regime resulted in a drastic reduction in enzyme activity. In soil receiving a complete fertilization regime there was a close correlation between soil catalase and xylanase activities. A similar correlation between these two enzymes was not found in soil receiving incomplete fertilization.  相似文献   

19.
Quantification of drainage and nitrate leaching from cropping systems is necessary to optimize N-fertilizer application and determine the impact on groundwater quality. The objectives of this work were to (i) assess the use of capacitance probes for the continuous determination of the volume of drainage water and the amount of nitrate leached in a crop production system, and (ii) compare the effect of different N-fertilizer strategies to control nitrate leaching in a crop rotation in humid Mediterranean climate. A factorial (control and three fertilizer strategies) experiment was conducted during three cropping seasons in Navarra (Spain). Wheat (Triticum aestivum L.) was planted in 2002, barley (Hordeum vulgare L.) in 2003, and rapeseed (Brassica napus L.) in 2004. Daily soil water content measurements based on capacitance probes were used to calculate drainage at 1 m depth, by applying the water balance equation. Nitrate leaching was calculated as the drainage volume multiplied by the nitrate concentration of the soil solution extracted in ceramic cups. The results revealed distinct behaviour in three crop phases, viz.: (i) from planting to GS-25, with high risk of drainage and nitrate leaching, (ii) from GS-25 to the end of the drainage period, with little drainage and leaching, and (iii) from then to harvest, when no drainage or nitrate leaching took place. Drainage and soil mineral N content before planting were the main factors determining the amount of N leached. Splitting N-fertilizer application and the use of nitrification inhibitors are not likely to have a significant impact on subsequent N-leaching losses, provided that the N-fertilizer application is adjusted to crop N needs corrected by soil N supply.  相似文献   

20.
Corn (Zea mays L.) residue removal at high rates can result in negative impacts to soil ecosystem services. The use of cover crops could be a potential strategy to ameliorate any adverse effects of residue removal while allowing greater removal levels. Hence, the objective of this study was to determine changes in water erosion potential, soil organic C (SOC) and total N concentration, and crop yields under early- and late-terminated cover crop (CC) combined with five levels of corn residue removal after 3 years on rainfed and irrigated no-till continuous corn in Nebraska. Treatments were no CC, early- and late-terminated winter rye (Secale cereale L.) CC, and 0, 25, 50, 75, and 100% corn residue removal rates. Complete residue removal reduced mean weight diameter (MWD) of water-stable aggregates (5 cm depth) by 29% compared to no removal at the rainfed site only, suggesting increased water erosion risk at rainfed sites. Late-terminated CC significantly increased MWD of water-stable aggregates by 27 to 37% at both sites compared to no CC, but early-terminated CC had no effect. The increased MWD with late-terminated CC suggests that CC when terminated late can offset residue removal-induced risks of water erosion. Residue removal and CC did not affect SOC and total soil N concentration. Particulate organic matter increased with late-terminated CC at the irrigated site compared to no CC. Complete residue removal increased irrigated grain yield by 9% in 1 year relative to no removal. Late-terminated CC had no effect on corn yield except in 1 year when yield was 8% lower relative to no CC due to low precipitation at corn establishment. Overall, late-terminated CC ameliorates residue removal-induced increases in water erosion potential and could allow greater levels of removal without reducing corn yields in most years, in the short term, under the conditions of this study.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号