首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Comparative RFLP linkage maps were constructed using five segregating populations derived from two self-incompatible lines (termed PI 230582 and PI 458314) of diploid tuber-bearing Solanum chacoense Bitt. The analysis was based on 84 RFLP loci identified by 73 different cDNA clones. Distortion of expected Mendelian segregation ratios was observed; less than 10% of the markers showed a skewed segregation in the gametes forming the F1, hybrid population compared with 30% in the selfed population and 46 and 70% in the two populations produced by anther culture. For the anther culture derived populations, most of the skewed loci were scattered throughout the genome, whereas in the populations derived from selfing, they were found primarily in linkage group 1, around the S locus. In this study, we also found that the rate of meiotic recombination could differ between the male and female gametes produced by our parental lines. Thus, male gametes of line PI 458314 showed significantly less recombination as assessed by the total length of the map (206 cM for male gametes vs. 375 cM for female gametes) and the phenomenon was genome-wide. In contrast, the maps from the gametes of PI 230582 had about the same length, but some linkage groups were longer in the female gametes, while others were longer in the male gametes. Key words : Solanum chacoense, RFLP, anther culture, skewed segregation, self-incompatibility, sex differences in recombination.  相似文献   

2.
3.
We present the first genetic linkage maps of Sinapis alba (white mustard) and a rigorous analysis of sex effects on the frequency and distribution of crossovers at meiosis in this species. Sex-averaged maps representing recombination in two highly heterozygous parents were aligned to give a consensus map consisting of 382 loci defined by restriction fragment length polymorphisms and arranged in 12 linkage groups with no unlinked markers. The loci were distributed in a near-random manner across the genome, and there was little evidence of segregation distortion. From these dense maps, a subset of spaced informative markers was used to establish recombination frequencies assayed separately in male and female gametes and derived from two distinct genetic backgrounds. Analyses of 746 gametes indicated that recombination frequencies were greater in male gametes, with the greatest differences near the ends of linkage groups. Genetic background had a lesser effect on recombination frequencies, with no discernible pattern in the distribution of such differences. The possible causes of sex differences in recombination frequency and the implications for plant breeding are discussed.  相似文献   

4.
The Oregon Wolfe Barley mapping population is a resource for genetics research and instruction. Prior reports are based on a population of doubled haploid (DH) lines developed by the Hordeum bulbosum (H.b.) method, which samples female gametes. We developed new DH lines from the same cross using anther culture (A.C.), which samples male gametes. Linkage maps were generated in each of the two subpopulations using the same 1,328 single nucleotide polymorphism markers. The linkage maps based on DH lines derived from the products of megasporogeneis and microsporogenesis revealed minor differences in terms of estimated recombination rates. There were no differences in locus ordering. There was greater segregation distortion in the A.C.-derived subpopulation than in the H.b.-derived subpopulation, but in the region showing the greatest distortion, the cause was more likely allelic variation at the ZEO1 plant height locus rather than to DH production method. The effects of segregation distortion and pleiotropy had greater impacts on estimates of quantitative trait locus effect than population size for reproductive fitness traits assayed under greenhouse conditions. The Oregon Wolfe Barley (OWB) population and data are community resources. Seed is available from three distribution centers located in North America, Europe, and Asia. Details on ordering seed sets, as well as complete genotype and phenotype data files, are available at http://wheat.pw.usda.gov/ggpages/maps/OWB/.  相似文献   

5.
Chromosomal regions associated with marker segregation distortion in rice were compared based on six molecular linkage maps. Mapping populations were derived from one interspecific backcross and five intersubspecific (indica?/?japonica) crosses, including two F2 populations, two doubled haploid (DH) populations, and one recombinant inbred (RI) population. Mapping data for each population consisted of 129–629 markers. Segregation distortion was determined based on chi-square analysis (P?<?0.01) and was observed at 6.8–31.8% of the mapped marker loci. Marker loci associated with skewed allele frequencies were distributed on all 12 chromosomes. Distortion in eight chromosomal regions bracketed previously identified gametophyte (ga) or sterility genes (S). Distortion in three other chromosomal regions was found only in DH populations, where japonica alleles were over-represented, suggesting that loci in these regions may be associated with preferential regeneration of japonica genotypes during anther culture. Three additional clusters of skewed markers were observed in more than one population in regions where no gametophytic or sterility loci have previously been reported. A total of 17 segregation distortion loci may be postulated based on this study and their locations in the rice genome were estimated.  相似文献   

