首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The assembly of adhesive pili in Gram-negative bacteria is modulated by specialized periplasmic chaperone systems. PapD is the prototype member of the superfamily of periplasmic pilus chaperones. Previously, the alignment of chaperone sequences superimposed on the three dimensional structure of PapD revealed the presence of invariant, conserved and variable amino acids. Representative residues that protruded into the PapD cleft were targeted for site directed mutagenesis to investigate the pilus protein binding site of the chaperone. The ability of PapD to bind to fiber-forming pilus subunit proteins to prevent their participation in misassembly interactions depended on the invariant, solvent-exposed arginine-8 (R8) cleft residue. This residue was also essential for the interaction between PapD and a minor pilus adaptor protein. A mutation in the conserved methionine-172 (M172) cleft residue abolished PapD function when this mutant protein was expressed below a critical threshold level. In contrast, radical changes in the variable residue glutamic acid-167 (E167) had little or no effect on PapD function. These studies provide the first molecular details of how a periplasmic pilus chaperone binds to nascently translocated pilus subunits to guide their assembly into adhesive pili.  相似文献   

2.
P pili are composite adhesive fibres that allow uropathogenic Escherichia coli to gain a foothold in the host by binding to receptors present on the uroepithalium via the adhesin PapG. The assembly of P pili requires a periplasmic chaperone, PapD, that has an immunoglobulin-like three-dimensional structure. PapD-subunit complex formation involves a conserved anchoring mechanism in the chaperone cleft and a‘molecular zippering’to the extreme C-terminus of pilus subunits. A chaperone-binding assay was developed using fusions of the C-terminus of PapG to maltose-binding protein (MBP/G fusions) to investigate whether chaperone-subunit complex formation requires additional interactions. PapD bound strongly to an MBP/G fusion containing the C-terminal 140 amino acids of PapG (MBP/G175-314) but only weakly to the MBP/G234-314 fusion containing 81 C-terminal residues, arguing that the region between residues 175-234 contains additional information that is required for strong PapD-PapG interactions. PapD was shown to interact with a PapG C-terminal truncate containing residues 1-198 but not a truncate containing residues 1-145, suggesting the presence of a second, independent PapD interactive site. Four peptides overlapping the second site region were tested for binding to PapD in vitro to further delineate this motif. Only one of the peptides synthesized was recognized by PapD. The MBP/G fusion containing both binding sites formed a tight complex with PapD in vivo and inhibited pilus assembly by preventing chaperone-subunit complex formation.  相似文献   

3.
The class of proteins collectively known as periplasmic immunoglobulin-like chaperones play an essential role in the assembly of a diverse set of adhesive organelles used by pathogenic strains of Gram-negative bacteria. Herein, we present a combination of genetic and structural data that sheds new light on chaperone-subunit and subunit-subunit interactions in the prototypical P pilus system, and provides new insights into how PapD controls pilus biogenesis. New crystallographic data of PapD with the C-terminal fragment of a subunit suggest a mechanism for how periplasmic chaperones mediate the extraction of pilus subunits from the inner membrane, a prerequisite step for subunit folding. In addition, the conserved N- and C-terminal regions of pilus subunits are shown to participate in the quaternary interactions of the mature pilus following their uncapping by the chaperone. By coupling the folding of subunit proteins to the capping of their nascent assembly surfaces, periplasmic chaperones are thereby able to protect pilus subunits from premature oligomerization until their delivery to the outer membrane assembly site.  相似文献   

4.
P pili are hairlike polymeric structures that mediate binding of uropathogenic Escherichia coli to the surface of the kidney via the PapG adhesin at their tips. PapG is composed of two domains: a lectin domain at the tip of the pilus followed by a pilin domain that comprises the initial polymerizing subunit of the 1,000-plus-subunit heteropolymeric pilus fiber. Prior to assembly, periplasmic pilin domains bind to a chaperone, PapD. PapD mediates donor strand complementation, in which a beta strand of PapD temporarily completes the pilin domain''s fold, preventing premature, nonproductive interactions with other pilin subunits and facilitating subunit folding. Chaperone-subunit complexes are delivered to the outer membrane usher where donor strand exchange (DSE) replaces PapD''s donated beta strand with an amino-terminal extension on the next incoming pilin subunit. This occurs via a zip-in–zip-out mechanism that initiates at a relatively accessible hydrophobic space termed the P5 pocket on the terminally incorporated pilus subunit. Here, we solve the structure of PapD in complex with the pilin domain of isoform II of PapG (PapGIIp). Our data revealed that PapGIIp adopts an immunoglobulin fold with a missing seventh strand, complemented in parallel by the G1 PapD strand, typical of pilin subunits. Comparisons with other chaperone-pilin complexes indicated that the interactive surfaces are highly conserved. Interestingly, the PapGIIp P5 pocket was in an open conformation, which, as molecular dynamics simulations revealed, switches between an open and a closed conformation due to the flexibility of the surrounding loops. Our study reveals the structural details of the DSE mechanism.  相似文献   

