首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
DNA double strand breaks (DSBs) pose a severe hazard to the genome as erroneous rejoining of DSBs can lead to mutation and cancer. Here, we have investigated the correlation between X irradiation-induced γ-H2AX foci, theoretically induced DSBs, and the minimal number of mis-rejoined DNA breaks (MNB) in irradiated lymphocytes obtained from two healthy humans by painting of the whole chromosome complement by spectral karyotyping. There were less γ-H2AX foci/dose than theoretically expected, while misrepair, as expressed by MNB/γ-H2AX focus, was similar at 0.5 and 1 Gy but 3.6-fold up at 3 Gy. Hence, our results suggest that X-ray-induced γ-H2AX foci in G0 lymphocyte nuclei contain more than one DSB and that the increasing number of DSBs per γ-H2AX repair factory lead to an increased rate of misrepair.  相似文献   

2.
The detection of γ-H2AX focus is one of the most sensitive ways to monitor DNA double-strand breaks (DSBs). Although changes in γ-H2AX activity have been studied in tumor cells in colorectal cancer (CRC), changes in peripheral blood lymphocytes (PBLs) have not been examined previously. We hypothesize that higher levels of irradiation-induced γ-H2AX in PBLs may be associated with an elevated risk of colorectal cancer (CRC). In a case-control study, the baseline and ionizing radiation (IR)-induced γ-H2AX levels in PBLs from frequency-matched 320 untreated CRC patients and 320 controls were detected by a laser scanning cytometer-based immunocytochemical method. We used unconditional multivariable logistic regression to evaluate CRC risk by using the ratio of IR-induced γ-H2AX to the baseline levels with adjustment of age, sex and smoking status. We found CRC cases had significantly higher γ-H2AX ratio (1.5 vs. 1.41, P < 0.0001) compared with controls. When using the median γ-H2AX ratio of controls as a cutoff point, we found higher γ-H2AX ratio was significantly associated with an increased risk of CRC (OR = 6.72, 95% CI = 4.54–9.94). Quartile analyses also showed significant dose–response relationship between higher γ-H2AX ratio and increased risk of CRC (P for trend < 0.0001). Age, sex, BMI and smoking status also influenced the association of γ-H2AX ratio with CRC risk; however, no interactions with γ-H2AX ratio were observed. These results support the premise that DSBs in peripheral blood as measured by γ-H2AX level might represent an intermediate phenotype to assess the risk of CRC. Future prospective studies are necessary to confirm our findings in independent populations.  相似文献   

3.
Zinc (Zn) is an essential cofactor required by numerous enzymes that are essential for cell metabolism and the maintenance of DNA integrity. We investigated the effect of Zn deficiency or excess on genomic instability events and determined the optimal concentration of two Zn compounds that minimize DNA-damage events. The effects of Zn sulphate (ZnSO(4)) and Zn carnosine (ZnC) on cell proliferation were investigated in the WIL2-NS human lymphoblastoid cell line. DNA damage was determined by the use of both the comet assay and the cytokinesis-block micronucleus cytome (CBMN-Cyt) assay. Zn-deficient medium (0μM) was produced using Chelex treatment, and the two Zn compounds (i.e. ZnSO(4) and ZnC) were tested at concentrations of 0.0, 0.4, 4.0, 16.0, 32.0 and 100.0μM. Results from an MTT assay showed that cell growth and viability were decreased in Zn-depleted cells (0μM) as well as at 32μM and 100μM for both Zn compounds (P<0.0001). DNA strand-breaks, as measured by the comet assay, were found to be increased in Zn-depleted cells compared with the other treatment groups (P<0.05). The CBMN-Cyt assay showed a significant increase in the frequency of both apoptotic and necrotic cells under Zn-deficient conditions (P<0.0001). Elevated frequencies of micronuclei (MNi), nucleoplasmic bridges (NPBs) and nuclear buds (NBuds) were induced in Zn-depleted cells (P<0.0001), whereas genome damage was reduced in supplemented cultures for both Zn compounds at 4μM and 16μM, possibly suggesting that these concentrations may be optimal for genome stability. The potential protective effect of ZnSO(4) and ZnC was also investigated following exposure to 1.0Gy γ-radiation. Culture in medium containing these compounds at 4-32μM prior to irradiation displayed significantly reduced frequencies of MNi, NPBs and NBuds compared with cells maintained in 0μM medium (P<0.0001). Expression of γ-H2AX and 8-oxoguanine glycosylase measured by western blotting was increased in Zn-depleted cells. These results suggest that Zn plays important role in genomic stability and that the optimal Zn concentration-range for prevention of DNA damage and cytotoxicity in vitro lies between 4 and 16μM.  相似文献   

