首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Grant GA 《Biochemistry》2011,50(14):2900-2906
In Escherichia colid-3-phosphoglycerate dehydrogenase, the amino acid sequences G294-G295 and G336-G337 are found between structural domains and appear to function as hinge regions. Mutagenesis studies of these sequences showed that bulky side chains had significant effects on the kinetic properties of the enzyme. Placement of a tryptophanyl residue near the serine binding site (W139F/E360W) allows serine binding to be monitored by fluorescence quenching analysis. Pre-steady-state analysis has demonstrated that serine binds to two forms of the free enzyme, E and E*. Conversion of Gly-336 to valine has its main effect on the Kd of serine binding to one form of the free enzyme (E) while maintaining the cooperativity of binding observed in the native enzyme. Conversion of Gly-294 to valine eliminates a rate limiting conformational change that follows serine binding to E. The conformational change between the two forms of free enzyme is maintained, but the Hill coefficient for cooperativity is significantly lowered. The data indicate that the cooperative transmission induced by serine binding is transmitted through the Gly294-Gly295 hinge region to the opposite serine binding interface and that this is most likely propagated by way of the substrate binding domain-regulatory domain interface. In the G294 mutant enzyme, both serine bound species, E·Ser and E*·Ser, are present in significant amounts indicating that cooperativity of serine binding does not result from the binding to two different forms. The data also suggest that the E* form may be inactive even when serine is not bound.  相似文献   

2.
Grant GA  Xu XL  Hu Z 《Biochemistry》2000,39(24):7316-7319
The regulatory and substrate binding domains of D-3-phosphoglycerate dehydrogenase (PGDH, EC 1.1.1.95) from Escherichia coli are connected by a single polypeptide strand that contains a Gly-Gly sequence approximately midway between the domains. The potential flexibility of this sequence and its strategic location between major domain structures suggests that it may function in the conformational change leading from effector binding to inhibition of the active site. Site-directed mutagenesis of this region (Gly-336-Gly-337) supports this hypothesis. When bulky side chains were substituted for the glycines at these positions, substantial changes in the ability of serine to inhibit the enzyme were seen with little effect on the activity of the enzyme. The effect of these substitutions could be alleviated by placing a new glycine residue at position 335, immediately flanking the original glycine pair. On the other hand, substituting a glycine at position 338 revealed a critical role for the side chain of Arg-338. This residue may function in stabilizing the conformation about the Gly-Gly turn, resulting in a specific orientation of the adjacent domains relative to each other. Rotation about the phi or psi bonds of either Gly-336 or Gly-337 would have a profound effect on this orientation. The data are consistent with this as a role for the Gly-Gly sequence between the regulatory and substrate binding domains of PGDH.  相似文献   

3.
D-3-phosphoglycerate dehydrogenase (EC 1.1.1.95) from Escherichia coli contains two Gly-Gly sequences that have been shown previously to have the characteristics of hinge regions. One of these, Gly(336)-Gly(337), is found in the loop between the substrate binding domain and the regulatory domain. Changing these glycine residues to valine affected the sensitivity of the enzyme to inhibition by L-serine but not the extent of inhibition. The decrease in sensitivity was caused primarily by a decrease in the affinity of the enzyme for L-serine. These mutations also affected the domain rotation of the subunits in response to L-serine binding. A major conclusion of this study was that it defines a minimal limit on the necessary conformational changes leading to inhibition of enzyme activity. That is, some of the conformational differences seen in the native enzyme upon L-serine binding are not critical for inhibition, whereas others are maintained and may play important roles in inhibition and cooperativity. The structure of G336V demonstrates that the minimal effect of L-serine binding leading to inhibition of enzyme activity requires a domain rotation of approximately only 6 degrees in just two of the four subunits of the enzyme that are oriented diagonally across from each other in the tetramer. Moreover the structures show that both pairs of Asn190 to Asn190 hydrogen bonds across the subunit interfaces are necessary for activity. These observations are consistent with the half-the-sites activity, flip-flop mechanism proposed for this and other similar enzymes and suggest that the Asn190 hydrogen bonds may function in the conformational transition between alternate half-the-site active forms of the enzyme.  相似文献   