5.
P pili are important adhesive fibres involved in kidney infection by uropathogenic Escherichia coli strains. P pili are assembled by the conserved chaperone-usher pathway, which involves the PapD chaperone and the PapC usher. During pilus assembly, subunits are incorporated into the growing fiber via the donor-strand exchange (DSE) mechanism, whereby the chaperone's G1 beta-strand that complements the incomplete immunoglobulin-fold of each subunit is displaced by the N-terminal extension (Nte) of an incoming subunit. P pili comprise a helical rod, a tip fibrillum, and an adhesin at the distal end. PapA is the rod subunit and is assembled into a superhelical right-handed structure. Here, we have solved the structure of a ternary complex of PapD bound to PapA through donor-strand complementation, itself bound to another PapA subunit through DSE. This structure provides insight into the structural basis of the DSE reaction involving this important pilus subunit. Using gel filtration chromatography and electron microscopy on a number of PapA Nte mutants, we establish that PapA differs in its mode of assembly compared with other Pap subunits, involving a much larger Nte that encompasses not only the DSE region of the Nte but also the region N-terminal to it.  相似文献   

6.
Abstract Steric structure of Caf1M, a periplasmic molecular chaperone of Yersinia pestis , was reconstructed by computer modelling based on a statistically significant primary structure homology between Caf1M and PapD protein from Escherichia coli , and using the known atomic coordinates obtained by the X-ray crystallography for PapD. In the three-dimensional model of Caf1M an accessory sequence between F1 and G1 β-strands (as compared to PapD) can form a strain-specific part of the binding pocket of surface organell subunits. This accessory sequence decreases the depth of the binding pocket. The characteristic structural feature of the subfamily of periplasmic molecular chaperones with the accessory sequence (Caf1M subfamily) is the existence of exposed to a solvent Cys residues in F1 and G1 β-strands which can form disulfide bond in the putative binding pocket. The characteristic functional feature of Caf1M subfamily is the chaperoning of more simple compositions of virulence-associated surface organells (in the case of Y. pestis a capsule consists of only F1 protein). Highly conserved R82 and D93, located at the domain surface remote from the putative subunit binding pocket, can participate in direct contacts with the conserved portion of molecular usher proteins.  相似文献   

7.
The chaperone-usher pathway directs the formation of adhesive surface fibres in numerous pathogenic Gram-negative bacteria. The fibres or pili consist exclusively of protein subunits that, before assembly, form transient complexes with a chaperone in the periplasm. In these chaperone:subunit complexes, the chaperone donates one beta-strand to complete the imperfect immunoglobulin-like fold of the subunit. During pilus assembly, the chaperone is replaced by a polypeptide extension of another subunit in a process termed 'donor strand exchange' (DSE). Here we show that DSE occurs in a concerted reaction in which a chaperone-bound acceptor subunit is attacked by another chaperone-bound donor subunit. We provide evidence that efficient DSE requires interactions between the reacting subunits in addition to those involving the attacking donor strand. Our results indicate that the pilus assembly platforms in the outer membrane, referred to as ushers, catalyse fibre formation by increasing the effective concentrations of donor and acceptor subunits.  相似文献   

8.
Molecular basis of two subfamilies of immunoglobulin-like chaperones.   总被引:15,自引:1,他引:14       下载免费PDF全文
The initial encounter of a microbial pathogen with the host often involves the recognition of host receptors by different kinds of bacterial adhesive organelles called pili, fimbriae, fibrillae or afimbrial adhesins. The development of over 26 of these architecturally diverse adhesive organelles in various Gram-negative pathogens depends on periplasmic chaperones that are comprised of two immunoglobulin-like domains. All of the chaperones possess a highly conserved sheet in domain 1 and a conserved interdomain hydrogen-bonding network. Chaperone-subunit complex formation depends on the anchoring of the carboxylate group of the subunit into the conserved crevice of the chaperone cleft and the subsequent positioning of the COOH terminus of subunits along the exposed edge of the conserved sheet of the chaperone. We discovered that the chaperones can be divided into two distinct subfamilies based upon conserved structural differences that occur in the conserved sheet. Interestingly, a subdivision of the chaperones based upon whether they assemble rod-like pili or non-pilus organelles that have an atypical morphology defines the same two subgroups. The molecular dissection of the two chaperone subfamilies and the adhesive fibers that they assemble has advanced our understanding of the development of virulence-associated organelles in pathogenic bacteria.  相似文献   

