首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The molecular mechanisms underlying the apoA-I/ABCA1 endocytic trafficking pathway in relation to high density lipoprotein (HDL) formation remain poorly understood. We have developed a quantitative cell surface biotinylation assay to determine the compartmentalization and trafficking of apoA-I between the plasma membrane (PM) and intracellular compartments (ICCs). Here we report that (125)I-apoA-I exhibited saturable association with the PM and ICCs in baby hamster kidney cells stably overexpressing ABCA1 and in fibroblasts. The PM was found to have a 2-fold higher capacity to accommodate apoA-I as compared with ICCs. Overexpressing various levels of ABCA1 in baby hamster kidney cells promoted the association of apoA-I with PM and ICCs compartments. The C-terminal deletion of apoA-I Delta(187-243) and reconstituted HDL particles exhibited reduced association of apoA-I with both the PM and ICCs. Interestingly, cell surface biotinylation with a cleavable biotin revealed that apoA-I induces ABCA1 endocytosis. Such endocytosis was impaired by naturally occurring mutations of ABCA1 (Q597R and C1477R). To better understand the role of the endocytotic pathway in the dynamics of the lipidation of apoA-I, a pulse-chase experiment was performed, and the dissociation (re-secretion) of (125)I-apoA-I from both PM and ICCs was monitored over a 6-h period. Unexpectedly, we found that the time required for 50% dissociation of (125)I-apoA-I from the PM was 4-fold slower than that from ICCs at 37 degrees C. Finally, treatment of the cells with phosphatidylcholine-specific phospholipase C, increased the dissociation of apoA-I from the PM. This study provides evidence that the lipidation of apoA-I occurs in two kinetically distinguishable compartments. The finding that apoA-I specifically mediates the continuous endocytic recycling of ABCA1, together with the kinetic data showing that apoA-I associated with ICCs is rapidly re-secreted, suggests that the endocytotic pathway plays a central role in the genesis of nascent HDL.  相似文献   

2.
3.
4.
Chroni A  Koukos G  Duka A  Zannis VI 《Biochemistry》2007,46(19):5697-5708
ATP-binding cassette transporter A-1 (ABCA1)-mediated lipid efflux to lipid-poor apolipoprotein A-I (apoA-I) results in the gradual lipidation of apoA-I. This leads to the formation of discoidal high-density lipoproteins (HDL), which are subsequently converted to spherical HDL by the action of lecithin:cholesterol acyltransferase (LCAT). We have investigated the effect of point mutations and deletions in the carboxy-terminal region of apoA-I on the biogenesis of HDL using adenovirus-mediated gene transfer in apoA-I-deficient mice. It was found that the plasma HDL levels were greatly reduced in mice expressing the carboxy-terminal deletion mutants apoA-I[Delta(185-243)] and apoA-I[Delta(220-243)], shown previously to diminish the ABCA1-mediated lipid efflux. The HDL levels were normal in mice expressing the WT apoA-I, the apoA-I[Delta(232-243)] deletion mutant, or the apoA-I[E191A/H193A/K195A] point mutant, which promote normal ABCA1-mediated lipid efflux. Electron microscopy and two-dimensional gel electrophoresis showed that the apoA-I[Delta(185-243)] and apoA-I[Delta(220-243)] mutants formed mainly prebeta-HDL particles and few spherical particles enriched in apoE, while WT apoA-I, apoA-I[Delta(232-243)], and apoA-I[E191A/H193A/K195A] formed spherical alpha-HDL particles. The findings establish that (a) deletions that eliminate the 220-231 region of apoA-I prevent the synthesis of alpha-HDL but allow the synthesis of prebeta-HDL particles in vivo, (b) the amino-terminal segment 1-184 of apoA-I can promote synthesis of prebeta-HDL-type particles in an ABCA1-independent process, and (c) the charged residues in the 191-195 region of apoA-I do not influence the biogenesis of HDL.  相似文献   