4.
Stress regulates a panel of important physiological functions and disease states. Epinephrine is produced under stresses threaten to homeostasis. Thioredoxin-1(Trx-1) is a redox regulating protein which is induced to resist stresses and related with various diseases. Thus, it is important to examine whether Trx-1 is induced by epinephrine and to understand the underlying molecular mechanisms that Trx-1 modulates epinephrine stress. Here, we show that the expression of Trx-1 was induced by epinephrine via β-adrenergic receptor/Cyclic AMP/protein kinase A (PKA) signaling pathway in PC12 cells. The down-regulation of Trx-1 by siRNA aggravated accumulation of γ-H2AX and further decreased expression of p53 by epinephrine. Accordingly, Trx-1 overexpression alleviated accumulation of γ-H2AX and restored the expressions of p53 and C/EBP homologous protein (CHOP) in the cortex, hippocampus and thymus of mice. Moreover, Trx-1 overexpression reduced the malondialdehyde concentration by epinephrine. We further explored the mechanism on p53 and γ-H2AX regulated by Trx-1. We found that overexpression of Trx-1 suppressed β-arrestin-1 expression through interaction with β-arrestin-1. Consequently, the downregulation of β-arrestin-1 suppressed the cell viability and the expressions of γ-H2AX and cyclin D1, and increased p53 expression. Taken together, our data suggest that Trx-1/β-arrestin-1 interaction may represent a novel endogenous mechanism on protecting against stress.  相似文献   

5.
H2AX phosphorylation is a novel marker of DNA double-stranded breaks. In the present study, we assessed the γ-H2AX expression, its association with other clinicopathologic characteristics, and the prognosis in a cohort of 97 patients with breast cancer. Ninety-seven specimens of tumor tissue and 77 adjacent normal tissues from patients with breast cancer were examined. All patients underwent modified radical mastectomy or local tumor resection without lymph node dissection. γ-H2AX expression was assessed by standard immunohistochemistry. Patients were followed after surgery for a mean duration of 70.1 ± 18.7 months (range, 6-93 months). The γ-H2AX staining was positive in 27 (27.8%) patients. The positive rates of H2AX were 26.0% and 2.6% in tumor tissue and adjacent normal tissues, respectively. γ-H2AX positive status was negatively associated with TNM staging, with 24 positive cases (32.4%) in TNM staging I-II, while no positive cases in TNM staging III-IV (P = 0.026). Sixteen patients (16.5%) died during the follow-up. No significant association between γ-H2AX expression and patient survival was detected. The unadjusted HR (hazard ratio) for γ-H2AX positive was 0.84 (95% CI: 0.27, 2.60). In TNM staging subgroup analysis, death only occurred in γ-H2AX negative patients. Our study is the first study to demonstrate that expression of γ-H2AX is associated with TNM staging. Due to the small sample and limited follow-up time, we did not observe a significant association between γ-H2AX and patient survival. γ-H2AX expression could be a potential biomarker for cancer diagnosis and prediction, and further studies are in need.  相似文献   

6.
Histone H2AX rapidly undergoes phosphorylation at Ser139 (γ-H2AX) in response to DNA double-strand breaks. Although ATM kinase and DNA-PK phosphorylate Ser139 of H2AX in culture cells, the regulatory mechanism of γ-H2AX level remains unclear in vivo. Here, we detected the phosphorylation of H2AX and the elimination of γ-H2AX in the mouse skin after X-irradiation. Furthermore, following X-irradiation, the level of γ-H2AX also increased in mice lacking either ATM or DNA-PK. Although the elimination after X-irradiation was detected in the skin of these mutant mice, the elimination in DNA-PK-deficient mice was slower than that in C3H and ATM knockout mice, suggesting that a fraction of γ-H2AX in the skin is eliminated in a DNA-PK-dependent manner. Although the DNA-PK-dependent elimination of γ-H2AX was also detected in the liver, kidney, and spleen, the DNA-PK-dependent phosphorylation of H2AX was detected in the spleen only. These results suggest that the regulatory mechanism of γ-H2AX level is tissue-specific.  相似文献   

