首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The objective of this study was to examine the mechanism by which conjugated linoleic acid (CLA) reduces body fat. Young male mice were fed three combinations of fatty acids at three doses (0.06%, 0.2%, and 0.6%, w/w) incorporated into AIN76 diets for 7 weeks. The types of fatty acids were linoleic acid (control), an equal mixture of trans-10, cis-12 (10,12) CLA plus linoleic acid, and an equal isomer mixture of 10,12 plus cis-9, trans-11 (9,11) CLA. Mice receiving the 0.2% and 0.6% dose of 10,12 CLA plus linoleic acid or the CLA isomer mixture had decreased white adipose tissue (WAT) and brown adipose tissue (BAT) mass and increased incorporation of CLA isomers in epididymal WAT and liver. Notably, in mice receiving 0.2% of both CLA treatments, the mRNA levels of genes associated with browning, including uncoupling protein 1 (UCP1), UCP1 protein levels, and cytochrome c oxidase activity, were increased in epididymal WAT. CLA-induced browning in WAT was accompanied by increases in mRNA levels of markers of inflammation. Muscle cytochrome c oxidase activity and BAT UCP1 protein levels were not affected by CLA treatment. These data suggest a linkage between decreased adiposity, browning in WAT, and low-grade inflammation due to consumption of 10,12 CLA.  相似文献   

2.
Brown adipose tissue (BAT) consists of highly metabolically active adipocytes that catabolize nutrients to produce heat. Playing an active role in triacylglycerol (TAG) clearance, research has shown that dietary fatty acids can modulate the TAG chemistry deposition in BAT after weeks-long dietary intervention, similar to what has been shown in white adipose tissue (WAT). Our objective was to compare the influence of sustained, nonchronic dietary intervention (a 1-week interval) on WAT and interscapular BAT lipid metabolism and deposition in situ. We use quantitative, label-free chemical microscopy to show that 1 week of high fat diet (HFD) intervention results in dramatically larger lipid droplet (LD) growth in BAT (and liver) compared to LD growth in inguinal WAT (IWAT). Moreover, BAT showed lipid remodeling as increased unsaturated TAGs in LDs, resembling the dietary lipid composition, while WAT (and liver) did not show lipid remodeling on this time scale. Concurrently, expression of genes involved in lipid metabolism, particularly desaturases, was reduced in BAT and liver from HFD-fed mice after 1 week. Our data show that BAT lipid chemistry remodels exceptionally fast to dietary lipid intervention compared WAT, which further points towards a role in TAG clearance.  相似文献   

3.
Brown adipose tissue (BAT) is a thermogenic organ with a vital function in small mammals and potential as metabolic drug target in humans. By using high-resolution LC-tandem-mass spectrometry, we quantified 329 lipid species from 17 (sub)classes and identified the fatty acid composition of all phospholipids from BAT and subcutaneous and gonadal white adipose tissue (WAT) from female and male mice. Phospholipids and free fatty acids were higher in BAT, while DAG and TAG levels were higher in WAT. A set of phospholipids dominated by the residue docosahexaenoic acid, which influences membrane fluidity, showed the highest specificity for BAT. We additionally detected major sex-specific differences between the BAT lipid profiles, while samples from the different WAT depots were comparatively similar. Female BAT contained less triacylglycerol and more phospholipids rich in arachidonic and stearic acid whereas another set of fatty acid residues that included linoleic and palmitic acid prevailed in males. These differences in phospholipid fatty acid composition could greatly affect mitochondrial membranes and other cellular organelles and thereby regulate the function of BAT in a sex-specific manner.  相似文献   

4.
Lipogenic response to feeding was measured in vivo in liver, epididymal white adipose tissue (WAT) and interscapular brown adipose tissue (BAT), during the development of obesity in gold-thioglucose (GTG)-injected mice. The fatty acid synthesis after a meal was higher in all tissues of GTG-treated mice on a total-tissue basis, but the magnitude of this increase varied, depending on the tissue and the time after the initiation of obesity. Lipogenesis in BAT from GTG mice was double that of control mice for the first 2 weeks, but subsequently decreased to near control values. In WAT, lipogenesis after feeding was highest 2-4 weeks after GTG injection, and in liver, lipid synthesis in fed obese mice was greatest at 7-12 weeks after the induction of obesity. The post-prandial insulin concentration was increased after 2 weeks of obesity, and serum glucose concentration was higher in fed obese mice after 4 weeks. These results indicate that increased lipogenesis in GTG-injected mice may be due to an increase in insulin concentration after feeding and that insulin resistance (assessed by lipogenic response to insulin release) is apparent in BAT before WAT and liver.  相似文献   

