首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The purple chromoprotein (asFP595) from Anemonia sulcata belongs to the family of green fluorescent protein (GFP). Absorption and emission spectra of asFP595 are similar to those of a number of recently cloned GFP-like red proteins of the DsRed subfamily. The earlier proposed asFP595 chromophore structure [Martynov, V. I.; et al. (2001) J. Biol. Chem. 276, 21012-21016] was postulated to result from an "alternative cyclization" giving rise to a pyrazine-type six-membered heterocycle. Here we report that the asFP595 chromophore is actually very close in chemical structure to that of zFP538, a yellow fluorescent protein [Zagranichny, V. E.; et al. (2004) Biochemistry 43, 4764-4772]. NMR spectroscopic studies of four chromophore-containing peptides (chromopeptides) isolated under mild conditions from enzymatic digests of asFP595 and one chromopeptide obtained from DsRed revealed that all of them contain a p-hydroxybenzylideneimidazolinone moiety formed by Met-65/Gln-66, Tyr-66/67, and Gly-67/68 of asFP595/DsRed, respectively. Two asFP595 chromopeptides are proteolysis products of an isolated full-length polypeptide containing a GFP-type chromophore already formed and arrested at an earlier stage of maturation. The two other asFP595 chromopeptides were isolated as proteolysis products of the purified chromophore-containing C-terminal fragment. One of these has an oxo group at Met-65 C(alpha) and is a hydrolysis product of another one, with the imino group at Met-65 C(alpha). The N-unsubstituted imino moiety of the latter is generated by spontaneous polypeptide chain cleavage at a very unexpected site, the former peptide bond between Cys-64 C' and Met-65 N(alpha). Our data strongly suggest that both zFP538 and asFP595 could be attributed to the DsRed subfamily of GFP-like proteins.  相似文献   

2.
A model compound for the chromophore within the purple nonfluorescent GFP-like chromoprotein asFP595 was synthesized. The postulated structure of the chromophore, 2-acetyl-4-(p-hydroxybenzylidene)-1-methyl-5-imidazolone, was taken from the high-resolution crystal structure analysis of intact asFP595 [Quillin, M. L., Anstrom, D., Shu, X., O'Leary, S., Kallio, K., Lukyanov, K. A., and Remington, S. J. (2005) Kindling Fluorescent Protein from Anemonia sulcata: Dark-State Structure at 1.38 A Resolution, Biochemistry 44, 5774-5787]. Erlenmeyer lactonization and oxidation of the methylene group attached to the heteroaromatic moiety with selenium dioxide were used at the key stages of the synthesis. The spectral properties of the model chromophore in solution and their dependence on the pH and polarity of the solvent were investigated. In water, the chromophore was found to exist in two forms, neutral and anionic, with a pK(a) of 7.1. In a dimethylformamide solution, the spectral properties of the anionic form closely match those of the native protein, demonstrating that under these conditions, the compound is an excellent model for the chromophore within native asFP595.  相似文献   

3.
We have determined to 2.1 A resolution the crystal structure of a dark state, kindling fluorescent protein isolated from the sea anemone, Anemonia sulcata. The chromophore sequence Met(63)-Tyr(64)-Gly(65) of the A. sulcata chromoprotein was previously proposed to comprise a 6-membered pyrazine-type heterocycle (Martynov, V. I., Savitsky, A. P., Martynova, N. Y., Savitsky, P. A., Lukyanov, K. A., and Lukyanov, S. A. (2001) J. Biol. Chem. 276, 21012-21016). However, our crystallographic data revealed the chromophore to comprise a 5-membered p-hydroxybenzylideneimidazolinone moiety that adopts a non-coplanar trans conformation within the interior of the GFP beta-can fold. Unexpectedly, fragmentation of the polypeptide was found to occur within the chromophore moiety, at the bond between Cys(62C) and Met(63N1.) Our structural data reveal that fragmentation of the chromophore represents an intrinsic, autocatalytic step toward the formation of the mature chromophore within the specific GFP-like proteins.  相似文献   