7.
Phosphorylated histone H2AX (γ-H2AX) functions in the recruitment of DNA damage response proteins to DNA double-strand breaks (DSBs) and facilitates DSB repair. ATM also co-localizes with γ-H2AX at DSB sites following its auto-phosphorylation. However, it is unclear whether γ-H2AX has a role in activation of ATM-dependent cell cycle checkpoints. Here, we show that ATM as well as NBS1 is recruited to damaged-chromatin in a γ-H2AX-dependent manner. Foci formation of phosphorylated ATM and ATM-dependent phosphorylation is repressed in H2AX-knockdown cells. Furthermore, anti-γ-H2AX antibody co-immunoprecipitates an ATM-like protein kinase activity in vitro and recombinant H2AX increases in vitro kinase activity of ATM from un-irradiated cells. Moreover, H2AX-deficient cells exhibited a defect in ATM-dependent cell cycle checkpoints. Taken together, γ-H2AX has important role for effective DSB-dependent activation of ATM-related damage responses via NBS1.  相似文献   

8.
Bioactive compounds from the medicinal plant, Eurycoma longifolia Jack have been shown to promote anti-proliferative effects on various cancer cell lines. Here we examined the effects of purified eurycomanone, a quassinoid found in Eurycoma longifolia Jack extract, on the expression of selected genes of the A549 lung cancer cells. Eurycomanone inhibited A549 lung cancer cell proliferation in a dose-dependent manner at concentrations ranging from 5 to 20 μg/ml. The concentration that inhibited 50% of cell growth (GI50) was 5.1 μg/ml. The anti-proliferative effects were not fully reversible following the removal of eurycomanone, in which 30% of cell inhibition still remained (p < 0.0001, T-test). At 8 μg/ml (GI70), eurycomanone suppressed anchorage-independent growth of A549 cells by >25% (p < 0.05, T-test, n = 8) as determined using soft agar colony formation assay. Cisplatin, a chemotherapy drug used for the treatment of non small cell lung cancer on the other hand, inhibited A549 cells proliferation at concentrations ranging from 0.2 μg/ml to 15 μg/ml with a GI50 of 0.58 μg/ml. The treatment with eurycomanone reduced the abundance expression of the lung cancer markers, heterogeneous nuclear ribonucleoprotein (hnRNP) A2/B1, p53 tumor suppressor protein and other cancer-associated genes including prohibitin (PHB), annexin 1 (ANX1) and endoplasmic reticulum protein 28 (ERp28) but not the house keeping genes. The mRNA expressions of all genes with the exception of PHB were significantly downregulated, 72 h after treatment (p < 0.05, T-test, n = 9). These findings suggest that eurycomanone at viable therapeutic concentrations of 5-20 μg/ml exhibited significant anti-proliferative and anti-clonogenic cell growth effects on A549 lung cancer cells. The treatment also resulted in suppression of the lung cancer cell tumor markers and several known cancer cell growth-associated genes.  相似文献   

9.
The formation of γ-H2AX foci after DNA double strand breaks (DSBs) is crucial for the cellular response to this lethal DNA damage. We previously have shown that BRG1, a chromatin remodeling enzyme, facilitates DSB repair by stimulating γ-H2AX formation, and this function of BRG1 requires the binding of BRGI to acetylated histone H3 on γ-H2AX-containing nucleosomes using its bromodomain (BRD), a protein module that specifically recognizes acetyl-Lys moieties. We also have shown that the BRD of BRG1, when ectopically expressed in cells, functions as a dominant negative inhibitor of the BRG1 activity to stimulate γ-H2AX and DSB repair. Here, we found that BRDs from a select group of proteins have no such activity, suggesting that the γ-H2AX inhibition activity of BRG1 BRD is specific. This finding led us to search for more BRDs that exhibit γ-H2AX inhibition activity in the hope of finding additional BRD-containing proteins involved in DNA damage responses. We screened a total of 52 individual BRDs present in 38 human BRD-containing proteins, comprising 93% of all human BRDs. We identified the BRD of cat eye syndrome chromosome region candidate 2 (Cecr2), which recently was shown to form a novel chromatin remodeling complex with unknown cellular functions, as having a strong γ-H2AX inhibition activity. This activity of Cecr2 BRD is specific because it depends on the chromatin binding affinity of Cecr2 BRD. Small interfering RNA knockdown experiments showed that Cecr2 is important for γ-H2AX formation and DSB repair. Therefore, our genomewide screen identifies Cecr2 as a novel DNA damage response protein.  相似文献   