5.
The dynamics of ABCA1-mediated apoA-I lipidation were investigated in intact human fibroblasts induced with 22(R)-hydroxycholesterol and 9-cis-retinoic acid (stimulated cells). Specific binding parameters of (125)I-apoA-I to ABCA1 at 37 degrees C were determined: K(d) = 0.65 microg/ml, B(max) = 0.10 ng/microg cell protein. Lipid-free apoA-I inhibited the binding of (125)I-apoA-I to ABCA1 more efficiently than pre-beta(1)-LpA-I, reconstituted HDL particles r(LpA-I), or HDL(3) (IC(50) = 0.35 +/- 1.14, apoA-I; 1.69 +/- 1.07, pre-beta(1)-LpA-I; 17.91 +/- 1.39, r(LpA-I); and 48.15 +/- 1.72 microg/ml, HDL(3)). Treatment of intact cells with either phosphatidylcholine-specific phospholipase C or sphingomyelinase affected neither (125)I-apoA-I binding nor (125)I-apoA-I/ABCA1 cross-linking. We next investigated the dynamics of apoA-I lipidation by monitoring the kinetic of apoA-I dissociation from ABCA1. The dissociation of (125)I-apoA-I from normal cells at 37 degrees C was rapid (t((1/2)) = 1.4 +/- 0.66 h; n = 3) but almost completely inhibited at either 15 or 4 degrees C. A time course analysis of apoA-I-containing particles released during the dissociation period showed nascent apoA-I-phospholipid complexes that exhibited alpha-electrophoretic mobility with a particle size ranging from 9 to 20 nm (designated alpha-LpA-I-like particles), whereas lipid-free apoA-I incubated with ABCA1 mutant (Q597R) cells was unable to form such particles. These results demonstrate that: 1) the physical interaction of apoA-I with ABCA1 does not depend on membrane phosphatidylcholine or sphingomyelin; 2) the association of apoA-I with lipids reduces its ability to interact with ABCA1; and 3) the lipid translocase activity of ABCA1 generates alpha-LpA-I-like particles. This process plays in vivo a key role in HDL biogenesis.  相似文献   

6.
It is well accepted that both apolipoprotein A-I (apoA-I) and ABCA1 play crucial roles in HDL biogenesis and in the human atheroprotective system. However, the nature and specifics of apoA-I/ABCA1 interactions remain poorly understood. Here, we present evidence for a new cellular apoA-I binding site having a 9-fold higher capacity to bind apoA-I compared with the ABCA1 site in fibroblasts stimulated with 22-(R)-hydroxycholesterol/9-cis-retinoic acid. This new cellular apoA-I binding site was designated "high-capacity binding site" (HCBS). Glyburide drastically reduced (125)I-apoA-I binding to the HCBS, whereas (125)I-apoA-I showed no significant binding to the HCBS in ABCA1 mutant (Q597R) fibroblasts. Furthermore, reconstituted HDL exhibited reduced affinity for the HCBS. Deletion of the C-terminal region of apoA-I (Delta187-243) drastically reduced the binding of apoA-I to the HCBS. Interestingly, overexpressing various levels of ABCA1 in BHK cells promoted the formation of the HCBS. The majority of the HCBS was localized to the plasma membrane (PM) and was not associated with membrane raft domains. Importantly, treatment of cells with phosphatidylcholine-specific phospholipase C, but not sphingomyelinase, concomitantly reduced the binding of (125)I-apoA-I to the HCBS, apoA-I-mediated cholesterol efflux, and the formation of nascent apoA-I-containing particles. Together, these data suggest that a functional ABCA1 leads to the formation of a major lipid-containing site for the binding and the lipidation of apoA-I at the PM. Our results provide a biochemical basis for the HDL biogenesis pathway that involves both ABCA1 and the HCBS, supporting a two binding site model for ABCA1-mediated nascent HDL genesis.  相似文献   

