首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In order to provide a suitable source of cells for lymphatic tissue engineering, the present study was designed to investigate techniques for harvesting and cryopreservation of human dermal lymphatic endothelial cells (LECs) in vitro. The LECs were isolated from children’s foreskins and then cultured in endothelial growth medium-2 MV (EGM-2-MV) with 5% FBS. The second passage LECs were suspended in cryopreservation solution containing 40% FBS and 10% Me2SO in EGM-2-MV, cooled to −80 °C at about 1 °C/min and stored in liquid nitrogen. Samples were thawed quickly in a 37 °C water bath, and the cryoprotectant was removed by serial elution. The membrane integrity of thawed LECs was determined by trypan blue staining exclusion, and their proliferation was evaluated using the MTT method. The expanded cells of two groups were identified using immunofluorescence staining and RT-PCR with lymphatic-specific markers such as Podoplanin and VEGFR-3. Uptake of fluorescent DiI-Ac-LDL and microtubular formation in three-dimensional cultures were used to detect the function of LECs. Flow cytometry was applied to identify cells and to measure the apoptosis rate as well. Cryopreservation resulted in a retrieval of 67 ± 4% and an intact cell rate of 80 ± 3%. The early apoptosis rate of thawed LECs (9.15 ± 0.34%) was higher than that of fresh control LECs (5.31 ± 0.23%). The growth curves of thawed LECs were similar to those of fresh LECs. The thawed LECs were propagated for at least 6-7 passages without alterations in phenotype and function. Highly purified LECs can be isolated by immunomagnetic beads from human dermis. The cryopreserved/thawed and recultivated LECs are proven to have high vitality and growth potential in vitro and may be considered suitable seed cells for lymphatic tissue engineering.  相似文献   

2.
The performance of a small-scale automated cryopreservation and storage system (Mini-BioArchive system) used in the banking of umbilical cord blood (UCB) units was evaluated. After thawing the units, the viability and recovery of cells, as well as the recovery rate of hematopoietic progenitor cells (HPCs) such as CD34+ cells, colony-forming unit-granulocyte-macrophage (CFU-GM), and total CFU were analyzed. Twenty UCB units cryopreserved using the automated system and stored for a median of 34 days were analyzed. Mean CD34+ cell viabilities before freezing were 99.8 ± 0.5% and after thawing were 99.8 ± 0.4% in the large bag compartments and 99.7 ± 0.5% in the small compartments. The mean recovery values for total nucleated cells, CD34+ cells, CFU-GM, and total CFU were 94.8 ± 16.0%, 99.3 ± 18.6%, 103.9 ± 20.6%, and 94.3 ± 12.5%, respectively in the large compartments, and 95.8 ± 25.9%, 106.8 ± 23.9%, 101.3 ± 23.3%, and 93.8 ± 19.2%, respectively in the small compartments. A small-scale automated cryopreservation and storage system did not impair the clonogenic capacity of UCB HPCs. This cryopreservation system could provide cellular products adequate for UCB banking and HPC transplantation.  相似文献   

3.
Human embryonic stem (hES) cells are expected to be useful in the fields of regenerative medicine and tissue engineering due to their pluripotency. Therefore, it is necessary to establish highly efficient and reliable methods for the cryopreservation of hES cells. We have cryopreserved cynomolgus and human ES cells by the vitrification method, using a chemically-defined dimethyl sulfoxide (Me2SO)-free and serum-free medium composed of Euro-Collins solution as a base medium and 40% (v/v) ethylene glycol (EG) and 10% (w/v) polyethylene glycol (PEG) as cryoprotectants. When the vitrification and the cryoprotectants were combined, the recovery ratio of hES cells was 22.9 ± 7.7%, compared to 0.4 ± 0.2% when the conventional slow-freezing method was used. After the cryopreservation and thawing cycle, hES cells were easily cultured and expressed undifferentiated cell markers such as Nanog, Oct-4, SSEA-4, and alkaline phosphatase activity after several subculturing steps. We also found that the pluripotency of hES cells was maintained, as demonstrated by teratoma formation of ES cells transplanted into severe combined immunodeficient (SCID) mice. Thus, we conclude that we have successfully cryopreserved primate ES cells with high efficiency using a Me2SO-free, chemically-defined medium.  相似文献   

