首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
Saito S  Kakeshita H  Nakamura K 《Gene》2009,428(1-2):2-8
Small, non-coding RNAs (ncRNAs) perform diverse functions in a variety of organisms, but few ncRNAs have been identified in Bacillus subtilis. To search the B. subtilis genome for genes encoding ncRNAs, we focused on 123 intergenic regions (IGRs) over 500 bp in length and analyzed expression from these regions. Seven IGRs termed bsrC, bsrD, bsrE, bsrF, bsrG, bsrH and bsrI expressed RNAs smaller than 380 nt. All small RNAs except BsrD RNA were expressed in transformed Escherichia coli cells harboring a plasmid with PCR-amplified IGRs of B. subtilis, indicating that their own promoters independently express small RNAs. Under the non-stressed condition, depletion of the genes for the small RNAs did not affect growth. Although their functions are unknown, gene expression profiles at several time points showed that most of the genes except for bsrD were expressed during the vegetative phase (4-6 h), but undetectable during the stationary phase (8 h). Mapping the 5' ends of the 6 small RNAs revealed that the genes for BsrE, BsrF, BsrG, BsrH, and BsrI RNAs are preceded by a recognition site for RNA polymerase sigma factor sigma(A). These small RNAs might lack an SD sequence and exert their actions as ncRNAs.  相似文献   

5.
microPrimer: the biogenesis and function of microRNA   总被引:42,自引:0,他引:42  
Discovered in nematodes in 1993, microRNAs (miRNAs) are non-coding RNAs that are related to small interfering RNAs (siRNAs), the small RNAs that guide RNA interference (RNAi). miRNAs sculpt gene expression profiles during plant and animal development. In fact, miRNAs may regulate as many as one-third of human genes. miRNAs are found only in plants and animals, and in the viruses that infect them. miRNAs function very much like siRNAs, but these two types of small RNAs can be distinguished by their distinct pathways for maturation and by the logic by which they regulate gene expression.  相似文献   

6.
7.
Role of miRNAs and siRNAs in biotic and abiotic stress responses of plants   总被引:2,自引:0,他引:2  
Small, non-coding RNAs are a distinct class of regulatory RNAs in plants and animals that control a variety of biological processes. In plants, several classes of small RNAs with specific sizes and dedicated functions have evolved through a series of pathways. The major classes of small RNAs include microRNAs (miRNAs) and small interfering RNAs (siRNAs), which differ in their biogenesis. miRNAs control the expression of cognate target genes by binding to reverse complementary sequences, resulting in cleavage or translational inhibition of the target RNAs. siRNAs have a similar structure, function, and biogenesis as miRNAs but are derived from long double-stranded RNAs and can often direct DNA methylation at target sequences. Besides their roles in growth and development and maintenance of genome integrity, small RNAs are also important components in plant stress responses. One way in which plants respond to environmental stress is by modifying their gene expression through the activity of small RNAs. Thus, understanding how small RNAs regulate gene expression will enable researchers to explore the role of small RNAs in biotic and abiotic stress responses. This review focuses on the regulatory roles of plant small RNAs in the adaptive response to stresses. This article is part of a Special Issue entitled: Plant gene regulation in response to abiotic stress.  相似文献   

8.
9.
10.
11.
微小RNA(miRNAs)是一大类小的非编码RNA,它通过与靶mRNA 3′非翻译区部分互补配对来调节特定基因的表达。近来研究表明,miRNA可作为癌基因或抑癌基因在肺癌发生发展过程中起重要作用。比较癌组织和非癌组织中miRNA表达谱的差异可筛选出部分miRNA分子作为肺癌诊断和预后判断的潜在生物标记。调节具有致癌或抑癌功能的miRNA表达可能成为肺癌治疗新方法,而结合传统放化疗及其敏感性miRNA标志也为肺癌治疗研究提供了新的策略。该文对miRNA在肺癌发生与发展、基因诊断和治疗中的作用做一综述。  相似文献   

12.
13.
Hfq, a chaperone for small noncoding RNAs, regulates many processes in Escherichia coli, including the sigma(S)-mediated general stress response. Here we used microarray analysis to identify the changes in gene expression resulting from lack of Hfq. We identify several potential new targets for Hfq regulation, including genes encoding outer membrane proteins, enzymes, factors, and transporters. Many of these genes are involved in amino acid uptake and biosynthesis, sugar uptake and metabolism, and cell energetics. In addition, we find altered regulation of the sigma(E)- and sigma(32)-mediated stress responses, which we analyze further. We show that cells lacking Hfq induce the sigma(E)-mediated envelope stress response and are defective in sigma(E)-mediated repression of outer membrane proteins. We also show that the sigma(32)-mediated cytoplasmic stress response is repressed in cells lacking Hfq due to increased expression of DnaK. Furthermore, we show that cells lacking Hfq are defective in the "long-term adaptation" of sigma(32) to chronic chaperone overexpression. Together, our results indicate that Hfq may play a general role in stress response regulation in E. coli.  相似文献   

14.
15.
How to find small non-coding RNAs in bacteria   总被引:11,自引:0,他引:11  
Vogel J  Sharma CM 《Biological chemistry》2005,386(12):1219-1238
  相似文献   

16.
17.
谢兆辉 《生命科学》2010,(9):925-929
很多动物可以产生具调节作用的小RNAs,根据产生方式和作用机制可以将它们分为三类:微小RNAs(miRNAs)、与Piwi相互作用的RNAs(piRNAs)和内源小干扰RNAs(endo-siRNAs),这些小RNAs可以在生物生殖细胞发育过程中发挥重要作用。其中miRNAs的主要作用是调节蛋白质基因的表达;piRNAs主要的作用是沉默转座因子,但piRNAs主要存在于生殖细胞中;endo-siRNAs则可能具有上述两种主要作用。该文论述了这三种小RNAs在生物生殖细胞发育过程中的作用,同时也讨论了它们在治疗生物不育及其在生物节育方面的应用前景。  相似文献   

18.
19.
20.
Endogenous small RNAs and antibacterial immunity in plants   总被引:2,自引:0,他引:2  
Jin H 《FEBS letters》2008,582(18):2679-2684
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号