7.
ATP-binding cassette transporter A1 (ABCA1) mediates cholesterol efflux to lipid-poor apolipoprotein A-I (apoA-I) and generates HDL. Here, we demonstrate that ABCA1 also directly mediates the production of apoA-I free microparticles. In baby hamster kidney (BHK) cells and RAW macrophages, ABCA1 expression led to lipid efflux in the absence of apoA-I and released large microparticles devoid of apoB and apoE. We provide evidence that these microparticles are an integral component of the classical cholesterol efflux pathway when apoA-I is present and accounted for approximately 30% of the total cholesterol released to the medium. Furthermore, microparticle release required similar ABCA1 activities as was required for HDL production. For instance, a nucleotide binding domain mutation in ABCA1 (A937V) that impaired HDL generation also abolished microparticle release. Similarly, inhibition of protein kinase A (PKA) prevented the release of both types of particles. Interestingly, physical modulation of membrane dynamics affected HDL and microparticle production, rigidifying the plasma membrane with wheat germ agglutinin inhibited HDL and microparticle release, whereas increasing the fluidity promoted the production of these particles. Given the established role of ABCA1 in expending nonraft or more fluid-like membrane domains, our results suggest that both HDL and microparticle release is favored by a more fluid plasma membrane. We speculate that ABCA1 enhances the dynamic movement of the plasma membrane, which is required for apoA-I lipidation and microparticle formation.  相似文献   

8.
High density lipoproteins (HDL) and apolipoprotein A-I (apoA-I) must leave the circulation and pass the endothelium to exert their atheroprotective actions in the arterial wall. We previously demonstrated that the transendothelial transport of apoA-I involves ATP-binding cassette transporter (ABC) A1 and re-secretion of lipidated particles. Transendothelial transport of HDL is modulated by ABCG1 and the scavenger receptor BI (SR-BI). We hypothesize that apoA-I transport is started by the ABCA1-mediated generation of a lipidated particle which is then transported by ABCA1-independent pathways. To test this hypothesis we analyzed the endothelial binding and transport properties of initially lipid-free as well as prelipidated apoA-I mutants. Lipid-free apoA-I mutants with a defective carboxyl-terminal domain showed an 80% decreased specific binding and 90% decreased specific transport by aortic endothelial cells. After prior cell-free lipidation of the mutants, the resulting HDL-like particles were transported through endothelial cells by an ABCG1- and SR-BI-dependent process. ApoA-I mutants with deletions of either the amino terminus or both the amino and carboxyl termini showed dramatic increases in nonspecific binding but no specific binding or transport. Prior cell-free lipidation did not rescue these anomalies. Our findings of stringent structure-function relationships underline the specificity of transendothelial apoA-I transport and suggest that lipidation of initially lipid-free apoA-I is necessary but not sufficient for specific transendothelial transport. Our data also support the model of a two-step process for the transendothelial transport of apoA-I in which apoA-I is initially lipidated by ABCA1 and then further processed by ABCA1-independent mechanisms.  相似文献   

9.
The liver is the major site of both apolipoprotein A-I (apoA-I) synthesis and ATP-binding cassette transporter A1 (ABCA1) expression. Here, we compare the lipidation with cholesterol and phospholipid of newly synthesized human apoA-I (hapoA-I) using adenoviral vector-mediated endogenous expression or exogenously added hapoA-I in wild type and ABCA1-null hepatocytes. Hepatocytes were labeled with [3H]cholesterol (delivered with LDL or methyl-beta-cyclodextrin), [3H]mevalonate, or [3H]choline. ABCA1 deficiency decreased apoA-I phospholipidation by 80%, but acquisition of de novo synthesized and exogenous cholesterol only decreased by 40-60%. The transfer of de novo synthesized cholesterol to apoA-I was decreased at all time points, but that of exogenously delivered cholesterol was independent of ABCA1 activity at the early time points. Progesterone does not affect apoA-I synthesis or its lipidation but inhibited the early phase of apoA-I cholesterol lipidation in both wild type and ABCA1-null hepatocytes. Fast protein liquid chromatography analysis of medium lipoproteins confirmed that with ABCA1 deficiency, the proportion of secreted high density lipoprotein-associated apoA-I and cholesterol decreased by about 50%. The very low density lipoprotein (VLDL)/LDL size fraction also contained a significant level of cholesterol in ABCA1 deficiency, consistent with the result of immunoprecipitations showing the presence of lipoproteins with both apoA-I and murine apoB. ApoA-I lipidation with newly synthesized cholesterol in ABCA1-null hepatocytes was significantly decreased by brefeldin A and monensin. In conclusion, we demonstrate that: (i) whereas most hepatic phospholipidation of apoA-I is mediated by ABCA1, acquisition of cholesterol depends on active transfer from intracellular compartments by ABCA1-dependent and -independent pathways, both sensitive to progesterone and (ii) there is separate regulation of phospholipid and cholesterol lipidation of apoA-I in hepatocytes.  相似文献   