9.
Adhesive multi-subunit fibres are assembled on the surface of many pathogenic bacteria via the chaperone-usher pathway. In the periplasm, a chaperone donates a β-strand to a pilus subunit to complement its incomplete immunoglobulin-like fold. At the outer membrane, this is replaced with a β-strand formed from the N-terminal extension (Nte) of an incoming pilus subunit by a donor-strand exchange (DSE) mechanism. This reaction has previously been shown to proceed via a concerted mechanism, in which the Nte interacts with the chaperone:subunit complex before the chaperone has been displaced, forming a ternary intermediate. Thereafter, the pilus and chaperone β-strands have been postulated to undergo a strand swap by a ‘zip-in-zip-out’ mechanism, whereby the chaperone strand zips out, residue by residue, as the Nte simultaneously zips in, although direct experimental evidence for a zippering mechanism is still lacking. Here, molecular dynamics simulations have been used to probe the DSE mechanism during formation of the Saf pilus from Salmonella enterica at the atomic level, allowing the direct investigation of the zip-in-zip-out hypothesis. The simulations provide an explanation of how the incoming Nte is able to dock and initiate DSE due to inherent dynamic fluctuations within the chaperone:subunit complex. In the simulations, the chaperone donor strand was seen to unbind from the pilus subunit, residue by residue, in direct support of the zip-in-zip-out hypothesis. In addition, an interaction of a residue towards the N-terminus of the Nte with a specific binding pocket (P*) on the adjacent pilus subunit was seen to stabilise the DSE product against unbinding, which also proceeded in the simulations by a zippering mechanism. Together, the study provides an in-depth picture of DSE, including the first atomistic insights into the molecular events occurring during the zip-in-zip-out mechanism.  相似文献   

10.
The F17-G adhesin at the tip of flexible F17 fimbriae of enterotoxigenic Escherichia coli mediates binding to N-acetyl-beta-D-glucosamine-presenting receptors on the microvilli of the intestinal epithelium of ruminants. We report the 1.7 A resolution crystal structure of the lectin domain of F17-G, both free and in complex with N-acetylglucosamine. The monosaccharide is bound on the side of the ellipsoid-shaped protein in a conserved site around which all natural variations of F17-G are clustered. A model is proposed for the interaction between F17-fimbriated E. coli and microvilli with enhanced affinity compared with the binding constant we determined for F17-G binding to N-acetylglucosamine (0.85 mM-1). Unexpectedly, the F17-G structure reveals that the lectin domains of the F17-G, PapGII and FimH fimbrial adhesins all share the immunoglobulin-like fold of the structural components (pilins) of their fimbriae, despite lack of any sequence identity. Fold comparisons with pilin and chaperone structures of the chaperone/usher pathway highlight the central role of the C-terminal beta-strand G of the immunoglobulin-like fold and provides new insights into pilus assembly, function and adhesion.  相似文献   

11.
12.
The periplasmic molecular chaperone Caf1M of Yersinia pestis is a typical representative of a subfamily of specific chaperones involved in assembly of surface adhesins with a very simple structure. One characteristic feature of this Caf1M-like subfamily is possession of an extended, variable sequence (termed FGL) between the F1 and subunit binding G1 beta-strands. In contrast, FGS subfamily members, characterized by PapD, have a short F1-G1 loop and are involved in assembly of complex pili. To elucidate the structural and functional significance of the FGL sequence, a mutant Caf1M molecule (dCaf1M), in which the 27 amino acid residues between the F1 and G1 beta-strands had been deleted, was constructed. Expression of the mutated caf1M in Escherichia coli resulted in accumulation of high levels of dCaf1M. The far-UV circular dichroism spectra of the mutant and wild-type proteins were indistinguishable and exhibited practically the same temperature and pH dependencies. Thus, the FGL sequence of Caf1M clearly does not contribute significantly to the stability of the protein conformation. Preferential cleavage of Caf1M by trypsin at Lys-119 confirmed surface exposure of this part of the FGL sequence in the isolated chaperone and periplasmic chaperone-subunit complex. There was no evidence of surface-localized Caf1 subunit in the presence of the Caf1A outer membrane protein and dCaf1M. In contrast to Caf1M, dCaf1M was not able to form a stable complex with Caf1 nor could it protect the subunit from proteolytic degradation in vivo. This demonstration that the FGL sequence is required for stable chaperone-subunit interaction, but not for folding of a stable chaperone, provides a sound basis for future detailed molecular analyses of the FGL subfamily of chaperones.  相似文献   