5.
The aim of this study was to determine the time-course incorporation of dietary n-3 polyunsaturated fatty acids into phospholipids of tissues highly involved in lipid and energy metabolism: the liver and the white (WAT) and brown (BAT) adipose tissues. Rats were fed a diet supplemented with 19% fish oil for up to 4 weeks. Minor changes in the relative proportions of tissue phospholipids were observed in the three tissues. Fish-oil feeding induced rapid and large replacements of n-6 fatty acids by n-3 fatty acids. In liver, the 22:6n-3 level increased progressively and reached a plateau after 3 (phosphatidylethanolamine and phosphatidylserine) or 7 days (phosphatidylcholine and phosphatidylinositol). In contrast, the 20:5n-3 level transiently peaked in all liver phospholipids at days 1–3 before reaching a plateau after day 7. In WAT as in BAT the level of n-3 fatty acids increased progressively and reached in all phospholipids a plateau after day 7. As a general trend, in each phospholipid class the 22:6n-3/20:5n-3 ratio was higher in liver than in the two adipose tissues. This study shows that each dietary n-3 fatty acid is incorporated very rapidly into liver, WAT, and BAT phospholipids but according to time courses and at levels that depend simultaneously on the tissue and phospholipid class considered.  相似文献   

6.
7.
8.
Agonists of the peroxisome proliferator-activated receptor gamma (PPARgamma) are insulin sensitizers that potently improve lipemia in rodents. This study aimed to determine the contribution of lipid secretion vs. clearance and the involvement of white adipose tissue (WAT) and brown adipose tissue (BAT) in the rapid hypolipidemic action of PPARgamma agonism. Male rats were treated with rosiglitazone (RSG; 15 mg x kg(-1) x day(-1)) for 1 to 4 days, and determinants of lipid metabolism were assessed postprandially. Serum triglycerides (TG) were lowered (-54%) after 3 days of RSG treatment, due to accelerated clearance from blood without contribution of changes in secretion rates. Both BAT and WAT were the major sites of RSG action on TG clearance, the increase in TG-derived fatty acid (FA) uptake reaching threefold in BAT and 60-90% in WAT depots. Accelerated TG clearance was associated with increased lipoprotein lipase (LPL) activity mostly in BAT. Serum nonesterified FA were lowered (-20%) by a single dose of RSG, an effect associated with increased expression levels of FA binding/transport (fatty acid binding protein-4), esterification (diacylglycerol acyltransferase-1), and recycling glycerol kinase and phosphoenolpyruvate carboxykinase enzymes in BAT and WAT, suggesting FA trapping. After 4 days of RSG treatment, nonesterified fatty acid (NEFA) uptake was also stimulated in both BAT (2.5-fold) and WAT (40%). These findings demonstrate the causal involvement of increased efficiency of LPL-mediated TG clearance and reveal the important contribution of TG-derived and albumin-bound FA uptake by BAT in the rapid hypolipidemic action of PPARgamma agonism in the rat.  相似文献   

9.
为探究冷驯化条件下中缅树鼩(Tupaia belangeri)白色脂肪组织(WAT)和褐色脂肪组织(BAT)的差异代谢物变化,本研究采集对照组和冷驯化28天组中缅树鼩的WAT和BAT,采用非靶向代谢组液相色谱—质谱联用检测技术分析其差异代谢物含量变化.结果 表明,冷驯化组较对照组WAT中有7种差异代谢物显著上调;BAT...  相似文献   