10.
High levels of expression of the ATP binding cassette transporter A1 (ABCA1) in the liver and the need to over- or underexpress hepatic ABCA1 to impact plasma HDL levels in mice suggest a major role of the liver in HDL formation and in determining circulating HDL levels. Cultured murine hepatocytes were used to examine the role of hepatic ABCA1 in mediating the lipidation of apolipoprotein A-I (apoA-I) for HDL particle formation. Exogenous apoA-I stimulated cholesterol efflux to the medium from wild-type hepatocytes, but not from ABCA1-deficient (abca1(-/-)) hepatocytes. ApoA-I induced the formation of new HDL particles and enhanced the lipidation of endogenously secreted murine apoA-I in ABCA1-expressing but not abca1(-/-) hepatocytes. ABCA1-dependent cholesterol mobilization to apoA-I increased new cholesterol synthesis, indicating depletion of the regulatory pool of hepatocyte cholesterol during HDL formation. Secretion of triacylglycerol and apoB was decreased following apoA-I incubation with ABCA1-expressing but not abca1(-/-) hepatocytes. These results support a major role for hepatocyte ABCA1 in generating a critical pool of HDL precursor particles that enhance further HDL generation and passive cholesterol mobilization in the periphery. The results also suggest that diversion of hepatocyte cholesterol into the "reverse" cholesterol transport pathway diminishes cholesterol availability for apoB-containing lipoprotein secretion by the liver.  相似文献   

11.
The ATP-binding cassette transporters ABCA1 and ABCG1 as well as scavenger receptor BI (SR-BI) mediate the efflux of lipids from macrophages to apolipoprotein A-I (apoA-I) and high density lipoproteins (HDL). We used RNA interference in RAW264.7 macrophages to study the interactions of ABCA1, ABCG1, and SR-BI with lipid-free apoA-I, native and reconstituted HDL with apoA-I:phosphatidylcholine ratios of either 1:40 (rHDL(1:40)) or 1:100 (rHDL(1:100)). Knock-down of ABCA1 inhibits the cellular binding at 4 degrees C of lipid-free apoA-I but not of HDL whereas suppression of ABCG1 or SR-BI reduces the binding of HDL but not lipid-free apoA-I. The degree of lipidation influences the interactions of rHDL with ABCG1 and SR-BI. Knock-down of ABCG1 inhibits more effectively the binding and cholesterol efflux capacities of lipid-poorer rHDL(1:40) whereas knock-down of SR-BI has a more profound effect on the binding and cholesterol efflux capacities of lipid-richer rHDL(1:100). Moreover, knock-down of ABCG1 but not SR-BI interferes with the association of lipid-free apoA-I during prolonged incubation at 37 degrees C. Finally, knock-down of ABCG1 inhibits the binding of initially lipid-free apoA-I which has been preconditioned by cells with high ABCA1 activity. The gained ability of initially lipid-free apoA-I to interact with ABCG1 is accompanied by its shift from electrophoretic pre-beta- to alpha-mobility. Taken together, these data suggest that the interaction of lipid-free apoA-I with ABCA1 generates a particle that immediately interacts with ABCG1 but not with SR-BI. Furthermore, the degree of lipidation influences the interaction of HDL with ABCG1 or SR-BI.  相似文献   