6.
Summary Comparisons were made between the genetic means and variances of a quantitative trait determined by 8 loci in simulated populations of lines derived by diploidizing haploids (DH) on the one hand and by single seed descent (SSD) on the other.In the absence of linkage no differences between the populations were observed, but when linkage was present, recombination was more frequent in the SSD populations as indicated by the relative differences in variance between these and the DH populations. In addition, differences in means between the populations derived by the two methods were observed when non-allelic interaction was present. The direction and magnitude of the differences in both means and variances depended upon the linkage phase, the recombination frequency and the presence or absence of interaction.The conclusion was drawn that the SSD method was to be preferred from theoretical considerations although in practice the choice of method will also depend upon practical and technical factors.  相似文献   

7.
An F1 individual derived from a cross between two distinct lines of spring oilseed rape (Brassica napus) was used to produce a pair of complementary backcross populations, each consisting of 90 individuals. The F1 donated male gametes to the Male population and female gametes to the Female population. Genetic maps were generated from both populations and aligned using 117 common loci to form an integrated genome map of B. napus with 243 RFLP-defined loci. A comparison of the frequency and distribution of crossovers in the two populations of F1 gametes (assayed in the Male and Female populations) detected no differences. The genetic maps derived from the Male and Female populations each consisted of 19 linkage groups spanning 1544 and 1577 cM, respectively. The maps were aligned with other B. napus maps, and all 19 equivalent linkage groups were unambiguously assigned. The genetic size and general organisation of the new maps were comparable with those of pre-existing B. napus maps in most respects, except that the levels of polymorphism in the constituent A and C genomes were unusually similar in the new cross.  相似文献   

8.
Chromosomal regions associated with marker segregation distortion in rice were compared based on six molecular linkage maps. Mapping populations were derived from one interspecific backcross and five intersubspecific (indica / japonica) crosses, including two F2 populations, two doubled haploid (DH) populations, and one recombinant inbred (RI) population. Mapping data for each population consisted of 129–629 markers. Segregation distortion was determined based on chi-square analysis (P < 0.01) and was observed at 6.8–31.8% of the mapped marker loci. Marker loci associated with skewed allele frequencies were distributed on all 12 chromosomes. Distortion in eight chromosomal regions bracketed previously identified gametophyte (ga) or sterility genes (S). Distortion in three other chromosomal regions was found only in DH populations, where japonica alleles were over-represented, suggesting that loci in these regions may be associated with preferential regeneration of japonica genotypes during anther culture. Three additional clusters of skewed markers were observed in more than one population in regions where no gametophytic or sterility loci have previously been reported. A total of 17 segregation distortion loci may be postulated based on this study and their locations in the rice genome were estimated. Received: 31 May 1996 / Accepted: 30 September 1996  相似文献   

9.
Segregation distortion can negatively impact on gains expected using selection. In order to increase our understanding of genetic factors that may influence the extent and direction of segregation distortion, segregation distortion analyses were conducted in four different doubled haploid (DH) populations. A high-density composite map of barley was then constructed by integrating information from the four populations. The composite map contained 2,111 unique loci, comprising RFLP, SSR and DArT markers and spanned 1,136 cM. In the four populations investigated, the proportion of markers with segregation distortion ranged from 15 to 38%, depending on the population. The highest distortion was observed in populations derived by the microspore culture technique. Distorted loci tended to be clustered, which allowed definition of segregation distortion regions (SDRs). A total of 14 SDRs were identified in the 4 populations. Using the high-density composite map, several SDRs were shown to have consistent map locations in two or more populations; one SDR on chromosome 1H was present in all four populations. The analysis of haplotypes underlying seven SDRs indicated that in three cases the under-represented haplotypes were common across populations, but for four SDRs the under-represented haplotypes varied across populations. Six of the seven centromeric regions harboured SDRs suggesting that genetic processes related to position near a centromere caused the segregation distortion in these SDRs. Other SDRs were most likely due to the methods used to produce the DH populations. The association of the SDRs identified in this study and some of the genes involved in the process of haploid production described in other studies were compared. The composite map constructed in this study provides an additional resource for the barley community via increased genome coverage and the provision of additional marker options. It has also enabled further insights into mechanisms that underpin segregation distortion.  相似文献   