10.
Toh SY  Gong J  Du G  Li JZ  Yang S  Ye J  Yao H  Zhang Y  Xue B  Li Q  Yang H  Wen Z  Li P 《PloS one》2008,3(8):e2890
Fsp27, a member of the Cide family proteins, was shown to localize to lipid droplet and promote lipid storage in adipocytes. We aimed to understand the biological role of Fsp27 in regulating adipose tissue differentiation, insulin sensitivity and energy balance. Fsp27(-/-) mice and Fsp27/lep double deficient mice were generated and we examined the adiposity, whole body metabolism, BAT and WAT morphology, insulin sensitivity, mitochondrial activity, and gene expression changes in these mouse strains. Furthermore, we isolated mouse embryonic fibroblasts (MEFs) from wildtype and Fsp27(-/-) mice, followed by their differentiation into adipocytes in vitro. We found that Fsp27 is expressed in both brown adipose tissue (BAT) and white adipose tissue (WAT) and its levels were significantly elevated in the WAT and liver of leptin-deficient ob/ob mice. Fsp27(-/-) mice had increased energy expenditure, lower levels of plasma triglycerides and free fatty acids. Furthermore, Fsp27(-/-)and Fsp27/lep double-deficient mice are resistant to diet-induced obesity and display increased insulin sensitivity. Moreover, white adipocytes in Fsp27(-/-) mice have reduced triglycerides accumulation and smaller lipid droplets, while levels of mitochondrial proteins, mitochondrial size and activity are dramatically increased. We further demonstrated that BAT-specific genes and key metabolic controlling factors such as FoxC2, PPAR and PGC1alpha were all markedly upregulated. In contrast, factors inhibiting BAT differentiation such as Rb, p107 and RIP140 were down-regulated in the WAT of Fsp27(-/-) mice. Remarkably, Fsp27(-/-) MEFs differentiated in vitro show many brown adipocyte characteristics in the presence of the thyroid hormone triiodothyronine (T3). Our data thus suggest that Fsp27 acts as a novel regulator in vivo to control WAT identity, mitochondrial activity and insulin sensitivity.  相似文献   

11.
Summary Adult male Richardson's ground squirrels,Spermophilus richardsonii, were estimated to have emerged from hibernation in late February to early March, and adult females in mid to late March. Half of the females trapped in late March were not pregnant, as against 10% after that time. In late March males and all females had similar WAT (white adipose tissue) deposits. Between late March and early June, WAT deposits in males increased from 14 g to 64 g (a rate of 5.6 g per week). In non-parous females WAT deposits increased from 13 g to 48 g from late March to late May (4.2 g per week). Fat deposits decreased during lactation but thereafter increased from 8 g to 29 g (a rate of 6.0 g per week) between early May and early June. In males the rate of fatty acid synthesis in BAT (brown adipose tissue), liver and WAT did not change from late March to late May, and rates in the corresponding tissues of non-pregnant females were similar to those in males. Fatty acid synthesis decreased during late pregnancy and lactation. After lactation, the rate of fatty acid synthesis in all tissues increased to that in males and non-pregnant females. Males initiated fattening 5–7 weeks earlier than females. It is concluded that compared with adult males, the later immergence of adult female Richardson's ground squirrels into hibernation is due primarily to later initiation of fattening and less to differences in rate of lipid synthesis after the reproductive period. Rates of fatty acid synthesis in liver and BAT were several times greater than that in WAT. The former tissues may contribute fatty acids for prehibernatory fattening.Abbreviations BAT brown adipose tissue - WAT white adipose tissue  相似文献   

12.
棕色脂肪组织(BAT)的生理作用与白色脂肪显著不同,它以产热的形式释放能量而不是将能量以ATP的形式储存.线粒体是在能量代谢和维持细胞稳态中具有重要功能的细胞器.为了更好地了解棕色脂肪中的能量代谢过程,运用双向电泳及质谱相结合的技术,分离了大鼠白色和棕色脂肪线粒体,对其差异蛋白质谱进行了系统分析和鉴定.参与脂肪和氨基酸代谢、三羧酸循环及线粒体呼吸链的蛋白质在棕色脂肪线粒体中的表达明显高于白色脂肪线粒体,在寒冷诱导下这些蛋白质的表达进一步上调.此外,参与辅酶Q合成的一系列COQ 基因在棕色脂肪中经寒冷适应后表达明显上调.该研究表明,辅 酶Q合成的增高在非颤栗性产热中具有重要作用,为进一步了解棕色脂肪特异性的能量代谢提供了新的思路.  相似文献   

13.
Lipogenesis was measured in 2 and 5 week gold-thioglucose (GTG) obese mice after a single meal of 0.5 g of standard chow. Compared to control mice the rate of lipogenesis in GTG obese mice, was 4-fold higher in liver and 10-fold higher in white adipose tissue (WAT). In brown adipose tissue (BAT) of GTG-injected mice the lipogenic rate was only 50% of that of controls. These results indicate that the increased lipid synthesis observed in GTG-injected mice is not due solely to hyperphagia and that some other stimuli, such as increased basal insulin levels and/or decreased thermogenesis and insulin resistance in BAT, contribute to the high rates of fat synthesis in this animal model of obesity.  相似文献   

