首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We investigated the role of tumor necrosis factor alpha (TNF-alpha) in the pathogenesis of rat cytomegalovirus (RCMV) infection. TNF-alpha levels found in the sera of radiation-immunosuppressed rats in the course of infection (> 350 pg/ml) correlated with the development of RCMV disease. Administration of anti-TNF-alpha antibodies strongly reduced the severity of pneumonia and led to a reduction in virus titers. In immunocompetent rats, anti-TNF-alpha antibodies also significantly suppressed viral replication. Conversely, administration of TNF-alpha augmented RCMV replication and aggravated the disease signs. In vitro, TNF-alpha enhanced RCMV replication in the macrophage, whereas a reduction of viral replication was observed in fibroblasts, indicating that the effect on viral replication is cell type specific. Besides activation of viral replication and exacerbation of RCMV disease, TNF-alpha also favored lymphoid and hematopoietic tissue reconstitution after irradiation, which may contribute to antiviral resistance and survival. This finding demonstrates the protean nature of TNF-alpha, with both beneficial and adverse effects for the host. Our results suggest that TNF-alpha plays an important role in modulating the pathogenesis of RCMV infection.  相似文献   

2.
The rat cytomegalovirus (RCMV) r144 gene encodes a polypeptide homologous to major histocompatibility complex class I heavy chains. To study the role of r144 in virus replication, an RCMV r144 null mutant strain (RCMVDeltar144) was generated. This strain replicated with efficiency similar to that of wild-type (WT) RCMV in vitro. Additionally, WT RCMV and RCMVDeltar144 were found not to differ in their replication characteristics in vivo. First, the survival rate was similar among groups of immunosuppressed rats infected with either RCMVDeltar144 or WT RCMV. Second, the dissemination of virus did not differ in either RCMVDeltar144- or WT RCMV-infected, immunosuppressed rats, either in the acute phase of infection or approximately 1 year after infection. These data indicate that the RCMV r144 gene is essential neither for virus replication in the acute phase of infection nor for long-term infection in immunocompromised rats. Interestingly, in a local infection model in which footpads of immunosuppressed rats were inoculated with virus, a significantly higher number of infiltrating macrophage cells as well as of CD8(+) T cells was observed in WT RCMV-infected paws than in RCMVDeltar144-infected paws. This suggests that r144 might function in the interaction with these leukocytes in vivo.  相似文献   

3.
4.
Administration of recombinant rat gamma-interferon to rats conferred complete protection against an otherwise lethal intraperitoneal pseudorabies virus (PRV) infection. The primary target cell of the virus has been identified as the serosal cell of the peritoneum. Histologic examination showed that after infection of the underlying adventitia, the virus replicates in the myenteric and submucosal plexuses of the gastrointestinal tract; this is followed by centripetal spread to the autonomous and central nervous system. In recombinant rat gamma-interferon-treated rats, viral antigen was absent in the primary target cells and was not detected in any other organ. In interferon-treated cultures of peritoneal fibroblasts, which represent another primary target cell population in vivo, complete inhibition of PRV replication was observed. The peritoneal macrophage is not susceptible to PRV, as was shown by coculture and immunocytochemical studies. Peritoneal cells from gamma-interferon-treated rats showed enhanced major histocompatibility class II antigen expression and extrinsic antiviral activity in PRV-susceptible rat embryo fibroblasts. The results presented in this study indicate that protection by the lymphokine is likely to be based on direct inhibition of viral replication in serosal cells.  相似文献   

5.
6.
Despite active immune responses, gammaherpesviruses establish latency. In a related process, these viruses also persistently replicate by using a mechanism that requires different viral genes than acute-phase replication. Many questions remain about the role of immunity in chronic gammaherpesvirus infection, including whether the immune system controls latency by regulating latent cell numbers and/or other properties and what specific immune mediators control latency and persistent replication. We show here that CD8(+) T cells regulate both latency and persistent replication and demonstrate for the first time that CD8(+) T cells regulate both the number of latently infected cells and the efficiency with which infected cells reactivate from latency. Furthermore, we show that gamma interferon (IFN-gamma) and perforin, which play no significant role during acute infection, are essential for immune control of latency and persistent replication. Surprisingly, the effects of perforin and IFN-gamma are site specific, with IFN-gamma being important in peritoneal cells while perforin is important in the spleen. Studies of the mechanisms of action of IFN-gamma and perforin revealed that perforin acts primarily by controlling the number of latently infected cells while IFN-gamma acts primarily by controlling reactivation efficiency. The immune system therefore controls chronic gammaherpesvirus infection by site-specific mechanisms that regulate both the number and reactivation phenotype of latently infected cells.  相似文献   