12.
Hepatocytes, which are the main site of apolipoprotein (apo)A-I and ATP-binding cassette transporter A1 (ABCA1) expression, are also the main source of circulating high density lipoprotein. Here we have characterized the intracellular lipidation of newly synthesized apoA-I, in primary hepatocytes cultured with [3H]choline to label choline-phospholipids, low density lipoprotein-[3H]cholesterol to label the cell surface, or [3H]mevalonate to label de novo synthesized cholesterol. Phospholipidation of apoA-I is significant and most evident in endoplasmic reticulum (ER) and medial Golgi, both in the lumen and on the membrane fractions of the ER and medial Golgi. In the presence of cycloheximide, endogenous apoA-I is substantially phospholipidated intracellularly but acquires some additional lipid after export out of the cell. In cells labeled with low density lipoprotein-[3H]cholesterol, intracellular cholesterol lipidation of apoA-I is entirely absent, but the secreted apoA-I rapidly accumulates cholesterol after secretion from the cell in the media. On the other hand, de novo synthesized cholesterol can lipidate apoA-I intracellularly. We also showed the interaction between apoA-I and ABCA1 in ER and Golgi fractions. In hepatocytes lacking ABCA1, lipidation by low density lipoprotein-cholesterol was significantly reduced at the plasma membrane, phospholipidation and lipidation by de novo synthesized sterols were both reduced in Golgi compartments, whereas ER lipidation remained mostly unchanged. Therefore, the early lipidation in ER is ABCA1 independent, but in contrast, the lipidation of apoA-I in Golgi and at the plasma membrane requires ABCA1. Thus, we demonstrated that apoA-I phospholipidation starts early in the ER and is partially dependent on ABCA1, with the bulk of lipidation by phospholipids and cholesterol occurring in the Golgi and at the plasma membrane, respectively. Finally, we showed that the previously reported association of newly synthesized apoA-I and apoB (Zheng, H., Kiss, R. S., Franklin, V., Wang, M. D., Haidar, B., and Marcel, Y. L. (2005) J. Biol. Chem. 280, 21612-21621) occurs after secretion at the cell surface.  相似文献   

13.
The oligomeric structure of ABCA1 transporter and its function related to the biogenesis of nascent apoA-I-containing particles (LpA-I) were investigated. Using n-dodecylmaltoside and perfluoro-octanoic acid combined with non-denaturing gel, the majority of ABCA1 was found as a tetramer in ABCA1-induced human fibroblasts. Furthermore, using chemical cross-linking and SDS-PAGE, ABCA1 dimers but not the tetramers were found covalently linked. Oligomeric ABCA1 was present in isolated plasma membranes as well as in intracellular compartments. Interestingly, apoA-I was found to be associated with both dimeric and tetrameric, but not monomeric, forms of ABCA1. Neither apoA-I nor lipid molecules did affect ABCA1 oligomerization. Immunoprecipitation analysis showed that oligomeric ABCA1 did not contain other associated proteins. We next investigated the relationship between the oligomeric ABCA1 complex and the structure of LpA-I. Lipid-free apoA-I incubated with normal cells generated LpA-I with diameters between 9.5 and 20 nm. Subsequent isolation of LpA-I followed by cross-linking revealed the presence of four and eight apoA-I molecules per particle, whereas apoA-I incubated with ABCA1 mutant (Q597R) cells was unable to form such particles and remained in the monomeric form. These results demonstrate that: 1) ABCA1 exists as an oligomeric complex; and 2) ABCA1 oligomerization was independent of apoA-I binding and lipid molecules. The findings that the majority of ABCA1 exists as a tetramer that binds apoA-I, together with the observation that LpA-I contains at least four molecules of apoA-I per particle, support the concept that the homotetrameric ABCA1 complex constitutes the minimum functional unit required for the biogenesis of high density lipoprotein particles.  相似文献   

14.
Serum amyloid A (SAA) was markedly increased in the plasma and in the liver upon acute inflammation induced by intraperitoneal injection of lipopolysaccharide (LPS) in mice, and SAA in the plasma was exclusively associated with HDL. In contrast, no HDL was present in the plasma and only a small amount of SAA was found in the VLDL/LDL fraction (d < 1.063 g/ml) after the induction of inflammation in ABCA1-knockout (KO) mice, although SAA increased in the liver. Primary hepatocytes isolated from LPS-treated wild-type (WT) and ABCA1-KO mice both secreted SAA into the medium. SAA secreted from WT hepatocytes was associated with HDL, whereas SAA from ABCA1-KO hepatocytes was recovered in the fraction that was >1.21 g/ml. The behavior of apolipoprotein A-I (apoA-I) was the same as that of SAA in HDL biogenesis by WT and ABCA1-KO mouse hepatocytes. Lipid-free SAA and apoA-I both stabilized ABCA1 and caused cellular lipid release in WT mouse-derived fibroblasts, but not in ABCA1-KO mouse-derived fibroblasts, in vitro when added exogenously. We conclude that both SAA and apoA-I generate HDL largely in hepatocytes only in the presence of ABCA1, likely being secreted in a lipid-free form to interact with cellular ABCA1. In the absence of ABCA1, nonlipidated SAA is seemingly removed rapidly from the extracellular space.  相似文献   