13.
The assembly of the class 5 colonization factor antigen I (CFA/I) fimbriae of enterotoxigenic E. coli was proposed to proceed via the alternate chaperone‐usher pathway. Here, we show that in the absence of the chaperone CfaA, CfaB, the major pilin subunit of CFA/I fimbriae, is able to spontaneously refold and polymerize into cyclic trimers. CfaA kinetically traps CfaB to form a metastable complex that can be stabilized by mutations. Crystal structure of the stabilized complex reveals distinctive interactions provided by CfaA to trap CfaB in an assembly competent state through donor‐strand complementation (DSC) and cleft‐mediated anchorage. Mutagenesis indicated that DSC controls the stability of the chaperone‐subunit complex and the cleft‐mediated anchorage of the subunit C‐terminus additionally assist in subunit refolding. Surprisingly, over‐stabilization of the chaperone‐subunit complex led to delayed fimbria assembly, whereas destabilizing the complex resulted in no fimbriation. Thus, CfaA acts predominantly as a kinetic trap by stabilizing subunit to avoid its off‐pathway self‐polymerization that results in energetically favorable trimers and could serve as a driving force for CFA/I pilus assembly, representing an energetic landscape unique to class 5 fimbria assembly.  相似文献   

14.
A single polypeptide subunit, Caf1, polymerizes to form a dense, poorly defined structure (F1 capsule) on the surface of Yersinia pestis. The caf-encoded assembly components belong to the chaperone-usher protein family involved in the assembly of composite adhesive pili, but the Caf1M chaperone itself belongs to a distinct subfamily. One unique feature of this subfamily is the possession of a long, variable sequence between the F1 beta-strand and the G1 subunit binding beta-strand (FGL; F1 beta-strand to G1 beta-strand long). Deletion and insertion mutations confirmed that the FGL sequence was not essential for folding of the protein but was absolutely essential for function. Site-specific mutagenesis of individual residues identified Val-126, in particular, together with Val-128 as critical residues for the formation of a stable subunit-chaperone complex and the promotion of surface assembly. Differential effects on periplasmic polymerization of the subunit were also observed with different mutants. Together with the G1 strand, the FGL sequence has the potential to form an interactive surface of five alternating hydrophobic residues on Caf1M chaperone as well as in seven of the 10 other members of the FGL subfamily. Mutation of the absolutely conserved Arg-20 to Ser led to drastic reduction in Caf1 binding and surface assembled polymer. Thus, although Caf1M-Caf1 subunit binding almost certainly involves the basic principle of donor strand complementation elucidated for the PapD-PapK complex, a key feature unique to the chaperones of this subfamily would appear to be capping via high-affinity binding of an extended hydrophobic surface on the respective single subunits.  相似文献   

15.
Type 1 pili from uropathogenic Escherichia coli are a prototype of adhesive surface organelles assembled and secreted by the conserved chaperone/usher pathway. They are composed of four different homologous protein subunits that need to be assembled in a defined order. In the periplasm, the pilus chaperone FimC donates a β-strand segment to the subunits to complete their imperfect immunoglobulin-like fold. During subunit assembly, this segment of the chaperone is displaced by an amino-terminal extension of an incoming subunit in a reaction termed donor-strand exchange. To date, the molecular mechanisms underlying the coordinated subunit assembly, in particular the role of the outer membrane usher FimD, are still poorly understood. Here we show that the binding of complexes between FimC and the different pilus subunits to the amino-terminal substrate recognition domain of FimD is an extremely fast process, with association rate constants in the range of 107-108 M 1 s− 1 at 20 °C. Furthermore, we demonstrate that the ordered assembly of pilus subunits is a consequence of the usher's ability to selectively catalyze the assembly of defined subunit-subunit pairs that are adjacent in the mature pilus. The usher therefore coordinates the assembly of pilus subunits at the stage of donor-strand exchange between pairs of subunits and not at the level of the initial binding of chaperone-subunit complexes.  相似文献   

16.
Abstract The periplasmic Yersinia pestis molecular chaperone Caf1M belongs to a superfamily of bacterial proteins for one of which (PapD protein of Escherichia coli ) the immunoglobulin-like fold was solved by X-ray analysis. The N-terminal domain of Caf1M was found to share a 20% amino acid sequence identity with an inclusion body-associated protein IbpB of Escherichia coli . One of the regions that was compared, was 32 amino acids long, and displayed more than 40% identity, probability of random coincidence was 1.2 × 10−4. IbpB is involved in a superfamily of small heat shock proteins which fulfil the function of molecular chaperone. On the basis of the revealed homology, an immunoglobulin-like one-domain model of IbpB three-dimensional structure was designed which could be a prototype conformation of sHsp's. The structure suggested is in good agreement with the known experimental data obtained for different members of sHsp's superfamily.  相似文献   