4.
Here we present the study of the chromophore structure of the purple chromoprotein from Condylactis gigantea. Tandem mass spectrometry and 1H and 13C NMR of the chromopeptide reveal that the protein contains a chromophore with a chemical structure identical to that of the red fluorescent protein from Discosoma sp. A single A63G substitution demonstrates that the nature of the first amino acid of the XYG chromophore-forming sequence is dispensable for the chromoprotein red shift development. It has been recently proposed that post-translational reactions at the acylimine, a chemical group that accounts for the red fluorescence, might be an additional source of spectral diversity of proteins homologous to the Aequorea victoria green fluorescent protein (GFP). We have examined the reactivity of the chromophore acylimine group within the C. gigantea purple chromoprotein. Like other proteins with the acylimine-modified chromophore, the purple chromoprotein suffers a hypsochromic spectral shift to the GFP-like absorbance (386 nm) upon mild denaturation. NMR analysis of the chromopeptide suggests this hypsochromic spectral shift is due to H2O addition across the C=N bond of the acylimine. However, unlike the red fluorescent protein from Discosoma sp., denatured under harsh conditions, the wild-type chromoprotein exhibits only slight fragmentation, which is induced by complete hydrolysis of the acylimine. A model suggesting the influence of the amino acid X side chain on protein fragmentation is presented.  相似文献   

5.
A number of recently cloned chromoproteins homologous to the green fluorescent protein show a substantial bathochromic shift in absorption spectra. Compared with red fluorescent protein from Discosoma sp. (DsRed), mutants of these so-called far-red proteins exhibit a clear red shift in emission spectra as well. Here we report that a far-red chromoprotein from Goniopora tenuidens (gtCP) contains a chromophore of the same chemical structure as DsRed. Denaturation kinetics of both DsRed and gtCP under acidic conditions indicates that the red form of the chromophore (absorption maximum at 436 nm) converts to the GFP-like form (384 nm) by a one-stage reaction. Upon neutralization, the 436-nm form of gtCP, but not the 384-nm form, renaturates instantly, implying that the former includes a chromophore in its intact state. gtCP represents a single-chain protein and, upon harsh denaturing conditions, shows three major bands in SDS/PAGE, two of which apparently result from hydrolysis of an acylimine C=N bond. Instead of having absorption maxima at 384 nm and 450 nm, which are characteristic for a GFP-like chromophore, fragmented gtCP shows a different spectrum, which presumably corresponds to a 2-keto derivative of imidazolidinone. Mass spectra of the chromophore-containing peptide from gtCP reveal an additional loss of 2 Da relative to the GFP-like chromophore. Tandem mass spectrometry of the chromopeptide shows that an additional bond is dehydrogenated in gtCP at the same position as in DsRed. Altogether, these data suggest that gtCP belongs to the same subfamily as DsRed (in the classification of GFP-like proteins based on the chromophore structure type).  相似文献   

6.
The natural complex Neocarzinostatin comprises a labile chromophore noncovalently bound to an 11.2 kDa protein. We present the first high-resolution structure of a novel complex derived from the recombinant apoprotein bound to a non-natural synthetic chromophore. Fluorescence and nuclear magnetic resonance spectroscopy were used to probe the strength and location of binding. Binding occurred in a location similar to that observed for the chromophore in the natural Neocarzinostatin complex, but with a distinct orientation. These results provide structural evidence that the apoprotein can readily accommodate small druglike entities, other than the natural chromophore within its binding cleft. The clinical use of the natural complex described by others, together with the results reported here, suggests potential applications for small molecule binding by apo-Neocarzinostatin.  相似文献   

7.
The fluorescence from the purple membrane protein (PM) of Halobacterium halobium and its relation to the primary photochemical events have been studied. The emission spectrum at 77 degrees K has structure, with peaks at 680, 710-715, and 730-735 nm. The excitation spectrum shows a single peak centered at 580 nm. This and a comparison of the fluorescence intensity at 77 degrees K under a variety of conditions with the amounts of the bathoproduct (or K, the only photoproduct seen at this temperature) formed suggest that the source of the fluorescence is the purple membrane itself, not the photoproduct. From the difference in several of their properties, we suggest that the fluorescing state of the pigment is different from the excited state which leads to photoconversion.  相似文献   