10.
Ionizing radiation increases cell mortality in a dose-dependent manner. Increases in DNA double strand breaks, γ-H2AX, p53 phophorylation, and protein levels of p53 and Bax also occur. We investigated the ability of ciprofloxacin (CIP), a widely prescribed antibiotic, to inhibit DNA damage induced by ionizing radiation. Human tumor TK6, NH32 (p53 ?/? of TK6) cells, and human normal peripheral blood mononuclear cells (PBMCs) were exposed to 2–8 Gy 60Co-γ-photon radiation. γ-H2AX (an indicator of DNA strand breaks), phosphorylated p53 (responsible for cell-cycle arrest), Bcl-2 (an apoptotic protein, and cell death were measured. Ionizing irradiation increased γ-H2AX amounts in TK6 cells (p53+/+) within 1 h in a radiation dose-dependent manner. CIP pretreatment and posttreatment effectively inhibited the increase in γ-H2AX. CIP pretreatment reduced Bcl-2 production but promoted p53 phosphorylation, caspase-3 activation and cell death. In NH32 cells, CIP failed to significantly inhibit the radiation-induced γ-H2AX increase, suggesting that CIP inhibition involves in p53-dependent mechanisms. In normal healthy human PBMCs, CIP failed to block the radiation-induced γ-H2AX increase but effectively increased Bcl-2 production, but blocked the phospho-p53 increase and subsequent cell death. CIP increased Gadd45α, and enhanced p21 protein 24 h postirradiation. Results suggest that CIP exerts its effect in TK6 cells by promoting p53 phosphorylation and inhibiting Bcl-2 production and in PBMCs by inhibiting p53 phosphorylation and increasing Bcl-2 production. Our data are the first to support the view that CIP may be effective to protect normal tissue cells from radiation injury, while enhancing cancer cell death in radiation therapy.  相似文献   

11.
UV-induced DNA damage plays a key role in the etiology of certain diseases. The ability of blueberry anthocyanins and anthocyanidins (BA) to protect cellular DNA from UV-induced damage was investigated. BA were extracted by water (BAW), ethanol (BAE) or methanol (BAM). These extracts partially restored proliferation of UV-irradiated HepG2 cells as shown by MTT assay. Treatment with BA extracts at 75 μg/ml decreased reactive oxygen species and decreased DNA damage by tail moment of comet assay and expression of γH2AX in situ. BAM significantly decreased gene and protein expression of p53, phospho-p53 (Ser15), and p21 in UV-irradiated HepG2 cells. BA thus efficiently protects cells from DNA damage in vitro. Blueberry may potentially be used as a good source of naturally radioprotective agents.  相似文献   

12.
The immunofluorescence-based detection of γ-H2AX is a reliable and sensitive method for quantitatively measuring DNA double-strand breaks (DSBs) in irradiated samples. Since H2AX phosphorylation is highly linear with radiation dose, this well-established biomarker is in current use in radiation biodosimetry. At the Center for High-Throughput Minimally Invasive Radiation Biodosimetry, we have developed a fully automated high-throughput system, the RABIT (Rapid Automated Biodosimetry Tool), that can be used to measure γ-H2AX yields from fingerstick-derived samples of blood. The RABIT workstation has been designed to fully automate the γ-H2AX immunocytochemical protocol, from the isolation of human blood lymphocytes in heparin-coated PVC capillaries to the immunolabeling of γ-H2AX protein and image acquisition to determine fluorescence yield. High throughput is achieved through the use of purpose-built robotics, lymphocyte handling in 96-well filter-bottomed plates, and high-speed imaging. The goal of the present study was to optimize and validate the performance of the RABIT system for the reproducible and quantitative detection of γ-H2AX total fluorescence in lymphocytes in a multiwell format. Validation of our biodosimetry platform was achieved by the linear detection of a dose-dependent increase in γ-H2AX fluorescence in peripheral blood samples irradiated ex vivo with γ rays over the range 0 to 8 Gy. This study demonstrates for the first time the optimization and use of our robotically based biodosimetry workstation to successfully quantify γ-H2AX total fluorescence in irradiated peripheral lymphocytes.  相似文献   

