首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Partial sequences of ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCO) (EC 4.1.1.39) genes were retrieved from samples taken along a redox gradient in alkaline, hypersaline Mono Lake, Calif. The form I gene (cbbL) was found in all samples, whereas form II (cbbM) was not retrieved from any of the samples. None of the RuBisCO sequences we obtained were closely related (nucleotide similarity, <90%) to sequences in the database. Some could be attributed to organisms isolated from the lake (Cyanobium) or appearing in enrichment cultures. Most (52%) of the sequences fell into in one clade, containing sequences that were identical to sequences retrieved from an enrichment culture grown with nitrate and sulfide, and another clade contained sequences identical to those retrieved from an arsenate-reducing, sulfide-oxidizing enrichment.  相似文献   

3.
A gene bank of the nutritionally versatile, nitrogen-fixing cyanobacterium Chlorogloeopsis fritschii was constructed in Charon 4A. 2,800 recombinants containing 10–20 kbp C. fritschii DNA fragments were screened by Southern hybridization using probes containing the genes for the large (LSU) and small (SSU) subunits of ribulose bisphosphate carboxylase/oxygenase (RuBisCO) from Anacystis nidulans. A single recombinant plaque (CDG1) containing a 10.9 kbp EcoR1 fragment from C. fritschii hybridized to both the LSU and SSU probes, indicating a possible linkage of these RuBisCO genes in C. fritschii. RuBisCO activity and protein were detected in CDG1 lysates of Escherichia coli. Hybridization was also obtained between C. fritschii DNA and the LSU probe from Chlamydomonas reinhardtii, although no homology was detected using the LSU probe from maize or the SSU probe from pea.Abbreviations RuBisCO d-ribulose 1,5-bisphosphate carboxylase/oxygenase - RuBP d-ribulose 1,5-bisphosphate - LSU large subunit of RuBisCO - SSU small subunit of RuBisCO - SDS sodium dodecyl sulphate - DOC deoxycholate  相似文献   

4.
5.
Summary Antiserum against the Calvin cycle enzyme, ribulose-1,5-bisphosphate carobxylase/oxygenase (RuBisCO), was used in conjunction with colloidal gold to localize RuBisCO in nitrogen-fixing (fix+) and nonfixing (fix–)Plectonema boryanum cells. RuBisCO antiserum consistently labeled the cytoplasm and polyhedral bodies (carboxysomes) in both fix+ and fix– cells. Through morphometry, it was determined that significantly less gold label (indicative of RuBisCO) was present in fix+ cells. This decreased RuBisCO content correlated with a decrease in net photosynthetic oxygen evolution also observed in fix+P. boryanum.Abbreviations RuBisCO Ribulose-1,5-bisphosphate carboxylase/oxygenase - fix+ nitrogen-fixing - fix– nonfixing  相似文献   

6.
7.
8.
Fragments of genes of the “green-like” form I ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCO) of eight species of haloalkaliphilic obligately autotrophic sulfur-oxidizing bacteria of the genus Thioalkalivibrio have been revealed and sequenced using previously developed oligonucleotide primers. The data obtained are used for the construction of phylogenetic trees on the basis of nucleotide sequences of RuBisCO genes and their conceptual translations into amino acid sequences. Comparative analysis of the 16S rRNA and RuBisCO gene trees reveals discrepancies between their topologies. According to a RuBisCO gene analysis, the genus Thioalkalivibrio is not monophyletic, and its inner divergence conforms to the significant morphological differences observed between the species. Presumably, horizontal (interspecies) gene transfer was involved in the evolution of the genus Thioalkalivibrio.__________Translated from Mikrobiologiya, Vol. 74, No. 3, 2005, pp. 378–386.Original Russian Text Copyright © 2005 by Tourova, Spiridonova, Berg, Kuznetsov, Sorokin.  相似文献   

9.
10.
The dominant natural form of ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCO) is composed of large (L) 55-kDa and small (S) 15-kDa subunits. This enzyme (as the L8S8 form) is widely distributed among oxygenic photosynthetic species and among chemosynthetic bacteria. Another form lacking small subunits is found as an L2 dimer in Rhodospirillum rubrum or an L oligomer of uncertain aggregation state from Rhodopseudomonas spharoides. The present article reviews two basically different approaches in cloning the R. rubrum gene for RuBisCO. One results in high level expression of this gene product fused with a limited aminoterminal stretch of -galactosidase and the other results in expression of wild-type enzyme in Escherichia coli. Also reviewed are a number of reports of cloning and assembly of the L8S8 enzyme in using E. coli L and S subunit genes from Anacystis nidulans, Anabaena 7120, Chromatium vinosum and Rps. sphaeroides.In vitro oligonucleotide-directed mutagenesis has been applied to the gene for RuBisCO from R. rubrum. In terms of contributing new information to our understanding of the catalytic mechanism for RuBisCO, the most significant replacement has been of lys 166 by a number of neutral amino acids or by arg or his. Results establish that lys 166 is a catalytically essential residue and illustrate the power of directed mutagenesis in understanding structure-function correlates for RuBisCO.Oligonucleotide-directed mutagenesis has also been applied to the first and second conserved regions of the S subunit gene for RuBisCO from A. nidulans. In the latter region, corresponding amino acid changes of trp 55 and trp 58 to phe, singly or together, had little or no effect upon enzyme activity. In contrast, mutagenesis in the first conserved region leading to the following pairs of substitutions: arg10 arg 11 to gly 10 gly11; thr14 phe 15 ser 16 to ala 14 phe 15 ala 16; ser 16 tyr 17 to ala 16 asp 17; or pro 19 pro 20 to ala 19 ala 20, are all deleterious.Advances are anticpated in the introduction and expression of interesting modifications of S (and L) subunit genes in plants. A new method of introducing and expressing foreign genes in isolated etiochloroplasts is identified.Abbreviations RuBisCO ribulose bisphosphate carboxylase/oxygenase - 2-CABP 2-carboxyarabinitol-1,5-bisphosphate - 4-CABP 4-carboxyarabinitol-1,5-bisphosphate  相似文献   