8.
Anemonia elastase inhibitor (AEI) is a "nonclassical" Kazal-type elastase inhibitor from Anemonia sulcata. Unlike many nonclassical inhibitors, AEI does not have a cystine-stabilized alpha-helical (CSH) motif in the sequence. We chemically synthesized AEI and determined its three-dimensional solution structure by two-dimensional NMR spectroscopy. The resulting structure of AEI was characterized by a central alpha-helix and a three-stranded antiparallel beta-sheet of a typical Kazal-type inhibitor such as silver pheasant ovomucoid third domain (OMSVP3), even though the first and fifth half-cystine residues forming a disulfide bond in AEI are shifted both toward the C-terminus in comparison with those of OMSVP3. Synthesized AEI exhibited unexpected strong inhibition toward Streptomyces griseus protease B (SGPB). Our previous study [Hemmi, H., et al. (2003) Biochemistry 42, 2524-2534] demonstrated that the site-specific introduction of the engineered disulfide bond into the OMSVP3 molecule to form the CSH motif could produce an inhibitor with a narrower specificity. Thus, the CSH motif-containing derivative of AEI (AEI analogue) was chemically synthesized when a Cys(4)-Cys(34) bond was changed to a Cys(6)-Cys(31) bond. The AEI analogue scarcely inhibited porcine pancreatic elastase (PPE), even though it exhibited almost the same potent inhibitory activity toward SGPB. For the molecular scaffold, essentially no structural difference was detected between the two, but the N-terminal loop from Pro(5) to Ile(7) near the putative reactive site (Met(10)-Gln(11)) in the analogue moved by 3.7 A toward the central helix to form the introduced Cys(6)-Cys(31) bond. Such a conformational change in the restricted region correlates with the specificity change of the inhibitor.  相似文献   

9.
The RCSB protein databank contains 266 crystal structures of green fluorescent proteins (GFP) and GFP-like proteins. This is the first systematic analysis of all the GFP-like structures in the pdb. We have used the pdb to examine the function of fluorescent proteins (FP) in nature, aspects of excited state proton transfer (ESPT) in FPs, deformation from planarity of the chromophore and chromophore maturation. The conclusions reached in this review are that (1) The lid residues are highly conserved, particularly those on the "top" of the β-barrel. They are important to the function of GFP-like proteins, perhaps in protecting the chromophore or in β-barrel formation. (2) The primary/ancestral function of GFP-like proteins may well be to aid in light induced electron transfer. (3) The structural prerequisites for light activated proton pumps exist in many structures and it's possible that like bioluminescence, proton pumps are secondary functions of GFP-like proteins. (4) In most GFP-like proteins the protein matrix exerts a significant strain on planar chromophores forcing most GFP-like proteins to adopt non-planar chromophores. These chromophoric deviations from planarity play an important role in determining the fluorescence quantum yield. (5) The chemospatial characteristics of the chromophore cavity determine the isomerization state of the chromophore. The cavities of highlighter proteins that can undergo cis/trans isomerization have chemospatial properties that are common to both cis and trans GFP-like proteins.  相似文献   

10.
With the aid of 1H nuclear magnetic resonance (NMR) spectroscopy, the three-dimensional structure in aqueous solution was determined for ATX Ia, which is a 46 residue polypeptide neurotoxin of the sea anemone Anemonia sulcata. The input for the structure calculations consisted of 263 distance constraints from nuclear Overhauser effects (NOE) and 76 vicinal coupling constants. For the structure calculation several new or ammended programs were used in a revised strategy consisting of five successive computational steps. First, the program HABAS was used for a complete search of all backbone and chi 1 conformations that are compatible with the intraresidual and sequential NMR constraints. Second, using the program DISMAN, we extended this approach to pentapeptides by extensive sampling of all conformations that are consistent with the local and medium-range NMR constraints. Both steps resulted in the definition of additional dihedral angle constraints and in stereospecific assignments for a number of beta-methylene groups. In the next two steps DISMAN was used to obtain a group of eight conformers that contain no significant residual violations of the NMR constraints or van der Waals contacts. Finally, these structures were subjected to restrained energy refinement with a modified version of the molecular mechanics module of AMBER, which in addition to the energy force field includes potentials for the NOE distance constraints and the dihedral angle constraints. The average of the pairwise minimal RMS distances between the resulting refined conformers calculated for the well defined molecular core, which contains the backbone atoms of 35 residues and 20 interior side chains, is 1.5 +/- 0.3 A. This core is formed by a four-stranded beta-sheet connected by two well-defined loops, and there is an additional flexible loop consisting of the eleven residues 8-18. The core of the protein is stabilized by three disulfide bridges, which are surrounded by hydrophobic residues and shielded on one side by hydrophilic residues.  相似文献   