4.
Long term function of human lung allografts is hindered by development of chronic rejection manifested as Bronchiolitis Obliterans Syndrome (BOS). We have previously identified the development of antibodies (Abs) following lung transplantation to K-α1-tubulin (KAT), an epithelial surface gap junction cytoskeletal protein, in patients who develop BOS. However, the biochemical and molecular basis of the interactions and signaling cascades mediated by KAT Abs are yet to be defined. In this report, we investigated the biophysical basis of the epithelial cell membrane surface interaction between KAT and its specific Abs. Towards this, we analyzed the role of the lipid raft-domains in the membrane interactions which lead to cell signaling and ultimately increased growth factor expression. Normal human bronchial epithelial (NHBE) cells, upon specific ligation with Abs to KAT obtained either from the serum of BOS(+) patients or monoclonal KAT Abs, resulted in upregulation of growth factors VEGF, PDGF, and bFGF (6.4 ± 1.1-, 3.2 ± 0.9-, and 3.4 ± 1.1-fold increase, respectively) all of which are important in the pathogenesis of BOS. To define the role for lipid raft in augmenting surface interactions, we analyzed the changes in the growth factor expression pattern upon depletion and enrichment with lipid raft following the ligation of the epithelial cell membranes with Abs specific for KAT. NHBE cells cultured in the presence of β-methyl cyclodextran (βMCD) had significantly reduced growth factor expression (1.3 ± 0.3, vs βMCD untreated being 6.4 ± 1.1-fold increase) upon stimulation with KAT Abs. Depletion of cholesterol on NHBE cells upon treatment with βMCD also resulted in decreased partitioning of caveolin in the membrane fraction indicating a decrease in raft-domains. In conclusion, our results demonstrate an important role for lipid raft-mediated ligation of Abs to KAT on the epithelial cell membrane, which results in the upregulation of growth factor cascades involved in the pathogenesis of BOS following human lung transplantation.  相似文献   

5.
Cryopreservation has become an integral component of any cell transplantation technique helping to overcome the issues associated with known spatial and temporal barriers between donor and recipient. The aim of this study was to develop a protocol for large quantity cryopreservation of bovine testicular germ cells. The impact of 3 different packaging methods (5 ml semen straw, 20 ml freezing bag and 1.5 ml cryovial) and varying cell densities (3 × 106, 9 × 106, or 18 × 106 cells/ml) on the survival of testis germ cells was examined. Cells processed in 5 ml semen straws had a significantly higher viability (70.7 ± 1.2%, P < 0.05) compared to those cells in 20 ml freezing bags (46.7 ± 0.1%) or 1.5 ml cryovials (46.3 ± 2.2%). For 5 ml straws, a 20 min cooling prior to cryopreservation resulted in a higher post thaw viability (73.2 ± 0.6%) than a 10 min cooling (56.0 ± 2.2%), while the density of the cell suspension did not impact on post thaw viability. Thus cryopreservation of testicular germ cells in 5 ml straws at a density between 3 × 106 and 18 × 106 cells/ml in liquid nitrogen vapour for 20 min cooling appears to be a simple and practical way to preserve cells. Subsequent testing of frozen/thawed cells exhibited viable cultures and retained the ability to proliferate. The freezing protocol does not preferentially preserve type A spermatogonia. However, the cell surface properties of somatic cells appear to be affected by the freezing procedure and therefore the frozen/thawed cells are less suitable for enriching type A spermatogonia by differential plating.  相似文献   

6.
In order for cryopreservation to become a practical tool for aquaculture, optimized protocols must be developed for each species and cell type. Knowledge of a cell’s osmotic tolerance and membrane permeability characteristics can assist in optimized protocol development. In this study, these characteristics were determined for Pacific oyster oocytes and modified methods for loading and unloading ethylene glycol (EG) were tested. Oocytes were found to behave as ideal osmometers and their osmotically inactive fraction (Vb) was calculated to be 0.48. Oocytes exposed to NaCl solutions of 0.6 to 2.3 Osm fertilized at rates equivalent to oocytes left in seawater. This corresponds to volume changes of +27.3 and −38.1 ± 1.2%. The permeability of the oocytes to water (Lp) was determined to be 3.8 ± 0.4 × 10−2, 5.7 ± 0.8 × 10−2, and 13.2 ± 1.3 × 10−2 μm min−1 atm−1, when measured at temperatures of 5, 10 and 20 °C. The respective EG permeability values (Ps) were 9.5 ± 0.1 × 10−5, 14.6 ± 1.2 × 10−5, and 41.7 ± 2.4 × 10−5 cm min−1. The activation energies for Lp and Ps were determined to be 14.5 and 17.5 kcal mol−1, respectively. Different models for EG loading and unloading from oocytes were developed and tested. Post-thaw fertilization did not differ significantly between a published step addition method and single step addition at 20 °C. This represents a considerable reduction in handling. The results of this study demonstrate that the cryobiological characteristics of a given cell type should be taken into account when developing cryopreservation methods.  相似文献   