15.
The ABCA1 transporter functions on the basolateral surface of hepatocytes   总被引:4,自引:0,他引:4  
ABCA1 on the cell surface and in endosomes plays an essential role in the cell-mediated lipidation of apoA-I to form nascent HDL. Our previous studies of transgenic mice overexpressing ABCA1 suggested that ABCA1 in the liver plays a major role in regulating plasma HDL levels. The site of function of ABCA1 in the polarized hepatocyte was currently assessed by expression of an adenoviral construct encoding a human ABCA1-GFP fusion protein in the polarized hepatocyte-like WIF-B cell line. Consistent with localization of ABCA1 at the basolateral (vascular) cell surface, expression of ABCA1-GFP stimulated apoA-I mediated efflux of WIF-B cell cholesterol into the culture medium. Confocal fluorescence microscopy revealed that ABCA1-GFP was expressed solely on the basolateral surface and associated endocytic vesicles. These findings suggest an important role for hepatocyte basolateral membrane ABCA1 in the regulation of the levels of intracellular hepatic cholesterol, as well as plasma HDL.  相似文献   

16.
We have mapped the domains of lipid-free apoA-I that promote cAMP-dependent and cAMP-independent cholesterol and phospholipid efflux. The cAMP-dependent lipid efflux in J774 mouse macrophages was decreased by approximately 80-92% by apoA-I[delta(185-243)], only by 15% by apoA-I[delta(1-41)] or apoA-I[delta(1-59)], and was restored to 75-80% of the wild-type apoA-I control value by double deletion mutants apoA-I[delta(1-41)delta(185-243)] and apoA-I[delta(1-59)delta(185-243)]. Similar results were obtained in HEK293 cells transfected with an ATP-binding cassette transporter A1 (ABCA1) expression plasmid. The double deletion mutant of apoA-I had reduced thermal and chemical stability compared with wild-type apoA-I. Sequential carboxyl-terminal deletions showed that cAMP-dependent cholesterol efflux was diminished in all the mutants tested, except the apoA-I[delta(232-243)] which had normal cholesterol efflux. In cAMP-untreated or in mock-transfected cells, cholesterol efflux was not affected by the amino-terminal deletions, but decreased by 30-40% and 50-65% by the carboxyl-terminal and double deletions, respectively. After adenovirus-mediated gene transfer in apoA-I-deficient mice, wild-type apoA-I and apoA-I[delta(1-41)] formed spherical high density lipoprotein (HDL) particles, whereas apoA-I[delta(1-41)delta(185-243)] formed discoidal HDL. The findings suggest that although the central helices of apoA-I alone can promote ABCA1-mediated lipid efflux, residues 220-231 are necessary to allow functional interactions between the full-length apoA-I and ABCA1 that are required for lipid efflux and HDL biogenesis.  相似文献   

17.
The ATP binding cassette transporter A-1 (ABCA1) is critical for apolipoprotein-mediated cholesterol efflux, an important mechanism employed by macrophages to avoid becoming lipid-laden foam cells, the hallmark of early atherosclerotic lesions. It has been proposed that lipid-free apolipoprotein A-I (apoA-I) enters the cell and is resecreted as a lipidated particle via a retroendocytosis pathway during ABCA1-mediated cholesterol efflux from macrophages. To determine the functional importance of such a pathway, confocal microscopy was used to characterize the internalization of a fully functional apoA-I cysteine mutant containing a thiol-reactive fluorescent probe in cultured macrophages. ApoA-I was also endogenously labeled with (35)S-methionine to quantify cellular uptake and to determine the metabolic fate of the internalized protein. It was found that apoA-I was specifically taken inside macrophages and that a small amount of intact apoA-I was resecreted from the cells. However, a majority of the label that reappeared in the media was degraded. We estimate that the mass of apoA-I retroendocytosed is not sufficient to account for the HDL produced by the cholesterol efflux reaction. Furthermore, we have demonstrated that lipid-free apoA-I-mediated cholesterol efflux from macrophages can be pharmacologically uncoupled from apoA-I internalization into cells. On the basis these findings, we present a model in which the ABCA1-mediated lipid transfer process occurs primarily at the membrane surface in macrophages, but still accounts for the observed specific internalization of apoA-I.  相似文献   