11.
1. Radioactive derivatives of neurotoxin I (ATX I) from Anemonia sulcata have been synthesized: Iodination of ATX I with 125I yielded a mixture of reaction products from which monoiodo and diiodo ATX I were isolated. 2. 125I-ATX I was shown to bind to the axonal membrane from Astacus leptodactylus main walking nerve. Specificity of binding was shown by saturability of the binding sites and by competitive binding of native and radioactive toxin. 3. Astacus nerve bound 44 fmol of 125I-ATX I/mg nerve (wet weight). The axonal membrane surface of the nerve was determined to be 7800 cm2/g nerve. This amounts to a binding site density of around 35/mu2 axonal surface. Binding was not inhibited by tetrodotoxin, the blocker of the selectivity filter of voltage-dependent sodium channels. 125I-ATX I therefore may bind to the sodium channel-inactivating gate. 4. The affinity of the nerve membrane receptors for 125I-ATX I appears to be voltage-dependent: KD = 5 nM was found with whole crayfish nerves in the presence of tetrodotoxin, KD = 40nM in the absence of tetrodotoxin and an even lower affinity was obtained with axonal membrane fragments isolated from the nerve. Drugs destabilizing the membrane potential, e.g. veratridine, ouabain and sodium azide lowered the affinity or abolished binding completely.  相似文献   

12.
13.
P R Gooley  R S Norton 《Biopolymers》1986,25(3):489-506
The assignment of a large number of resonances in the 300-MHz 1H-nmr spectrum of the polypeptide neurotoxin Anemonia sulcata toxin I is described. The initial identification of spin systems is made using both one- and two-dimensional nmr spectra. The subsequent assignment of these spin systems to specific residues in the molecule is based largely on the observation in two-dimensional spectra of through-space connectivities between Hα and NH resonances from adjacent residues in the amino acid sequence. Using these techniques, the full spin systems of 22 residues are specifically assigned, together with partial assignments for a further 8. Many of the spin systems from the remaining 16 residues have been defined, although not yet specifically assigned. From the pattern of through-space connectivities between protons from adjacent residues in the sequence, some inferences may be drawn concerning the secondary structure of this polypeptide in aqueous solution.  相似文献   

14.
Resonance Raman data on bathorhodopsin (bovine and squid) at 95,77, and 4 degrees K support a mechanism of excitation proposed by Lewis in which both a protein conformational transition and chromophore structural alteration to a "dicisoid" configuration are required to generate the bathorhodopsin species observed in steady-state photostationary mixtures. However, these results also suggest that the molecular structure with a red-shifted chromophore absorption detected at room temperatures in 1 ps using picosecond absorption spectroscopy may not necessarily have the same chromophore conformation as the steady-state bathorhodopsin species.  相似文献   

15.
16.
Site-directed mutagenesis was performed with the chromophore-bearing N-terminal domain of oat phytochrome A apoprotein (amino acid residues 1-595). Except for Trp366, which was replaced by Phe (W366F), all the residues exchanged are in close proximity to the chromophore-binding Cys321 (i.e. P318A, P318K, H319L, S320K, H322L and the double mutant L323R/Q324D). The mutants were characterized by their absorption maxima, and the kinetics of chromophore-binding and the Pr-->Pfr conversion. The strongest effect of mutation on the chromoprotein assembly, leading to an almost complete loss of the chromophore binding capability, was found for the exchanges of His322 by Leu (H322L) and Pro318 by Lys (P318K), whereas a corresponding alanine mutant (P318A) showed wild-type behavior. The second histidine (H319) is also involved in chromophore fixation, as indicated by a slower assembly rate upon mutation (H319L). For the other mutants, an assembly process very similar to that of the wild-type protein was found. The light-induced Pr-->Pfr conversion kinetics is altered in the mutations H319L and S320K and in the double mutant L323R/Q324D, all of which exhibited a significantly faster I700 decay and accelerated Pfr formation. P318 is also involved in the Pr-->Pfr conversion, the millisecond steps (formation of Pfr) being significantly slower for P318A. Lacking sufficient amounts of W366F, assembly kinetics could not be determined in this case, while the fully assembled mutant underwent the Pr-->Pfr conversion with kinetics similar to wild-type protein.  相似文献   