14.
The functional balance between brown adipose tissue (BAT) and white adipose tissue (WAT) is important for metabolic homeostasis. We compared the effects of fasting on the gene expression profiles in BAT, WAT and liver by using a DNA microarray analysis. Tissues were obtained from rats that had been fed or fasted for 24 h. Taking the false discovery rate into account, we extracted the top 1,000 genes that had been differentially expressed between the fed and fasted rats. In all three tissues, a Gene Ontology analysis revealed that the lipid and protein biosynthesis-related genes had been markedly down-regulated. The whole-body fuel shift from glucose to triacylglycerol and the induction of autophagy were also observed. There was marked up-regulation of genes in the 'protein ubiquitination' category particularly in BAT of the fasted rats, suggesting that the ubiquitin-proteasome system was involved in saving energy as an adaptation to food shortage.  相似文献   

15.
The present study investigated the effects of combined fucoxanthin (Fc) and conjugated linoleic acid (CLA) on high-fat diet-induced obese rats. Thirty five rats were divided into four groups, fed a high-fat diet (Control, 15% fat, wt/wt), supplemented with low Fc (FCL, 0.083 mg/kg/bw), high Fc (FCH, 0.167 mg/kg/bw) and FCL (0.083 mg/kg/bw) plus CLA (0.15 g/kg/bw) (FCL+CLA) for 52 d. Body weight and white adipose tissue (WAT) weight were significantly suppressed in FCL+CLA group than those in control group. WAT weight was also markedly attenuated in FCL and FCH groups. Accumulation of hepatic lipid droplets and the perirenal adipocyte size of FCL, FCH and FCL+CLA groups were diminished compared to control group. Serum total cholesterol level in FCH group, triacylglycerol and leptin levels in FCL, FCH and FCL+CLA groups, and glucose concentration in FCH and FCL+CLA groups were significantly decreased than those in control group. The mRNA expression of adiponectin, adipose triacylglycerol lipase, carnitine palmitoyltransferase 1A was remarkably up-regulated in FCL, FCH and FCL+CLA groups. These results suggest that Fc and FCL+CLA could reduce serum levels of triacylglycerol, glucose and leptin, and FCL+CLA could exert anti-obesity effects by regulating mRNA expression of enzymes related to lipid metabolism in WAT of diet-induced obesity rats.  相似文献   

16.
We describe a localized proton magnetic resonance spectroscopy ((1)H-MRS) method for in vivo measurement of lipid composition in very small voxels (1.5 mm x 1.5 mm x 1.5 mm) in adipose tissue in mice. The method uses localized point-resolved spectroscopy to collect (1)H spectra from voxels in intra-abdominal white adipose tissue (WAT) and brown adipose tissue (BAT) deposits. Nonlinear least-squares fits of the spectra in the frequency domain allow for accurate calculation of the relative amount of saturated, monounsaturated, and polyunsaturated fatty acids. All spectral data are corrected for spin-spin relaxation. The data show BAT of NMRI mice to be significantly different from BAT of NMRI nu/nu mice in all aspects except for the fraction of monounsaturated fatty acids (FM); for WAT, only the FM is different. BAT and WAT of NMRI mice differ in the amount of saturated and di-unsaturated fatty acids. This method provides a potential tool for studying lipid metabolism in small animal models of disease during the initiation, progression, and manifestation of obesity-related disorders in vivo. Our results clearly demonstrate that localized (1)H-MRS of adipose tissue in vivo is possible at high spatial resolution with voxel sizes down to 3.4 ml.  相似文献   

17.
Pioglitazone is one of the thiazolidinediones (TZDs) and an insulin-sensitive drug for type 2 diabetes. In our previous study, a combination of pioglitazone and fish oil rich in n-3 polyunsaturated fatty acids (PUFAs) was shown to inhibit pioglitazone-induced side effects, such as accumulation of subcutaneous fat and body weight gain. However, the effects of the discontinuation of fish oil after combination treatment with TZD and fish oil are not clear. In this study, discontinuation of fish oil for 4 weeks showed several unfavorable effects: (1) return of plasma adiponectin level, (2) reversal of the inhibition of lipogenesis and activation of fatty acid β-oxidation in liver, (3) increase in hypertrophic adipocytes in epidydimal white adipose tissue (WAT) and (4) accumulation of lipids in brown adipose tissue (BAT). However, insulin resistance was ameliorated by pioglitazone with or without fish oil treatment and the discontinuation of fish oil. These findings indicate that discontinuation of n-3 PUFA after combination therapy with TZDs adversely affects lipid metabolism and energy homeostasis in liver, epididymal WAT and BAT.  相似文献   