10.
籼粳杂种双单倍体的配子选择   总被引:6,自引:1,他引:5  
陈英  徐云碧 《遗传学报》1997,24(4):322-329
对典型的灿与粳稻杂种,窄叶青8号/京系17F1花药进行培养获得的132个双单倍体的形态特性、同工酶与RFLP标记的分离与重组进行了考察分析,研究是否存在配子选择问题。结果表明:(1)对4个重要数量性状和6个涉及籼、粳特征的形态指数进行考察所获数据均为连续分布,并呈正态曲线;(2)用8种同工酶对52个DH系分析结果表明,只有2种同工酶显著偏离期望的1:1比率,而灿与粳的总基因型比率相近;(3)应用167个RFLP标记对132个DH系进行的分析发现,有36%标记发生偏分离,但偏籼与偏粳的比率相近,两个亲本基因组在DH群体中所占比率相同(各50%),各种基因组成呈正态分布。综上所述,本研究虽观察到一些轻微偏分离现象,但籼粳基因基本上随机分离与重组,等位基因总频率未偏离1:1比率。  相似文献   

11.
Summary Female gametophytes of knobcone pine were used to study genetic variation at 58 loci in 26 enzyme systems. Mendelian segregation and linkage were tested at 21 loci. Got1, Pgi2, Mnr3, Adh2, and Lap2 were linearly arrayed in a single linkage group. Est and Acp3, and Flest and Lap1, formed two independent linkage groups. Although Mendelian segregation was the rule, several cases of segregation distortion were observed. Pooled over trees, Lap1 and Aap1 showed significant distortion. Of 11 cases of distortion observed for individual trees, 10 showed an excess of common alleles. Pooled over both loci and trees, giving a total sample of 17,183 gametes, the common alleles were significantly overrepresented by 1.1%, and heterogeneity was highly significant. Our results, and others in the literature, suggest that segregation distortion may affect the genetic structure of conifer populations.  相似文献   

12.
Segregation patterns of polymorphic simple sequence repeat (SSR) primer pairs were investigated in monoploid potato families derived from anther culture. A total of 14 primers developed from the sequences in the database, as well as from a genomic library of potato, was used. Distorted segregation was observed for seven (50%) polymorphic loci among monoploids derived from an interspecific hybrid. Similar distortion was observed for only one of five loci that could be contrasted between the two monoploid families. Segregation distortion was less common in the sexually derived backcross population between the interspecific hybrid and either of its parents. One locus could be putatively linked to a lethal allele because it showed distorted segregation in both monoploid families, a group of 70 heterozygous diploids derived from unreduced gametes through anther culture, and a backcross population. These diploids were used to map the polymorphic SSR markers with respect to the centromeres using half-tetrad analysis. The majority of the SSR loci mapped more than 33 cM from the centromere, suggesting the occurrence of a single crossover per chromosome arm.  相似文献   

13.
Two complex populations derived from the salt-tolerant citrus rootstock Cleopatra mandarin were used to investigate (1) the genomic regions affected by segregation distortion and (2) gene segregation heterogeneity and their causes and to obtain (3) a Citrus reshni linkage map to genetically analyze (4) the duration of the juvenility period and the seed embryony type. Both populations differed in the extent and origin of segregation distortion. The population derived from the cross between C. reshni and Poncirus trifoliata (R?×?Pr) showed 75?% of codominant markers with distorted segregation. The origin of this distortion was prezygotic in most cases. Meanwhile, 100?% of codominant markers in the self-pollinated population [F2(R?×?Pr)] showed genotypic distortion, and the origin of such distortion was mostly postzygotic, with the heterozygote being the most frequent genotype in all cases. In the R?×?Pr population, where two pollinator varieties were used, allele segregation was significantly heterogeneous not only in P. trifoliata (28.6?% of markers) but also in C. reshni (19.5?%). The results on segregation heterogeneity in the F2(R?×?Pr) suggest the presence at linkage group 4c of a postfertilization system of balanced lethal factors that reduces homozygosis in self-compatible hybrids. Four low to medium contributing quantitative trait loci (QTLs) were detected for the duration of juvenility period by both Kruskal?CWallis and interval mapping methodologies. For seed embryony type, three QTLs were detected by both methodologies, with the previously reported Apo2 being the QTL contributing the most. CR14,290 and TAA15 are good markers for early selection of polyembryonic rootstocks in progenies derived from C. reshni, Citrus aurantium, and Citrus volkameriana.  相似文献   