7.
8.
Enhancing effect of IFN-gamma on helper T cell activity and IL 2 production   总被引:5,自引:0,他引:5  
A single injection of young murine immune interferon (IFN-gamma) in young (3 mo) or old (14 to 24 mo) mice 3 days before carrier-priming significantly enhances helper T cell activity of their spleen cells. Maximal enhancement is attained when IFN-gamma is injected once immediately before priming or for 4 consecutive days from the time of priming. Helper activity for anti-TNP antibody response was titrated in vitro by adding graded numbers of spleen cells from HRBC-primed mice of a given age to cultures containing a constant number of spleen cells from 3-mo-old normal mice and TNP-HRBC. When T cell-enriched spleen cells from HRBC-primed young or old mice, uninjected or injected with IFN-gamma, were separated by nylon wool filtration into passed (Thi) and adherent (Th2) cells, the helper activity of both T cell subpopulations was found to be enhanced by IFN-gamma injection. Helper activity of purified Th1 and Th2 cells was also increased by their in vitro preincubation with IFN-gamma. Furthermore, interleukin 2 (IL 2) production by mitogen-activated spleen cells from young and old mice is enhanced by addition of IFN-gamma to cultures. These data altogether indicate that IFN-gamma plays an important role in immunoregulation of helper T cell activity.  相似文献   

9.
Infection of the central nervous system (CNS) with the neurotropic JHM strain of mouse hepatitis virus produces acute and chronic demyelination. The contributions of perforin-mediated cytolysis and gamma interferon (IFN-gamma) secretion by CD8(+) T cells to the control of infection and the induction of demyelination were examined by adoptive transfer into infected SCID recipients. Untreated SCID mice exhibited uncontrolled virus replication in all CNS cell types but had little or no demyelination. Memory CD8(+) T cells from syngeneic wild-type (wt), perforin-deficient, or IFN-gamma-deficient (GKO) donors all trafficked into the infected CNS in the absence of CD4(+) T cells and localized to similar areas. Although CD8(+) T cells from all three donors suppressed virus replication in the CNS, GKO CD8(+) T cells expressed the least antiviral activity. A distinct viral antigen distribution in specific CNS cell types revealed different mechanisms of viral control. While wt CD8(+) T cells inhibited virus replication in all CNS cell types, cytolytic activity in the absence of IFN-gamma suppressed the infection of astrocytes, but not oligodendroglia. In contrast, cells that secreted IFN-gamma but lacked cytolytic activity inhibited replication in oligodendroglia, but not astrocytes. Demyelination was most severe following viral control by wt CD8(+) T cells but was independent of macrophage infiltration. These data demonstrate the effective control of virus replication by CD8(+) T cells in the absence of CD4(+) T cells and support the necessity for the expression of distinct effector mechanisms in the control of viral replication in distinct CNS glial cell types.  相似文献   

10.
Cytotoxic T cells (CTL) play a central role in the control of viral infections. Their antiviral activity can be mediated by at least two cytotoxic pathways, namely, the granule exocytosis pathway, involving perforin and granzymes, and the Fas-FasL pathway. However, the viral factor(s) that influences the selection of one or the other pathway for pathogen control is elusive. Here we investigate the role of viral replication levels in the induction and activation of CTL, including their effector potential, during acute Friend murine leukemia virus (F-MuLV) infection. F-MuLV inoculation results in a low-level infection of adult C57BL/6 mice that is enhanced about 500-fold upon coinfection with the spleen focus-forming virus (SFFV). Both the low- and high-level F-MuLV infections generated CD8+ effector T cells that were essential for the control of viral replication. However, the low-level infection induced CD8+ T cells expressing solely FasL but not the cytotoxic molecules granzymes A and B, whereas the high-level infection resulted in induction of CD8+ effector T cells secreting molecules of the granule exocytosis pathway. By using knockout mouse strains deficient in one or the other cytotoxic pathway, we found that low-level viral replication was controlled by CTL that expressed FasL but control of high-level viral replication required perforin and granzymes. Additional studies, in which F-MuLV replication was enhanced experimentally in the absence of SFFV coinfection, supported the notion that only the replication level of F-MuLV was the critical factor that determined the differential expression of cytotoxic molecules by CD8+ T cells and the pathway of CTL cytotoxicity.  相似文献   