17.
ATX II is a toxin extracted from tentacles of Anemonia sulcata. It was known that this protein displays neurotoxic effects on frog isolated neuromuscular preparation (Fig. 1, 2) and that muscular contractures observed with ATX II are blocked by d-tubocurarine (Fig. 3) or on a 40-days-denervated gastrocnemius (Fig. 4). Part of these experiments has already appeared. 1. These effects of ATX II depend on calcium concentration in the bathing medium, as is the case for transmitter release. The same results were observed when we substituted strontium to calcium. 2. On an intact sciatic sartorius preparation, ATX II does not act on the amplitude of the miniature endplate potentials (mepps, Fig. 6). The muscular action potential is not modified by this toxin. 3. ATX II increases the frequency of the mepps (Fig. 5). The evoked transmitter release (quantal content) after ATX II is also largely increased (Fig. 7). 4. In conclusion, it is suggested that ATX II acts indirectly on the muscle through an increase in acetylcholine release from the motor nerve terminals.  相似文献   

18.
The effect of the purple acid phosphatases with binuclear iron centers (uteroferrin and bovine spleen phosphatase) on hydroxyl radical formation by iron-catalyzed Haber-Weiss-Fenton chemistry has been compared to that of lactoferrin and transferrin. Using 5,5-dimethyl-1-pyrroline-1-oxide to detect superoxide and hydroxyl radicals and the xanthine-xanthine oxidase system to generate superoxide and hydrogen peroxide, we have observed by ESR spectroscopy that both phosphatases were able to promote hydroxyl radical formation. Lactoferrin and transferrin were found incapable of giving rise to these reactive species. This can be explained by the fact that lactoferrin and transferrin carry two Fe(III) atoms per molecule, neither of which are readily reduced by biological reductants. In contrast, the phosphatases possess a binuclear iron center in which one of the iron atoms is stabilized in the ferric state, but the other freely undergoes one-electron redox reactions. The redox-active iron may act as a catalyst of the Haber-Weiss-Fenton sequence, thus enabling the reactions generating hydroxyl radical to proceed. The iron complex of diethylenetriamine penta-acetic acid, also redox active, was investigated and found as well to promote Haber-Weiss-Fenton chemistry.  相似文献   

19.
Evolutionary trees based on partial small ribosomal subunit RNA sequences of 22 metazoa species have been published [(1988) Science 239, 748-753]. In these trees, cnidarians (Radiata) seemed to have evolved independently from the Bilateria, which is in contradiction with the general evolutionary view. In order to further investigate this problem, the complete srRNA sequence of the sea anemone Anemonia sulcata was determined and evolutionary trees were constructed using a matrix optimization method. In the tree thus obtained the sea anemone and Bilateria together form a monophyletic cluster, with the sea anemone forming the first line of the metazoan group.  相似文献   

20.
The sequential resonance assignment of the 1H NMR spectrum of the antihypertensive and antiviral protein BDS-I from the sea anemone Anemonia sulcata is presented. This is carried out with two-dimensional NMR techniques to identify through-bond and through-space (less than 5 A) connectivities. Added spectral complexity arises from the fact that the sample is an approximately 1:1 mixture of two BDS-I isoproteins, (Leu-18)-BDS-I and (Phe-18)-BDS-I. Complete assignments, however, are obtained, largely due to the increased resolution and sensitivity afforded at 600 MHz. In addition, the stereospecific assignment of a large number of beta-methylene protons is achieved from an analysis of the pattern of 3J alpha beta coupling constants and the relative magnitudes of intraresidue NOEs involving the NH, C alpha H, and C beta H protons. Regular secondary structure elements are deduced from a qualitative interpretation of the nuclear Overhauser enhancement, 3JHN alpha coupling constant, and amide NH exchange data. A triple-stranded antiparallel beta-sheet is found to be related to that found in partially homologous sea anemone polypeptide toxins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号