4.
The G146V mutation in actin is dominant lethal in yeast. G146V actin filaments bind cofilin only minimally, presumably because cofilin binding requires the large and small actin domains to twist with respect to one another around the hinge region containing Gly-146, and the mutation inhibits that twisting motion. A number of studies have suggested that force generation by myosin also requires actin filaments to undergo conformational changes. This prompted us to examine the effects of the G146V mutation on myosin motility. When compared with wild-type actin filaments, G146V filaments showed a 78% slower gliding velocity and a 70% smaller stall force on surfaces coated with skeletal heavy meromyosin. In contrast, the G146V mutation had no effect on either gliding velocity or stall force on myosin V surfaces. Kinetic analyses of actin-myosin binding and ATPase activity indicated that the weaker affinity of actin filaments for myosin heads carrying ADP, as well as reduced actin-activated ATPase activity, are the cause of the diminished motility seen with skeletal myosin. Interestingly, the G146V mutation disrupted cooperative binding of myosin II heads to actin filaments. These data suggest that myosin-induced conformational changes in the actin filaments, presumably around the hinge region, are involved in mediating the motility of skeletal myosin but not myosin V and that the specific structural requirements for the actin subunits, and thus the mechanism of motility, differ among myosin classes.  相似文献   

5.
The crystal structure of d-3-phosphoglycerate dehydrogenase reveals a limited number of contacts between the regulatory and substrate binding domains of each subunit in the tetrameric enzyme. These occur between the side chains of Arg-339, Arg-405, and Arg-407 in the regulatory domain and main chain carbonyls in the substrate binding domain. In addition, Arg-339 participates in a hydrogen bonding network within the regulatory domain involving Arg-338 and Tyr-410, the C-terminal residue of the enzyme subunit. Mutagenic analysis of these residues produce profound effects on the enzyme's sensitivity to serine, the cooperativity of serine inhibition, and in some cases, the apparent overall conformation of the enzyme. Mutations of Arg-405 and Arg-407, which span the interface where the two domains come together, reduce the cooperativity of inhibition and increase the sensitivity of the enzyme to serine concentration. Serine binding studies with Arg-407 converted to Ala demonstrate that cooperativity of serine binding is also significantly reduced in a manner similar to the reduction in the cooperativity of inhibition. Mutations of Tyr-410 and Arg-338 decrease the sensitivity to serine without an appreciable effect on the cooperativity of inhibition. In the case of Tyr-410, a deletion mutant demonstrates that this effect is due to the loss of the C-terminal carboxyl group rather than the tyrosine side chain. All mutations of Arg-339, with the exception of its conversion to Lys, had profound effects on the stability of the enzyme. In general, those mutants that decrease sensitivity to serine are those that participate mainly in intradomain interactions and may also directly affect the serine binding sites themselves. Those mutants that decrease cooperativity are those that participate in interdomain interaction within the subunit. The observation that the mutants that decrease cooperativity also increase sensitivity to serine suggests a potential separation of pathways between how the simple act of serine binding results in noncooperative active site inhibition in the first place and how serine binding also leads to cooperativity between sites in the native enzyme.  相似文献   

6.
d-3-Phosphoglycerate dehydrogenase from Escherichia coli is a tetramer of identical subunits that is inhibited when l-serine binds at allosteric sites between subunits. Co-expression of two genes, the native gene containing a charge difference mutation and a gene containing a mutation that eliminates serine binding, produces hybrid tetramers that can be separated by ion exchange chromatography. Activity in the hybrid tetramer with only a single intact serine binding site is inhibited by approximately 58% with a Hill coefficient of 1. Thus, interaction at a single regulatory domain interface does not, in itself, lead to the positive cooperativity of inhibition manifest in the native enzyme. Tetramers with only two intact serine binding sites purify as a mixture that displays a maximum inhibition level that is less than that of native enzyme, suggesting the presence of a population of tetramers that are unable to be fully inhibited. Differential analysis of this mixture supports the conclusion that it contains two forms of the tetramer. One form contains two intact serine binding sites at the same interface and is not fully inhibitable. The second form is a fully inhibitable population that has one serine binding site at each interface. Overall, the hybrid tetramers show that the positive cooperativity observed for serine binding is mediated across the nucleotide binding domain interface, and the negative cooperativity is mediated across the regulatory domain interface. That is, they reveal a pattern in which the binding of serine at one interface leads to negative cooperativity of binding of a subsequent serine at the same interface and positive cooperativity of binding of a subsequent serine to the opposite interface. This trend is propagated to subsequent binding sites in the tetramer such that the negative cooperativity that is originally manifest at one interface is decreased by subsequent binding of ligand at the opposite interface.  相似文献   