11.
Cytomegaloviruses manipulate the host chemokine/receptor axis by altering cellular chemokine expression and by encoding multiple chemokines and chemokine receptors. Similar to human cytomegalovirus (HCMV), rat cytomegalovirus (RCMV) encodes multiple CC chemokine-analogous proteins, including r129 (HCMV UL128 homologue) and r131 (HCMV UL130 and MCMV m129/130 homologues). Although these proteins play a role in CMV entry, their function as chemotactic cytokines remains unknown. In the current study, we examined the role of the RCMV chemokine r129 in promoting cellular migration and in accelerating transplant vascular sclerosis (TVS) in our rat heart transplant model. We determined that r129 protein is released into culture supernatants of infected cells and is expressed with late viral gene kinetics during RCMV infection and highly expressed in heart and salivary glands during in vivo rat infections. Using the recombinant r129 protein, we demonstrated that r129 induces migration of lymphocytes isolated from rat peripheral blood, spleen, and bone marrow and from a rat macrophage cell line. Using antibody-mediated cell sorting of rat splenocytes, we demonstrated that r129 induces migration of naïve/central memory CD4+ T cells. Through ligand-binding assays, we determined that r129 binds rat CC chemokine receptors CCR3, CCR4, CCR5, and CCR7. In addition, mutational analyses identified functional domains of r129 resulting in recombinant proteins that fail to induce migration (r129-ΔNT and -C31A) or alter the chemotactic ability of the chemokine (r129-F43A). Two of the mutant proteins (r129-C31A and -ΔNT) also act as dominant negatives by inhibiting migration induced by wild-type r129. Furthermore, infection of rat heart transplant recipients with RCMV containing the r129-ΔNT mutation prevented CMV-induced acceleration of TVS. Together our findings indicate that RCMV r129 is highly chemotactic, which has important implications during RCMV infection and reactivation and acceleration of TVS.  相似文献   

12.
13.
HIV-1 is dual-tropic for CD4+ T lymphocytes and macrophages, but virus production in the macrophages becomes manifest only during late-stage infection, after CD4+ T cell functions are lost, and when opportunistic pathogens begin to flourish. In this study, the SHIV/macaque model of HIV pathogenesis was used to assess the role of cytokines in regulating virus replication in the two cell types. We injected complete Freund's adjuvant (CFA) intradermally into SHIV(KU)-infected macaques, and infused Schistosoma mansoni eggs into the liver and lungs of others. Tissues examined from these animals demonstrated that macrophages induced by CFA did not support viral replication while those induced by S. mansoni eggs had evidence of productive infection. RT-PCR analysis showed that both Th1 (IL-2 and IFN-gamma) and Th2 cytokines (IL-4 and IL-10) were present in the CFA lesions but only the Th2 cytokines were found in the S. mansoni lesions. Follow-up studies in macaque cell cultures showed that whereas IFN-gamma caused enhancement of virus replication in CD4+ T cells, it curtailed viral replication in infected macrophages. In contrast, IL-4 enhanced viral replication in infected macrophages. These studies strongly suggest that cytokines regulate the sequential phases of HIV replication in CD4 T cells and macrophages.  相似文献   

14.
The role of cytokines in the control of HCMV infection has been studied in THP-1 cells, a macrophage-like cell model and in MRC-5 cells. HCMV replication was studied by immune detection of viral immediate-early antigens (IEA) and virus yield was evaluated in MRC-5 cells by immunoperoxidase staining. Pretreatment of MRC-5 and phorbol 12-myristate 13-acetate (PMA)-treated THP-1 cells with IFN-alpha or IFN-gamma for 24 hr prior to the infection reduced the number of infected cells and virus yield. A synergistic anti-CMV activity in synthesis of early proteins was obtained with these cytokines in combination with TNF-alpha in differentiated THP-1 cells only. Treatment of HCMV-infected differentiated THP-1 cells or MRC-5 cells with IFN-alpha or IFN-gamma alone had no inhibitory effect on virus replication, however the virus yield was reduced with ganciclovir. A synergistic anti-CMV activity in virus yield was obtained only when infected differentiated THP-1 cells were treated with ganciclovir in combination with IFN-gamma. The current study shows that IFN-alpha and IFN-gamma can play a role in the reduction of HCMV replication in macrophage-like cells and in the efficiency of therapies with ganciclovir in this cell type and that the anti-CMV effect of cytokines may be different in fibroblasts and in macrophage-like cells.  相似文献   