13.
We recently showed that histone H2AX phosphorylated on serine 139 (γ-H2AX), a hallmark of DNA damage response (DDR), also forms early during apoptosis induced by death receptor activation. Here, we extend and discuss our findings on apoptotic γ-H2AX, which differs from the well-established DDR with nuclear foci. During apoptosis induced by death receptors agonists (TRAIL and FasL) and staurosporine, γ-H2AX is initiated in the nuclear periphery immediately inside the nuclear envelope while total H2AX remains distributed throughout the nucleus. This process is readily detectable by immunofluorescence microscopy and we refer to it as the “γ-H2AX ring”. It is conserved both in cancer and normal cells. The γ-H2AX ring contains the activated checkpoints kinases, ATM, Chk2 and DNA-PK; the latter being the main effector for the apoptotic γ-H2AX phosphorylation. Notably, we show here that the γ-H2AX ring coincides with phosphorylated H2B on serine 14 (PS14-H2B), another histone modification associated with apoptosis. The coordinated phosphorylations of H2AX and H2B suggest a previously unrecognized histone phosphorylation signature for apoptosis consisting of γ-H2AX together with PS14-H2B and possibly PY142-H2AX. This signature (“phospho-histone 2 code”) together with the γ-H2AX ring provides a new feature to monitor and study apoptosis.  相似文献   

14.
ATM and PARP-1 are two of the most important players in the cell's response to DNA damage. PARP-1 and ATM recognize and bound to both single and double strand DNA breaks in response to different triggers. Here we report that ATM and PARP-1 form a molecular complex in vivo in undamaged cells and this association increases after γ-irradiation. ATM is also modified by PARP-1 during DNA damage. We have also evaluated the impact of PARP-1 absence or inhibition on ATM-kinase activity and have found that while PARP-1 deficient cells display a defective ATM-kinase activity and reduced γ-H2AX foci formation in response to γ-irradiation, PARP inhibition on itself is able to activate ATM-kinase. PARP inhibition induced γ H2AX foci accumulation, in an ATM-dependent manner. Inhibition of PARP also induces DNA double strand breaks which were dependent on the presence of ATM. As consequence ATM deficient cells display an increased sensitivity to PARP inhibition. In summary our results show that while PARP-1 is needed in the response of ATM to gamma irradiation, the inhibition of PARP induces DNA double strand breaks (which are resolved in and ATM-dependent pathway) and activates ATM kinase.  相似文献   

15.
Poly (ADP-ribose) polymerase-1 (PARP-1) is an abundant nuclear protein that plays important roles in a variety of nuclear processes, and it has been proved a prominent target in oncology for its key function in DNA damage repair. In this study, we discovered a series of naphthacemycins as a new class of PARP1 inhibitors from a microbial metabolites library via high-throughput screening. Compound I, one of this series of compounds, could reduce cellular poly (ADP-ribose) level, trap PARP1 on the damaged DNA and elevate the level of γ-H2AX, and showed the selective cytotoxicity against BRCA1-deficient cell line. Our study provided a potential scaffold for the development of new PARP1 inhibitors in cancer therapy.  相似文献   

16.
This study aims to assess utilisation of the ratio of γ-H2AX in lymphocytes to that in granulocytes (RL/G of γ-H2AX) in blood as a rapid method for population triage and dose estimation during large-scale radiation emergencies. Blood samples from healthy volunteers exposed to 0–10 Gy of 60Co irradiation were collected. The samples were cultured for 0–24 h and then analysed using flow cytometry to measure the levels of γ-H2AX in lymphocytes and granulocytes. The basal RL/G levels of γ-H2AX in healthy human blood, the response of RL/G of γ-H2AX to ionising radiation and its relationship with doses, time intervals after exposure and individual differences were also analysed. The level of γ-H2AX in lymphocytes increased in a dose-dependent manner after irradiation, whereas the level in granulocytes was not affected. A linear dose–effect relationship with low inter-experimental and inter-individual variations was observed. The RL/G of γ-H2AX may be used as a biomarker for population triage and dose estimation during large-scale radiation emergencies if blood samples can be collected within 24 h.  相似文献   