7.
Inverse thinking about double mutants of enzymes   总被引:3,自引:0,他引:3  
Mildvan AS 《Biochemistry》2004,43(46):14517-14520
The quantitative effect of a second damaging mutation on a mutated enzyme may be additive, partially additive, synergistic, antagonistic, or absent, in the double mutant. Each of these five possible types of interactions has its own mechanistic explanation [Mildvan, A. S., Weber, D. J., and Kuliopulos, A. (1992) Arch. Biochem. Biophys. 294, 327-340]. Additive effects indicate independent functioning of the two residues in the process being studied, such as catalysis (k(cat)) or substrate binding (K(S)). Departures from additivity reflect interaction of the two residues. Thus, partial additivity indicates cooperativity, synergy indicates anticooperativity, and antagonism indicates opposing structural effects of the two mutations. No additional effects represent limiting cases of either partial additivity or antagonism. A significant conceptual simplification is achieved by applying inverse thinking, namely, by using the parameters of the double mutant rather than those of the wild-type enzyme as the reference point. To explain partially additive effects on k(cat), inverse thinking starts with the k(cat) of the double mutant. Restoring only one residue increases k(cat) by the factor A. Restoring only the other residue increases k(cat) by the factor B. Restoring both residues is shown to increase k(cat) by a factor greater than A x B, with the excess directly measuring the cooperativity. Similarly, inverse thinking provides simpler and more intuitive explanations of synergistic and antagonistic effects, as illustrated by specific examples.  相似文献   

8.
Xiang J  Jung JY  Sampson NS 《Biochemistry》2004,43(36):11436-11445
Many proteins utilize segmental motions to catalyze a specific reaction. The Omega loop of triosephosphate isomerase (TIM) is important for preventing the loss of the reactive enediol(ate) intermediate. The loop opens and closes even in the absence of the ligand, and the loop itself does not change conformation during movement. The conformational changes are localized to two hinges at the loop termini. Glycine is never observed in native TIM hinge sequences. In this paper, the hypothesis that limited access to conformational space is a requirement for protein hinges involved in catalysis was tested. The N-terminal hinge was mutated to P166/V167G/W168G (PGG), and the C-terminal hinge was mutated to K174G/T175G/A176G (GGG) in chicken TIM. The single-hinge mutants PGG and GGG had k(cat) values 200-fold lower than that of the wild type and K(m) values 10-fold higher. The k(cat) of double-hinge mutant P166/V167G/W168G/K174G/T175G/A176G was reduced 2500-fold; the K(m) was 10-fold higher. A combination of primary kinetic isotope effect measurements, isothermal calorimetric measurements, and (31)P NMR spectroscopic titration with the inhibitor 2-phosphoglycolate revealed that the mutants have a different ligand-binding mode than that of the wild-type enzyme. The predominant conformations of the mutants even in the presence of the inhibitor are loop-open conformations. In conclusion, mutation of the hinge residues to glycine resulted in the sampling of many more hinge conformations with the consequence that the population of the active-closed conformation is reduced. This reduced population results in a reduced catalytic activity.  相似文献   

9.
The cDNA and deduced amino acid sequences for arginine kinase (AK) from the deep-sea clam Calyptogena kaikoi have been determined revealing an unusual two-domain (2D) structure with molecular mass of 80 kDa, twice that of normal AK. The amino acid sequences of both domains contain most of the residues thought to be required for substrate binding found in the horseshoe crab Limulus polyphemus AK, a well studied system for which several X-ray crystal structures exist. However, two highly conserved residues, D62 and R193, that form a salt bridge thereby stabilizing the substrate-bound structure have been replaced by G and N in domain 1, and G and P in domain 2, respectively. The present effort probes whether both domains of Calyptogena AK are catalytically competent. Recombinant constructs of the wild-type enzyme of both single domains, and of selected mutants of the Calyptogena AK have been expressed as fusion proteins with the maltose-binding protein. The wild-type two-domain enzyme (2D[WT]) had high AK activity (k(cat)=23 s(- 1), average value of the two domains), and the single domain 2 (D2[WT]) showed 1.5-times higher activity (k(cat)=38 s(- 1)) than the wild-type 2D[WT]. Interestingly, the single domain 1 (D1[WT]) showed only a very low activity (k(cat) approximately 0.016 s(- 1)). Introduction of a Y68A mutation in both domains virtually abolished catalytic activity. On the other hand, significant residual activity was observed (k(cat)=2.8 s(- 1)), when the Y68A mutation was introduced only into domain 2 of the two-domain enzyme. A similar mutation in domain 1 of the two-domain enzyme reduced activity to a much lower extent (k(cat)=11.1 s(- 1)). Although the domains of this "contiguous" dimeric AK each have catalytic capabilities, the presence of domain 2 strongly influences the stability and activity of domain 1.  相似文献   