15.
The role of gamma interferon (IFN-gamma) in the permanent control of infection with a noncytopathic virus was studied by comparing immune responses in wild-type and IFN-gamma-deficient (IFN-gamma -/-) mice infected with a slowly invasive strain of lymphocytic choriomeningitis virus (LCMV Armstrong). While wild-type mice rapidly cleared the infection, IFN-gamma -/- mice became chronically infected. Virus persistence in the latter mice did not reflect failure to generate cytotoxic T-lymphocyte (CTL) effectors, as an unimpaired primary CTL response was observed. Furthermore, while ex vivo CTL activity gradually declined in wild-type mice, long-standing cytolytic activity was demonstrated in IFN-gamma -/- mice. The prolonged effector phase in infected IFN-gamma -/- mice was associated with elevated numbers of CD8(+) T cells. Moreover, a higher proportion of these cells retained an activated phenotype and was actively cycling. However, despite the increased CD8(+) T-cell turnover, which might have resulted in depletion of the memory CTL precursor pool, no evidence for exhaustion was observed. In fact, at 3 months postinfection we detected higher numbers of LCMV-specific CTL precursors in IFN-gamma -/- mice than in wild-type mice. These findings indicate that in the absence of IFN-gamma, CTLs cannot clear the infection and are kept permanently activated by the continuous presence of live virus, resulting in a delicate new balance between viral load and immunity. This interpretation of our findings is supported by mathematical modeling describing the effect of eliminating IFN-gamma-mediated antiviral activity on the dynamics between virus replication and CTL activity.  相似文献   

16.
Structure of the rat cytomegalovirus genome termini.   总被引:3,自引:2,他引:1       下载免费PDF全文
C Vink  E Beuken    C A Bruggeman 《Journal of virology》1996,70(8):5221-5229
The lytic replication cycle of herpesviruses can be divided into the following three steps: (i) circularization, in which, after infection, the termini of the linear double-stranded viral genome are fused; (ii) replication, in which the circular DNA serves as template for DNA replication, which generates large DNA concatemers; and (iii) maturation, in which the concatemeric viral DNA is processed into unit-length genomes, which are packaged into capsids. Sequences at the termini of the linear virion DNA are thought to play a key role in both genome circularization and maturation. To investigate the mechanism of these processes in the replication of rat cytomegalovirus (RCMV), we cloned, sequenced, and characterized the genomic termini of this betaherpesvirus. Both RCMV genomic termini were found to contain a single copy of a direct terminal repeat (TR). The TR sequence is 504 bp in length, has a high GC content (76%), and is not repeated at internal sites within the RCMV genome. The TR comprises several small internal direct repeats as well as two sequences which are homologous to herpesvirus pac-1 and pac-2 sites, respectively. The organization of the RCMV TR is unique among cytomegaloviruses with respect to the position of the pac sequences: pac-1 is located near the left end of the TR, whereas pac-2 is present near the right end. Both RCMV DNA termini carry an extension of a single nucleotide at the 3' end. Since these nucleotides are complementary, circularization of the viral genome is likely to occur via a simple ligation reaction.  相似文献   

17.
Natural killer (NK) cells play a pivotal role in the innate immune response to viral infections, particularly murine cytomegalovirus (MCMV) and human herpesviruses. In poxvirus infections, the role of NK cells is less clear. We examined disease progression in C57BL/6 mice after the removal of NK cells by both antibody depletion and genetic means. We found that NK cells were crucial for survival and the early control of virus replication in spleen and to a lesser extent in liver in C57BL/6 mice. Studies of various knockout mice suggested that gammadelta T cells and NKT cells are not important in the C57BL/6 mousepox model and CD4+ and CD8+ T cells do not exhibit antiviral activity at 6 days postinfection, when the absence of NK cells has a profound effect on virus titers in spleen and liver. NK cell cytotoxicity and/or gamma interferon (IFN-gamma) secretion likely mediated the antiviral effect needed to control virus infectivity in target organs. Studies of the effects of ectromelia virus (ECTV) infection on NK cells demonstrated that NK cells proliferate within target tissues (spleen and liver) and become activated following a low-dose footpad infection, although the mechanism of activation appears distinct from the ligand-dependent activation observed with MCMV. NK cell IFN-gamma secretion was detected by intracellular cytokine staining transiently at 32 to 72 h postinfection in the lymph node, suggesting a role in establishing a Th1 response. These results confirm a crucial role for NK cells in controlling an ECTV infection.  相似文献   