18.
ABCA1 is an ATP-binding cassette protein that transports cellular cholesterol and phospholipids onto high density lipoproteins (HDL) in plasma. Lack of ABCA1 in humans and mice causes abnormal lipidation and increased catabolism of HDL, resulting in very low plasma apoA-I, apoA-II, and HDL. Herein, we have used Abca1-/- mice to ask whether ABCA1 is involved in lipidation of HDL in the central nervous system (CNS). ApoE is the most abundant CNS apolipoprotein and is present in HDL-like lipoproteins in CSF. We found that Abca1-/- mice have greatly decreased apoE levels in both the cortex (80% reduction) and the CSF (98% reduction). CSF from Abca1-/- mice had significantly reduced cholesterol as well as small apoE-containing lipoproteins, suggesting abnormal lipidation of apoE. Astrocytes, the primary producer of CNS apoE, were cultured from Abca1+/+, +/-, and -/- mice, and nascent lipoprotein particles were collected. Abca1-/- astrocytes secreted lipoprotein particles that had markedly decreased cholesterol and apoE and had smaller apoE-containing particles than particles from Abca1+/+ astrocytes. These findings demonstrate that ABCA1 plays a critical role in CNS apoE metabolism. Since apoE isoforms and levels strongly influence Alzheimer's disease pathology and risk, these data suggest that ABCA1 may be a novel therapeutic target.  相似文献   

19.
Metabolic disorders such as type 2 diabetes cause hepatic endoplasmic reticulum (ER) stress, which affects neutral lipid metabolism. However, the role of ER stress in cholesterol metabolism is incompletely understood. Here, we show that induction of acute ER stress in human hepatic HepG2 cells reduced ABCA1 expression and caused ABCA1 redistribution to tubular perinuclear compartments. Consequently, cholesterol efflux to apoA-I, a key step in nascent HDL formation, was diminished by 80%. Besides ABCA1, endogenous apoA-I expression was reduced upon ER stress induction, which contributed to reduced cholesterol efflux. Liver X receptor, a key regulator of ABCA1 in peripheral cells, was not involved in this process. Despite reduced cholesterol efflux, cellular cholesterol levels remained unchanged during ER stress. This was due to impaired de novo cholesterol synthesis by reduction of HMG-CoA reductase activity by 70%, although sterol response element-binding protein-2 activity was induced. In mice, ER stress induction led to a marked reduction of hepatic ABCA1 expression. However, HDL cholesterol levels were unaltered, presumably because of scavenger receptor class B, type I downregulation under ER stress. Taken together, our data suggest that ER stress in metabolic disorders reduces HDL biogenesis due to impaired hepatic ABCA1 function.  相似文献   

20.
We previously reported that the endogenous ATP-binding cassette transporter (ABC)A7 strongly associates with phagocytic function rather than biogenesis of high-density lipoprotein (HDL), being regulated by sterol-regulatory element binding protein (SREBP)2. Phagocytic activity was found enhanced by apolipoprotein (apo)A-I and apoA-II more than twice the maximum in J774 and mouse peritoneal macrophages. Therefore we investigated the molecular basis of this reaction in association with the function of ABCA7. Similar to ABCA1, ABCA7 was degraded, likely by calpain, and apoA-I and apoA-II stabilize ABCA7 against degradation. Cell surface biotinylation experiments demonstrated that endogenous ABCA7 predominantly resides on the cell surface and that the apolipoproteins increase the surface ABCA7. The increase of phagocytosis by apolipoproteins was retained in the J774 cells treated with ABCA1 siRNA and in the peritoneal macrophages from ABCA1-knockout mice, but it was abolished in the J774 cells treated with ABCA7 siRNA and in the peritoneal macrophages from ABCA7-knockout mice. Phagocytosis was decreased in the cells in the peritoneal cavity of the ABCA7-knockout mouse compared with the wild-type control. We thus concluded that extracellular helical apolipoproteins augment ABCA7-associated phagocytosis by stabilizing ABCA7. The results demonstrated direct enhancement of the host defense system by HDL components.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号