18.
Important players in triglyceride (TG) metabolism include the liver (production), white adipose tissue (WAT) (storage), heart and skeletal muscle (combustion to generate ATP), and brown adipose tissue (BAT) (combustion toward heat), the collective action of which determine plasma TG levels. Interestingly, recent evidence points to a prominent role of the hypothalamus in TG metabolism through innervating the liver, WAT, and BAT mainly via sympathetic branches of the autonomic nervous system. Here, we review the recent findings in the area of sympathetic control of TG metabolism. Various neuronal populations, such as neuropeptide Y (NPY)-expressing neurons and melanocortin-expressing neurons, as well as peripherally produced hormones (i.e., GLP-1, leptin, and insulin), modulate sympathetic outflow from the hypothalamus toward target organs and thereby influence peripheral TG metabolism. We conclude that sympathetic stimulation in general increases lipolysis in WAT, enhances VLDL-TG production by the liver, and increases the activity of BAT with respect to lipolysis of TG, followed by combustion of fatty acids toward heat. Moreover, the increased knowledge about the involvement of the neuroendocrine system in TG metabolism presented in this review offers new therapeutic options to fight hypertriglyceridemia by specifically modulating sympathetic nervous system outflow toward liver, BAT, or WAT.  相似文献   

19.
The activity of lipoprotein lipase (LPL) was studied in interscapilar brown adipose tissue (BAT), epididymal white adipose tissue (WAT) and in the heart of lean and obese adult Zucker rats maintained at 22 degrees C or adapted to cold (10 degrees C). In WAT the specific activity per gram of tissue was lower in obese than in lean rats but the total activity within the tissue was three-fold higher. Cold acclimation did not modify total activity in either lean or obese rats. In BAT, but not in the heart, both specific and total activities were lower in obese than in lean animals. They were enhanced in both tissues following cold acclimation. Six-hour fasting led to a decrease in specific activity in WAT of lean rats but had no effect in obese animals; an increase was observed in BAT and heart of both genotypes. Insulin administration has no effect on activities in WAT in either 22 or 10 degrees C adapted obese rats. Norepinephrine administration stimulates LPL activity in BAT and heart of all groups. It is concluded that the lack of development of obesity previously observed in obese rats following cold acclimation is not due to a decreased capacity of lipid uptake by WAT. It might in part be due to an increased lipid oxidation in BAT.  相似文献   

20.
Melanin-concentrating hormone (MCH) is a cyclic orexigenic peptide expressed in the lateral hypothalamus. Recently, we demonstrated that chronic intracerebroventricular infusion of MCH induced obesity accompanied by sustained hyperphagia in mice. Here, we analyzed the mechanism of MCH-induced obesity by comparing animals fed ad libitum with pair-fed and control animals. Chronic infusion of MCH significantly increased food intake, body weight, white adipose tissue (WAT) mass, and liver mass in ad libitum-fed mice on a moderately high-fat diet. In addition, a significant increase in lipogenic activity was observed in the WAT of the ad libitum-fed group. Although body weight gain was marginal in the pair-fed group, MCH infusion clearly enhanced the lipogenic activity in liver and WAT. Plasma leptin levels were also increased in the pair-fed group. Furthermore, MCH infusion significantly reduced rectal temperatures in the pair-fed group. In support of these findings, mRNA expression of uncoupling protein-1, acyl-CoA oxidase, and carnitine palmitoyltransferase I, which are key molecules involved in thermogenesis and fatty acid oxidation, were reduced in the brown adipose tissue (BAT) of the pair-fed group, suggesting that MCH infusion might reduce BAT functions. We conclude that the activation of MCH neuronal pathways stimulated adiposity, in part resulting from increased lipogenesis in liver and WAT and reduced energy expenditure in BAT. These findings confirm that modulation of energy homeostasis by MCH may play a critical role in the development of obesity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号