18.
During the first 2 to 4 weeks of progressive visceral infection with the intracellular protozoan, Leishmania donovani, spleen cells from BALB/c mice failed in response to leishmanial antigen to produce either of the activating T cell-derived lymphokines, interleukin 2 (IL 2) or gamma-interferon (IFN-gamma). Four weeks after infection, however, antigen-induced IL 2 and IFN-gamma secretion emerged and coincided with the onset of control over parasite replication and the subsequent killing of greater than 80% of intrahepatic L. donovani. The development of this immunosecretory activity correlated with the hepatic tissue response at the site of parasitized Kupffer cells. This response progressed from Kupffer cell fusion (week 1) to fusion plus a mononuclear cell infiltrate (week 2) to well-organized granuloma formation (weeks 4 to 8). In contrast, T cell-deficient nude BALB/c mice exerted no control over L. donovani, their spleen cells failed to generate antigen-induced IFN-gamma, and at 4 weeks, their livers were devoid of any tissue reaction. Since spleen cells from 2-week infected normal mice did not produce antigen-stimulated IL 2 or IFN-gamma, these mice were treated with recombinant (r) lymphokines. Various protocols using both high and low dose human rIL 2 had no antileishmanial effect. Hepatic parasite replication was completely halted, however, by macrophage-activating doses of murine rIFN-gamma. These results reemphasize that an intact T cell-dependent response is required for successful defense against L. donovani, indicate that this immune response can be measured at both the cellular (secretory) and tissue levels, and confirm that IFN-gamma can exert an antileishmanial effect in vivo.  相似文献   

19.
Replication of the neurotropic mouse hepatitis virus strain JHM (JHMV) is controlled primarily by CD8(+) T-cell effectors utilizing gamma interferon (IFN-gamma) and perforin-mediated cytotoxicity. CD4(+) T cells provide an auxiliary function(s) for CD8(+) T-cell survival; however, their direct contribution to control of virus replication and pathology is unclear. To examine a direct role of CD4(+) T cells in viral clearance and pathology, pathogenesis was compared in mice deficient in both perforin and IFN-gamma that were selectively reconstituted for these functions via transfer of virus-specific memory CD4(+) T cells. CD4(+) T cells from immunized wild-type, perforin-deficient, and IFN-gamma-deficient donors all initially reduced virus replication. However, prolonged viral control by IFN-gamma-competent donors suggested that IFN-gamma is important for sustained virus control. Local release of IFN-gamma was evident by up-regulation of class II molecules on microglia in recipients of IFN-gamma producing CD4(+) T cells. CD4(+) T-cell-mediated antiviral activity correlated with diminished clinical symptoms, pathology, and demyelination. Both wild-type donor CD90.1 and recipient CD90.2 CD4(+) T cells trafficked into the central nervous system (CNS) parenchyma and localized to infected white matter, correlating with decreased numbers of virus-infected oligodendrocytes in the CNS. These data support a direct, if limited, antiviral role for CD4(+) T cells early during acute JHMV encephalomyelitis. Although the antiviral effector mechanism is initially independent of IFN-gamma secretion, sustained control of CNS virus replication by CD4(+) T cells requires IFN-gamma.  相似文献   

20.
Studies with mice lacking the common plasma membrane receptor for type I interferon (IFN-αβR(-)(/)(-)) have revealed that IFN signaling restricts tropism, dissemination, and lethality after infection with West Nile virus (WNV) or several other pathogenic viruses. However, the specific functions of individual IFN subtypes remain uncertain. Here, using IFN-β(-)(/)(-) mice, we defined the antiviral and immunomodulatory function of this IFN subtype in restricting viral infection. IFN-β(-)(/)(-) mice were more vulnerable to WNV infection than wild-type mice, succumbing more quickly and with greater overall mortality, although the phenotype was less severe than that of IFN-αβR(-)(/)(-) mice. The increased susceptibility of IFN-β(-)(/)(-) mice was accompanied by enhanced viral replication in different tissues. Consistent with a direct role for IFN-β in control of WNV replication, viral titers in ex vivo cultures of macrophages, dendritic cells, fibroblasts, and cerebellar granule cell neurons, but not cortical neurons, from IFN-β(-)(/)(-) mice were greater than in wild-type cells. Although detailed immunological analysis revealed no major deficits in the quality or quantity of WNV-specific antibodies or CD8(+) T cells, we observed an altered CD4(+) CD25(+) FoxP3(+) regulatory T cell response, with greater numbers after infection. Collectively, these results suggest that IFN-β controls WNV pathogenesis by restricting infection in key cell types and by modulating T cell regulatory networks.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号