10.
The L-arabinose-binding protein (ABP) of Escherichia coli consists structurally of two distinct globular domains connected by a hinge of three separate peptide segments. Arabinose is bound and completely sequestered within the deep cleft between the two domains. With reduced affinity, ABP also binds D-galactose (approximately 2-fold reduction) and D-fucose (approximately 40-fold reduction). Experiments have been conducted to explore the role in sugar binding of the hinge connecting the two domains of ABP. To increase the flexibility of the hinge region, a glycine was substituted for a proline at position 254 by site-directed mutagenesis. Unexpectedly, this mutation resulted in the dramatic enhancement of galactose binding over that of arabinose. The affinity of the mutant ABP for galactose increased by over 20-fold, while that for arabinose and fucose remained relatively unchanged. We have measured association and dissociation rates of the Gly-254 ABP with L-arabinose, D-galactose, and D-fucose and have determined the crystallographic structure of the protein complexed with each of the three sugars. Both the ligand-binding kinetic measurements and structure analysis indicate that the altered specificity is due to an effective increase in the rigidity of the hinge in the closed conformation which is induced upon galactose binding. Stabilizing contacts are formed between the strands of the hinge in the Gly-254 ABP when galactose is bound which are not found in complexes with the other sugars or the liganded wild-type protein.  相似文献   

11.
Hsieh JY  Liu GY  Hung HC 《The FEBS journal》2008,275(21):5383-5392
Human mitochondrial NAD(P)(+)-dependent malic enzyme (m-NAD-ME) is a malic enzyme isoform with dual cofactor specificity, ATP inhibition and substrate cooperativity. The determinant of ATP inhibition in malic enzyme isoforms has not yet been identified. Sequence alignment of nucleotide-binding sites of ME isoforms revealed that Lys346 is conserved uniquely in m-NAD-ME. In other ME isoforms, this residue is serine. As the inhibitory effect of ATP is more pronounced on m-NAD-ME than on other ME isoforms, we have examined the possible role of Lys346 by replacing it to alanine, serine or arginine. Our kinetic data indicate that the K346S mutant enzyme displays a shift in its cofactor preference from NAD(+) to NADP(+) upon increasing k(cat,NADP) and decreasing K(m,NADP). Furthermore, the cooperative binding of malate becomes less significant in human m-NAD-ME after mutation of Lys346. The h value for the wild-type is close to 2, but those of the K346 mutants are approximately 1.5. The K346 mutants can also be activated by fumarate and the cooperative effect can be abolished by fumarate, suggesting that the allosteric property is retained in these mutants. Our data strongly suggest that Lys346 in human m-NAD-ME is required for ATP inhibition. Mutation of Lys346 to Ser or Ala causes the enzyme to be much less sensitive to ATP, similar to cytosolic NADP-dependent malic enzyme. Substitution of Lys to Arg did not change the isoform-specific inhibition of the enzyme by ATP. The inhibition constants of ATP are increased for K346S and K346A, but are similar to those of the wild-type for K346R, suggesting that the positive charge rather than group specificity is required for binding affinity of ATP. Thus, ATP inhibition is proposed to be determined by the electrostatic potential involving the positive charge on the side chain of Lys346.  相似文献   