17.
Hermanns U  Sebbel P  Eggli V  Glockshuber R 《Biochemistry》2000,39(38):11564-11570
Assembly of type 1 pili from Escherichia coli is mediated by FimC, a periplasmic chaperone (assembly factor) consisting of two immunoglobulin-like domains. FimC is assumed to recognize the individual pilus subunits in the periplasm mainly via their conserved C-terminal segments and to deliver the subunits to an assembly platform in the outer membrane. Here we present the first biochemical characterization of a periplasmic pilus chaperone and analyze the importance of the two chaperone domains for stability and function. Comparison of the isolated C-terminal domain with wild-type FimC revealed a strongly reduced thermodynamic stability, indicating strong interdomain interactions. The affinity of FimC toward a peptide corresponding to the 11 C-terminal residues of the type 1 pilus adhesin FimH is at least 1000-fold lower compared to binding of intact FimH, confirming that bacterial pilus chaperones, unlike other chaperones, specifically interact with folded pilus subunits.  相似文献   

18.
CfaE is the minor, tip-localized adhesive subunit of colonization factor antigen I fimbriae (CFA/I) of enterotoxigenic Escherichia coli and is thought to be essential for the attachment of enterotoxigenic E. coli to the human small intestine early in diarrhea pathogenesis. The crystal structure of an in cis donor strand complemented CfaE was determined, providing the first atomic view of a fimbrial subunit assembled by the alternate chaperone pathway. The in cis donor strand complemented variant of CfaE structure consists of an N-terminal adhesin domain and a C-terminal pilin domain of similar size, each featuring a variable immunoglobulin-like fold. Extensive interactions exist between the two domains and appear to rigidify the molecule. The upper surface of the adhesin domain distal to the pilin domain reveals a depression consisting of conserved residues including Arg(181), previously shown to be necessary for erythrocyte adhesion. Mutational analysis revealed a cluster of conserved, positively charged residues that are required for CFA/I-mediated hemagglutination, implicating this as the receptor-binding pocket. Mutations in a few subclass-specific residues that surround the cluster displayed differential effects on the two red cell species used in hemagglutination, suggesting that these residues play a role in host or cell specificity. The C-terminal donor strand derived from the major subunit CfaB is folded as a beta-strand and fits into a hydrophobic groove in the pilin domain to complete the immunoglobulin fold. The location of this well ordered donor strand suggests the positioning and orientation of the subjacent major fimbrial subunit CfaB in the native assembly of CFA/I fimbriae.  相似文献   

19.
Detailed structural analyses revealed a family of periplasmic chaperones in Gram-negative prokaryotes which are structurally and possibly evolutionarily related to the immunoglobulin superfamily and assist in the assembly of adhesive pili. The members of this family have similar structures consistent with the overall topology of an immunoglobulin fold. Seven pilus chaperone sequences from Escherichia coli, Haemophilus influenzae and Klebsiella pneumoniae were aligned and their consensus sequence was superimposed onto the known three-dimensional structure of PapD, a representative member of the family. The molecular details of the conserved and variable structural motifs in this family of periplasmic chaperones give important insight into their structure, function, mechanism of action and evolutionary relationship with the immunoglobulin superfamily.  相似文献   

20.
DegP, a member of the HtrA family of proteins, conducts critical bacterial protein quality control by both chaperone and proteolysis activities. The regulatory mechanisms controlling these two distinct activities, however, are unknown. DegP activation is known to involve a unique mechanism of allosteric binding, conformational changes and oligomer formation. We have uncovered a novel role for the residues at the PDZ1:protease interface in oligomer formation specifically for chaperone substrates of Chlamydia trachomatis HtrA (DegP homolog). We have demonstrated that CtHtrA proteolysis could be activated by allosteric binding and oligomer formation. The PDZ1 activator cleft was required for the activation and oligomer formation. However, unique to CtHtrA was the critical role for residues at the PDZ1:protease interface in oligomer formation when the activator was an in vitro chaperone substrate. Furthermore, a potential in vivo chaperone substrate, the major outer membrane protein (MOMP) from Chlamydia, was able to activate CtHtrA and induce oligomer formation. Therefore, we have revealed novel residues involved in the activation of CtHtrA which are likely to have important in vivo implications for outer membrane protein assembly.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号