17.
The γH2AX focus assay, based on phosphorylation of the variant histone protein H2AX, was evaluated as a genotoxicity test in immortalised wild-type mouse embryonic fibroblasts (MEFs) treated for 4 h with a panel of reference compounds routinely used in genotoxicity testing. The topoisomerase II poison etoposide (0.006–60 μg/ml), the alkylating agent methyl methanesulfonate (1.3–65 μg/ml) and the direct DNA-damaging agent bleomycin (0.1–10 μg/ml) all produced a positive concentration–response relationship. The non-genotoxic compounds ampicillin (0.035–3500 μg/ml) and sodium chloride (0.058–580 μg/ml) showed no such response with increased concentrations. The H2AX phosphorylation results were compared with the outcome of two standard in vitro genotoxicity tests, namely the micronucleus and comet assays. Compounds that produced measurable DNA damage in the focus assay generated micronuclei at comparable concentrations. In this study, the focus assay identified genotoxic agents with the same specificity as the comet assay.These results were substantiated when H2AX phosphorylation was analysed using flow cytometry in the murine cell line L5178Y, growing in suspension. The data were in concordance with the manual scoring focus assay. To further this investigation, the γH2AX flow cytometry was compared to the in vitro micronucleus flow cytometry and mouse lymphoma assay using the same cell population after MMS treatment. The median γH2AX value increased significantly above the control at all four MMS concentrations tested. The percentage of micronucleus events in the in vitro micronucleus flow test and the mutation frequency in the mouse lymphoma assay were also significantly increased at each MMS concentration. The current data indicate that H2AX phosphorylation could be used as a biomarker of genotoxicity, which could predict the outcome of in vitro mammalian cell genotoxicity assays.  相似文献   

18.
The maintenance of genome stability requires efficient DNA double-stranded break (DSB) repair mediated by the phosphorylation of multiple histone H2AX molecules near the break sites. The phosphorylated H2AX (γ-H2AX) molecules form foci covering many megabases of chromatin. The formation of g-H2AX foci is critical for efficient DNA damage response (DDR) and for the maintenance of genome stability, however, the mechanisms of protein organization in foci is largely unknown. To investigate the nature of γ-H2AX foci formation, we analyzed the distribution of γ-H2AX and other DDR proteins at DSB sites using a variety of techniques to visualize, expand and partially disrupt chromatin. We report here that γ-H2AX foci change composition during the cell cycle, with proteins 53BP1, NBS1 and MRE11 dissociating from foci in G2 and mitosis to return at the beginning of the following G1. In contrast, MDC1 remained colocalized with g-H2AX during mitosis. In addition, while γ-H2AX was found to span large domains flanking DSB sites, 53BP1 and NBS1 were more localized and MDC1 colocalized in doublets in foci. H2AX and MDC1 were found to be involved in chromatin relaxation after DSB formation. Our data demonstrates that the DSB repair focus is a heterogeneous and dynamic structure containing internal complexity.  相似文献   

19.
The mammalian histone H2AX protein functions as a dosage-dependent genomic caretaker and tumor suppressor. Phosphorylation of H2AX to form γ-H2AX in chromatin around DNA double strand breaks (DSBs) is an early event following induction of these hazardous lesions. For a decade, mechanisms that regulate H2AX phosphorylation have been investigated mainly through two-dimensional immunofluorescence (IF). We recently used chromatin immunoprecipitation (ChIP) to measure γ-H2AX densities along chromosomal DNA strands broken in G1 phase mouse lymphocytes. Our experiments revealed that (1) γ-H2AX densities in nucleosomes form at high levels near DSBs and at diminishing levels farther and farther away from DNA ends, and (2) ATM regulates H2AX phosphorylation through both MDC1-dependent and MDC1-independent means. Neither of these mechanisms were discovered by previous IF studies due to the inherent limitations of light microscopy. Here, we compare data obtained from parallel γ-H2AX ChIP and three-dimensional IF analyses and discuss the impact of our findings upon molecular mechanisms that regulate H2AX phosphorylation in chromatin around DNA breakage sites.  相似文献   

20.
Color development of the Lowry protein assay was tracked over time for bovine serum albumin (BSA) concentrations ranging from 40 to 600 μg/ml. The time interval between 2 and 4 h produced the most stable readings. This time frame also improved linearity of the standard curve.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号