12.
The enzyme phosphomannomutase/phosphoglucomutase (PMM/PGM) from the bacterium Pseudomonas aeruginosa is involved in the biosynthesis of several complex carbohydrates, including alginate, lipopolysaccharide, and rhamnolipid. Previous structural studies of this protein have shown that binding of substrates produces a rotation of the C-terminal domain, changing the active site from an open cleft in the apoenzyme into a deep, solvent inaccessible pocket where phosphoryl transfer takes place. We report herein site-directed mutagenesis, kinetic, and structural studies in examining the role of residues in the hinge between domains 3 and 4, as well as residues that participate in enzyme-substrate contacts and help form the multidomain "lid" of the active site. We find that the backbone flexibility of residues in the hinge region (e.g., mutation of proline to glycine/alanine) affects the efficiency of the reaction, decreasing k cat by approximately 10-fold and increasing K m by approximately 2-fold. Moreover, thermodynamic analyses show that these changes are due primarily to entropic effects, consistent with an increase in the flexibility of the polypeptide backbone leading to a decreased probability of forming a catalytically productive active site. These results for the hinge residues contrast with those for mutants in the active site of the enzyme, which have profound effects on enzyme kinetics (10 (2)-10 (3)-fold decrease in k cat/ K m) and also show substantial differences in their thermodynamic parameters relative to those of the wild-type (WT) enzyme. These studies support the concept that polypeptide flexibility in protein hinges may evolve to optimize and tune reaction rates.  相似文献   

13.
Escherichia coli D-3-phosphoglycerate dehydrogenase (ePGDH) is a tetramer of identical subunits that is allosterically inhibited by L-serine, the end product of its metabolic pathway. Because serine binding affects the velocity of the reaction and not the binding of substrate or cofactor, the enzyme is classified as of the Vmax type. Inhibition by a variety of amino acids and analogues of L-serine indicate that all three functional groups of serine are required for optimal interaction. Removing or altering any one functional group results in an increase in inhibitory concentration from micromolar to millimolar, and removal or alteration of any two functional groups removes all inhibitory ability. Kinetic studies indicate at least two serine-binding sites, but the crystal structure solved in the presence of bound serine and direct serine-binding studies show that there are a total of four serine-binding sites on the enzyme. However, approximately 85% inhibition is attained when only two sites are occupied. The three-dimensional structure of ePGDH shows that the serine-binding sites reside at the interface between regulatory domains of adjacent subunits. Two serine molecules bind at each of the two regulatory domain interfaces in the enzyme. When all four of the serines are bound, 100% inhibition of activity is seen. However, because the domain contacts are symmetrical, the binding of only one serine at each interface is sufficient to produce approximately 85% inhibition. The tethering of the regulatory domains to each other through multiple hydrogen bonds from serine to each subunit apparently prevents the body of these domains from undergoing the reorientation that must accompany a catalytic cycle. It is suggested that part of the conformational change may involve a hinge formed in the vicinity of the union of two antiparallel beta-sheets in the regulatory domains. The tethering function of serine, in turn, appears to prevent the substrate-binding domain from closing the cleft between it and the nucleotide-binding domain, which may be necessary to form a productive hydrophobic environment for hydride transfer. Thus, the structure provides a plausible model that is consistent with the binding and inhibition data and that suggests that catalysis and inhibition in this rare Vmax-type allosteric enzyme is based on the movement of rigid domains about flexible hinges.  相似文献   

14.
The Timothy syndrome mutations G402S and G406R abolish inactivation of Ca(V)1.2 and cause multiorgan dysfunction and lethal arrhythmias. To gain insights into the consequences of the G402S mutation on structure and function of the channel, we systematically mutated the corresponding Gly-432 of the rabbit channel and applied homology modeling. All mutations of Gly-432 (G432A/M/N/V/W) diminished channel inactivation. Homology modeling revealed that Gly-432 forms part of a highly conserved structure motif (G/A/G/A) of small residues in homologous positions of all four domains (Gly-432 (IS6), Ala-780 (IIS6), Gly-1193 (IIIS6), Ala-1503 (IVS6)). Corresponding mutations in domains II, III, and IV induced, in contrast, parallel shifts of activation and inactivation curves indicating a preserved coupling between both processes. Disruption between coupling of activation and inactivation was specific for mutations of Gly-432 in domain I. Mutations of Gly-432 removed inactivation irrespective of the changes in activation. In all four domains residues G/A/G/A are in close contact with larger bulky amino acids from neighboring S6 helices. These interactions apparently provide adhesion points, thereby tightly sealing the activation gate of Ca(V)1.2 in the closed state. Such a structural hypothesis is supported by changes in activation gating induced by mutations of the G/A/G/A residues. The structural implications for Ca(V)1.2 activation and inactivation gating are discussed.  相似文献   