11.
12.
Plant transgenesis often requires the use of tissue-specific promoters to drive the transgene expression exclusively in targeted tissues. Although the eukaryotic promoters are expected to stay silent in Escherichia coli, when the promoter-transgene units within the plant transformation vectors are constructed and propagated, some eukaryotic promoters have been reported to be active in prokaryotes. The potential activity of plant promoter in E. coli cells should be considered in cases of expression of proteins that are toxic for host cells, environmental risk assessment or the stability in E. coli of plant vectors for specific Cre/loxP applications. In this study, DNA fragments harbouring four embryo- and/or pollen-specific Arabidopsis thaliana promoters were investigated for their ability to drive heterologous gene expression in E. coli cells. For this, they were fused to gfp:gus reporter genes in the pCAMBIA1304 vector. Although BPROM, bacterial sigma70 promoter recognition program identified several sequences with characteristics similar to bacterial promoters including -10 and -35 sequences in each of tested fragments, the experimental approach showed that only one promoter fragment was able to drive relatively strong- and one promoter fragment relatively weak-GUS expression in E. coli cells. Remaining two tested promoters did not drive any transgene expression in bacteria. Our results also showed that cloning of a shorter plant promoter sequence into vectors containing lacZ α-complementation system can increase the probability of gene expression driven by upstream located lac promoter. This should be considered when cloning of plant expression units, the expression of which is unwanted in E. coli.  相似文献   

13.
14.
The RcsA and RcsB proteins of Erwinia amylovora and Escherichia coli were expressed in E. coli and purified. Their DNA-binding activity was examined using a 1-kb DNA region containing the putative promoter of the ams operon of Ew. amylovora, which is responsible for the biosynthesis of the exopolysaccharide amylovoran. Mobility shift assays indicated specific binding of RcsA and RcsB to a region of 78?bp spanning nucleotide positions ?578 to ?501 relative to the translational start of the first open reading frame of the operon. This region includes stretches of homology to E. coliσ 70 promoter consensus sequences and to the E. coli cps promoter region. Binding of the Rcs proteins was not found at a JUMPstart consensus, typical for various promoters of polysaccharide gene clusters. DNA-binding activity was not detected for RcsA alone and only high concentrations of RcsB were able to interact with the ams promoter in our assay. The two proteins bind cooperatively at the indicated region of the ams promoter and further evidence is provided showing that the DNA-protein complex formed involves a heterodimer of RcsA and RcsB. The specific activity of RcsA, but not of RcsB, was enhanced when the protein was expressed in E. coli at 28°?C, relative to expression at 37°?C. In addition, DNA-protein complex formation is affected by temperature. The E. coli RcsA/RcsB proteins bind to the same region of the ams promoter and are able to interact with the Rcs proteins from Ew. amylovora.  相似文献   

15.
16.
17.
The nucleotide sequence of a 4 kb fragment containing the Vibrio alginolyticus glnA, ntrB and ntrC genes was determined. The upstream region of the glnA gene contained tandem promoters. The upstream promoter resembled the consensus sequence for Escherichia coli 70 promoters whereas the presumptive downstream promoter showed homology with nitrogen regulated promoters. Four putative NRI binding sites were located between the tandem promoters. The ntrB gene was preceded by a single presumptive NRI binding site. The ntrC gene was located 45 base pairs downstream from the ntrB gene. The V. alginolyticus ntrB and ntrC genes were able to complement ntrB, ntrC deletions in E. coli.Abbreviations bp base pair(s) - CAP catabolite-activating protein - GS glutamine synthetase - kb kilobase(s) - ORF open reading frame - SD Shine-Dalgarno  相似文献   

18.
Fragments of genes of the greenlike form I ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCO) of eight species of haloalkaliphilic obligately autotrophic sulfur-oxidizing bacteria of the genus Thioalkalivibrio have been revealed and sequenced using previously developed oligonucleotide primers. The data obtained are used for the construction of phylogenetic trees on the basis of nucleotide sequences of RuBisCO genes and their conceptual translations into amino acid sequences. Comparative analysis of the 16S rRNA and RuBisCO gene trees reveals discrepancies between their topologies. According to a RuBisCO gene analysis, the genus Thioalkalivibrio is not monophyletic, and its inner divergence conforms to the significant morphological differences observed between the species. Presumably, horizontal (interspecies) gene transfer was involved in the evolution of the genus Thioalkalivibrio.  相似文献   

19.
20.
香蕉rbcS基因启动子的克隆及序列分析   总被引:1,自引:0,他引:1  
以巴西香蕉为材料,根据已经获得的香蕉1,5-二磷酸核酮糖羧化/加氧酶小亚基基因的全长cDNA序列设计1对专一引物,通过PCR扩增得到了香蕉1,5-二磷酸核酮糖羧化/加氧酶小亚基的基因组全长,序列长811 bp,含有2个内含子。根据其基因组序列设计引物,采用SEFA-PCR方法,以总DNA为模板克隆了香蕉1,5-二磷酸核酮糖羧化/加氧酶小亚基基因的启动子序列,长1 681 bp。用PLACE软件分析发现该序列具有启动子的基本元件TATA-box、CAAT-box,包含多个胁迫诱导元件,如光诱导元件、赤霉素、低温诱导元件、昼夜节律调控元件等。该序列的克隆与分析为进一步研究香蕉1,5-二磷酸核酮糖羧化/加氧酶小亚基基因的表达调控奠定了基础。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号