14.
 Distorted segregation has been repeatedly observed in various plant species in molecular-marker linkage mapping where distant crosses were made. It may be caused by a partial lethal-factor acting in the filial generations. A method is presented for estimating the recombination values between a partial lethal-factor locus and a linked molecular marker and the relative viability or fertilization ability of zygotes or gametes, respectively affected by the partial lethal factor in backcross (BC) and doubled-haploid (DH) populations using the maximum-likelihood method associated with the expectation maximization (EM) algorithm. The method was applied to segregation data of molecular markers for a population of 150 DH lines developed from the ‘Steptoe’בMorex’ cross in barley. The presence of a partial lethal-factor locus, located on chromosome 4, causing partial selection was suggested. This locus was tightly linked to the ABG500B marker, and the chance of fertilization of female gametes possessing the partial lethal factor was, on average, 59.8% that of a normal one. Two additional partial lethal factors were found on chromosome 5. Received: 3 December 1997 / Accepted: 25 February 1998  相似文献   

15.
Genetic factors controlling tolerance to the herbicide Alachlor in maize were localised by means of two different strategies. In the first approach, backcross (BC) plants, derived from pollen which had been subjected to selective pressure for resistance to the herbicide, were analysed for segregation distortion at 47 RFLP loci and compared to BC plants obtained from non-selected pollen. Preferential transmission of five chromosomal regions where putative QTLs (Quantitative Trait Loci) are localised was revealed in the BC plants from selected pollen. A second approach was based on a classical linkage analysis for segregation of the same set of RFLPs and factors controlling the trait, in a BC population of 210 individuals, by means of regression analysis. This study detected seven significant loci in four genomic regions. Overall, two loci revealed both segregation distortion and association with the expression of the trait, indicating linkage to genes expressed in both gametophytic and sporophytic phase. Three chromosomal regions appeared to carry factors involved in plant tolerance to Alachlor which are not expressed in pollen. Conversely, three loci were linked to factors selectable in pollen, but did not reveal significant association with tolerance in the plant in the segregating populations.  相似文献   

16.
不同作图群体对显隐性分子标记位点的作图效率   总被引:2,自引:0,他引:2  
根据位点组合和位点的有效性,发展了一种对使用3种不同的作用图群体作图显隐性分子标记的作图效率评价方法,应用该方法所评价的结果是,双单倍体(DH)群体的作图效率最高,自交群体(F2群体)与回交群体的作图效率相同,因此使用双单倍体群体作图不仅所用费用低,而且作图速度快,但只有在极少数植物中能获得双单倍体群体,对于那些不能获得双单倍体的动植物物种而言,可使用自交群体或回交群体作图。如果作高密度的分子标记  相似文献   

17.
Recombinant populations were the basis for Mendel's first genetic experiments and continue to be key to the study of genes, heredity, and genetic variation today. Genotyping several hundred thousand loci in a single assay by hybridizing genomic DNA to oligonucleotide arrays provides a powerful technique to improve precision linkage mapping. The genotypes of two accessions of Arabidopsis were compared by using a 400,000 feature exon-specific oligonucleotide array. Around 16,000 single feature polymorphisms (SFPs) were detected in ~8,000 of the ~26,000 genes represented on the array. Allelic variation at these loci was measured in a recombinant inbred line population, which defined the location of 815 recombination breakpoints. The genetic linkage map had a total length of 422.5 cM, with 676 informative SFP markers representing intervals of ~0.6 cM. One hundred fifteen single gene intervals were identified. Recombination rate, SFP distribution, and segregation in this population are not uniform. Many genomic regions show a clustering of recombination events including significant hot spots. The precise haplotype structure of the recombinant population was defined with unprecedented accuracy and resolution. The resulting linkage map allows further refinement of the hundreds of quantitative trait loci identified in this well-studied population. Highly variable recombination rates along each chromosome and extensive segregation distortion were observed in the population.  相似文献   