15.
4-Coumarate:coenzyme A ligase (4CL) plays a key role in phenylpropanoid metabolism, providing precursors for a large variety of important plant secondary metabolites, such as lignin, flavonoids, and phytoalexins. Although 4CLs have been believed to be specific to plants, a gene encoding a 4CL-like enzyme which shows more than 40% identity in amino acid sequence to plant 4CLs was found in the genome of the gram-positive, filamentous bacterium Streptomyces coelicolor A3(2). The recombinant enzyme, produced in Escherichia coli with a histidine tag at its N-terminal end, showed distinct 4CL activity. The optimum pH and temperature of the reaction were pH 8.0 and 30 degrees C, respectively. The K(m) value for 4-coumarate and k(cat) were determined as 131 +/- 4 micro M and 0.202 +/- 0.007 s(-1), respectively. The K(m) value was comparable to those of plant 4CLs. The substrate specificity of this enzyme was, however, distinctly different from those of plant 4CLs. The enzyme efficiently converted cinnamate (K(m), 190 +/- 2 micro M; k(cat), 0.475 +/- 0.012 s(-1)), which is a very poor substrate for plant 4CLs. Furthermore, the enzyme showed only low activity toward caffeate and no activity toward ferulate, both of which are generally good substrates for plant 4CLs. The enzyme was therefore named ScCCL for S. coelicolor A3(2) cinnamate CoA ligase. To determine the amino acid residues providing the unique substrate specificity of ScCCL, eight ScCCL mutant enzymes having a mutation(s) at amino acid residues that probably line up along the substrate-binding pocket were generated. Mutant A294G used caffeate as a substrate more efficiently than ScCCL, and mutant A294G/A318G used ferulate, which ScCCL could not use as a substrate, suggesting that Ala(294) and Ala(318) are involved in substrate recognition. Furthermore, the catalytic activities of A294G and A294G/A318G toward cinnamate and 4-coumarate were greatly enhanced compared with those of the wild-type enzyme.  相似文献   

16.
Grant GA  Xu XL  Hu Z  Purvis AR 《Biochemistry》1999,38(50):16548-16552
The binding of L-serine to phosphoglycerate dehydrogenase from E. coli displays elements of both positive and negative cooperativity. In addition, the inhibition of enzymatic activity by L-serine is also cooperative with Hill coefficients greater than 1. However, phosphate buffer significantly reduces the cooperative effects in serine binding without affecting the cooperativity of inhibition of activity. The maximal degree of inhibition and fluorescence quenching in Tris buffer occurs when an average of two serine binding sites out of four are occupied. This value increases to three out of the four sites at maximal levels of inhibition and quenching in phosphate buffer. The increase from two to three sites appears to be due to the ability of phosphate to reduce the site to site cooperative effects and render each ligand binding site less dependent on each other. The correlation between the level of inhibition and the fractional site occupancy indicates that in Tris buffer, one serine is bound to each interface at maximal effect. In the presence of phosphate, the order of binding appears to change so that both sites at one interface fill before the first site at the opposite interface is occupied. In each case, there is a good correlation between serine binding, conformational change at the regulatory site interfaces, and inhibition of enzyme activity. The observation that phosphate does not appear to have a similar effect on the cooperativity of inhibition of enzymatic activity suggests that there are two distinct cooperative pathways at work: one path between the four serine binding sites, and one path between the serine binding sites and the active sites.  相似文献   

17.
Rhodobacter sphaeroides contains two enoyl-acyl carrier protein (ACP) reductases, FabI(1) and FabI(2). However, FabI(1) displays most of the cellular enzyme activity. The spontaneous diazaborine-resistant mutation was mapped as substitution of glutamine for proline 155 (P155Q) of FabI(1). The mutation of FabI(1)[P155Q] increased the specificity constants (k(cat)/K(m)) for crotonyl-ACP and NADH by more than 2-fold, while the site-directed mutation G95S (FabI(1)[G95S]), corresponding to the well-known G93 mutation of Escherichia coli FabI, rather decreased the values. Inhibition kinetics of the enzymes revealed that triclosan binds to the enzyme in the presence of NAD(+), while the diazaborine appears to interact with NADH and NAD(+) in the enzyme active site. The apparent inhibition constant K(i)(') of triclosan for FabI(1)[P155Q] and FabI(1)[G95S] at saturating NAD(+) were approximately 80- and 3-fold higher than that for the wild-type enzyme, respectively, implying that the inhibition was remarkably impaired by the P155Q mutation. The similar levels of K(i)(') of diazaborine for the mutant enzymes were also observed with respect to NAD(+). Thus, the novel mutation P155Q appears to disturb the binding of inhibitors to the enzyme without affecting the catalytic efficiency.  相似文献   

18.
Glucokinase (GK) has several known polymorphic activating mutations that increase the enzyme activity by enhancing glucose binding affinity and/or by alleviating the inhibition of glucokinase regulatory protein (GKRP), a key regulator of GK activity in the liver. Kinetic studies were undertaken to better understand the effect of these mutations on the enzyme mechanism of GK activation and GKRP regulation and to relate the enzyme properties to the associated clinical phenotype of hypoglycemia. Similar to wild type GK, the transient kinetics of glucose binding for activating mutations follows a general two-step mechanism, the formation of an enzyme-glucose complex followed by an enzyme conformational change. However, the kinetics for each step differed from wild type GK and could be grouped into specific types of kinetic changes. Mutations T65I, Y214C, and A456V accelerate glucose binding to the apoenzyme form, whereas W99R, Y214C, and V455M facilitate enzyme isomerization to the active form. Mutations that significantly enhance the glucose binding to the apoenzyme also disrupt the protein-protein interaction with GKRP to a large extent, suggesting these mutations may adopt a more compact conformation in the apoenzyme favorable for glucose binding. Y214C is the most active mutation (11-fold increase in k(cat)/K(0.5)(h)) and exhibits the most severe clinical effects of hypoglycemia. In contrast, moderate activating mutation A456V nearly abolishes the GKRP inhibition (76-fold increase in K(i)) but causes only mild hypoglycemia. This suggests that the alteration in GK enzyme activity may have a more profound biological impact than the alleviation of GKRP inhibition.  相似文献   

19.
In human glutathione transferase P1-1 (hGSTP1-1) position 146 is occupied by a glycine residue, which is located in a bend of a long loop that together with the alpha6-helix forms a substructure (GST motif II) maintained in all soluble GSTs. In the present study G146A and G146V mutants were generated by site-directed mutagenesis in order to investigate the function played by this conserved residue in folding and stability of hGSTP1-1. Crystallographic analysis of the G146V variant, expressed at the permissive temperature of 25 degrees C, indicates that the mutation causes a substantial change of the backbone conformation because of steric hindrance. Stability measurements indicate that this mutant is inactivated at a temperature as low as 32 degrees C. The structure of the G146A mutant is identical to that of the wild type with the mutated residue having main-chain bond angles in a high energy region of the Ramachandran plot. However even this Gly --> Ala substitution inactivates the enzyme at 37 degrees C. Thermodynamic analysis of all variants confirms, together with previous findings, the critical role played by GST motif II for overall protein stability. Analysis of reactivation in vitro indicates that any mutation of Gly-146 alters the folding pathway by favoring aggregation at 37 degrees C. It is hypothesized that the GST motif II is involved in the nucleation mechanism of the protein and that the substitution of Gly-146 alters this transient substructure. Gly-146 is part of the buried local sequence GXXh(T/S)XXDh (X is any residue and h is a hydrophobic residue), conserved in all GSTs and related proteins that seems to behave as a characteristic structural module important for protein folding and stability.  相似文献   

20.
Residues 1--10 of porcine fructose-1,6-bisphosphatase (FBPase) are poorly ordered or are in different conformations, sensitive to the state of ligation of the enzyme. Deletion of the first 10 residues of FBPase reduces k(cat) by 30-fold and Mg(2+) affinity by 20-fold and eliminates cooperativity in Mg(2+) activation. Although a fluorescent analogue of AMP binds with high affinity to the truncated enzyme, AMP itself potently inhibits only 50% of the enzyme activity. Additional inhibition occurs only when the concentration of AMP exceeds 10 mm. Deletion of the first seven residues reduces k(cat) and Mg(2+) affinity significantly but has no effect on AMP inhibition. The mutation of Asp(9) to alanine reproduces the weakened affinity for Mg(2+) observed in the deletion mutants, and the mutation of Ile(10) to aspartate reproduces the AMP inhibition of the 10-residue deletion mutant. Changes in the relative stability of the known conformational states for loop 52--72, in response to changes in the quaternary structure of FBPase, can account for the phenomena above. Some aspects of the proposed model may be relevant to all forms of FBPase, including the thioredoxin-regulated FBPase from the chloroplast.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号