18.
The combined use of doubled haploid lines and molecular markers can provide new genetic information for use in breeding programs. An F1-derived doubled haploid (DH) population of Brassica napus obtained from a cross between an annual canola cultivar (Stellar) and a biennial rapeseed (Major) was used to construct a linkage map of 132 restriction fragment length polymorphism loci. The marker loci were arranged into 22 linkage groups and six pairs of linked loci covering 1016 cM. The DH map was compared to a partial map constructed with a common set of markers for an F2 population derived from the same F1 plant, and the overall maps were not significantly different. Comparisons of maps in Brassica species suggest that less recombination occurs in B. napus (n = 19) than expected from the combined map distances of the two hypothesized diploid progenitors, B. oleracea (n = 9) and B. rapa (n=10). A high percentage (32%) of segregating marker loci were duplicated in the DH map, and conserved linkage arrangements of some duplicated loci indicated possible intergenome homoeology in the amphidiploid or intragenome duplications from the diploid progenitors. Deviation from Mendelian segregation ratios (P < 0.05) was observed for 30% of the marker loci in the DH population and for 24% in the F2 population. Deviation towards each parent occurred at equal frequencies in both populations and marker loci that showed deviation clustered in specific linkage groups. The DH lines and molecular marker map generated for this study can be used to map loci for agronomic traits segregating in this population. Present address Embrapa/Cenargen, C.P. 0.2372, CEP 70.770, Brasilia DF, Brazil  相似文献   

19.
Chromosomal regions associated with segregation distortion in maize   总被引:30,自引:0,他引:30  
Segregation distortion skews the genotypic frequencies from their Mendelian expectations. Our objectives in this study were to assess the frequency of occurrence of segregation distortion in maize, identify chromosomal regions consistently associated with segregation distortion, and examine the effects of gametophytic factors on linkage mapping. We constructed a simple sequence repeat (SSR) linkage map for a LH200/LH216 F2Syn3 (i.e., random-mated three times) population, and compared the segregation distortion in this map with the segregation distortion in three published linkage maps. Among 1,820 codominant markers across the four mapping populations, 301 (17%) showed segregation distortion (P < 0.05). The frequency of markers showing segregation distortion ranged from 19% in the Tx303/CO159 mapping population to 36% in the B73/Mo17 mapping population. A positive relationship was found between the number of meioses and the frequency of segregation distortion detected in a population. On a given chromosome, nearly all of the markers showing segregation distortion favored the allele from the same parent. A total of 18 chromosomal regions on the ten maize chromosomes were associated with segregation distortion. The consistent location of these chromosomal regions in four populations suggested the presence of segregation distortion regions (SDRs). Three known gametophytic factors are possible genetic causes of these SDRs. As shown in previous research, segregation distortion does not affect the estimate of map distance when only one gametophytic factor is present in an SDR.  相似文献   

20.
C M Kreike  W J Stiekema 《Génome》1997,40(2):180-187
In this paper we describe the reduced recombination and distorted segregation in an interspecific hybrid between Solanum tuberosum and Solanum spegazzinii. To study these phenomena, a cross was made between a (di)haploid S. tuberosum, used as a female parent, and a diploid wild potato species, S. spegazzinii, used as a male parent. Next, a backcross (BC) population was made with F1 genotype 38 that was backcrossed to S. tuberosum. In the backcross, S. tuberosum was used as the male parent. RFLP linkage maps were made using the F1 and the BC populations, yielding linkage maps of the interspecific hybrid, S. spegazzinii, and S. tuberosum from which male and female linkage maps could be constructed. The computer program JOINMAP was used to construct and combine the separate linkage maps. Subsequently, the separate linkage maps were compared with each other, and reduced recombination was observed in the linkage maps of the male S. tuberosum and the interspecific hybrid. The reason for this reduced recombination is discussed. Another common feature in linkage maps is the observation of distorted segregation. The distorted segregation of alleles from the interspecific hybrid was studied in more detail in the BC population. Most of the distortion was probably caused by gamete selection, but for 3 loci, on chromosomes 2, 3, and 4, we found evidence for the presence of a strong selection force acting at the zygote level against homozygous genotypes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号