7.
Sperm cryopreservation of red snapper (Lutjanus argentimaculatus) is essentially unexplored, although many species of the Lutjanidae family are considered to be high-value commercial species. The objective of this study was to develop a species-specific cryopreservation protocol for red snapper (L. argentimaculatus) sperm by optimizing cryoprotectants and cooling rates in the cryopreservation procedure. Ten cryoprotectants at four concentrations and two freezing protocols were examined in two separate experiments. In the first experiment, toxicity studies of dimethyl sulfoxide (DMSO), glycerol, propylene glycol (PG), ethylene glycol (EG), formamide, methanol, ethanol, sucrose, trehalose, and dimethylacetamide (DMA) on sperm motility were performed. Semen diluted 1:1 in Ringer solution were exposed to cryoprotectants at four final concentrations of 5%, 10%, 15%, or 20% for periods of 10, 20, 30, 40, 50, 60, 90, and 120 min at room temperature (25 °C). The cryoprotectants and concentrations that showed the least toxic effect on sperm motility were selected for cryopreservation trials. In the second experiment, selected cryoprotectants were then assessed for freezing capacity of sperm as follows: DMSO 5% and 10%, PG 5% and 10%, EG 5% and 10%, ethanol 5%, and methanol 5%. Semen was diluted 1:1 in Ringer solution and equilibrated with selected cryoprotectants for 10 min at room temperature. Sperm were frozen in a controlled-rate programmable freezer at four cooling rates of 3, 5, 10, and 12 °C/min from an initial temperature of 25 °C to final temperatures of −40 or −80 °C before plunging into liquid nitrogen. Sperm equilibrated in 10% DMSO and cooled at a rate of 10 °C/min to a final temperature of −80 °C had the highest motility (91.1 ± 2.2%) and viability (92.7 ± 2.3%) after thawing. The fertilization rate of frozen-thawed sperm (72.4 ± 2.4%) was not different (P > 0.05) from that of fresh sperm (75.5 ± 2.4%). This study apparently represents the first reported attempt for cryopreservation of L. argentimaculatus sperm.  相似文献   

8.
In the past two decades, laboratories around the world have produced thousands of mutant, transgenic, and wild-type zebrafish lines for biomedical research. Although slow-freezing cryopreservation of zebrafish sperm has been available for 30 years, current protocols lack standardization and yield inconsistent post-thaw fertilization rates. Cell cryopreservation cannot be improved without basic physiological knowledge, which was lacking for zebrafish sperm. The first goal was to define basic cryobiological values for wild-type zebrafish sperm and to evaluate how modern physiological methods could aid in developing improved cryopreservation protocols. Coulter counting methods measured an osmotically inactive water fraction (Vb) of 0.37 ± 0.02 (SEM), an isosmotic cell volume (Vo) of 12.1 ± 0.2 μm3 (SEM), a water permeability (Lp) in 10% dimethyl sulfoxide of 0.021 ± 0.001(SEM) μm/min/atm, and a cryoprotectant permeability (Ps) of 0.10 ± 0.01 (SEM) × 10−3 cm/min. Fourier transform infrared spectroscopy indicated that sperm membranes frozen without cryoprotectant showed damage and lipid reorganization, while those exposed to 10% glycerol demonstrated decreased lipid phase transition temperatures, which would stabilize the cells during cooling. The second goal was to determine the practicality and viability of shipping cooled zebrafish sperm overnight through the mail. Flow cytometry demonstrated that chilled fresh sperm can be maintained at 92% viability for 24 h at 0 °C, suggesting that it can be shipped and exchanged between laboratories. Additional methods will be necessary to analyze and improve cryopreservation techniques and post-thaw fertility of zebrafish sperm. The present study is a first step to explore such techniques.  相似文献   

9.
The ocean is a nutritionally heterogeneous environment. For feeding larval forms, food variability has significant consequences for growth and later recruitment success. In this study, the physiological and biochemical responses to a range of different food concentrations (unfed, 4, 20, and 40 algal cells μl− 1) were examined in larvae of the asteroid, Asterina miniata. Measurements of growth, protein synthesis rates, and the energetic cost of protein synthesis were made. Under conditions of rapid growth, protein comprised a larger percent (66%) of a larva's organic biomass compared to similar-aged, slower-growing larvae (26%). Larvae fed at the highest food concentration tested (40 algal cells μl− 1) had a protein depositional efficiency of 80% (± 16%), a value 3-fold higher than larvae fed 20 algal cells μl− 1 (28% ± 11%). Also, faster-growing larvae required 3-fold less energy per unit mass of protein growth. Larvae fed 40 algal cells μl− 1 deposited protein at a respiratory cost of 65 ± 11 pmol O2 h− 1 (μg protein)− 1; larvae fed 20 algal cells μl− 1 had a cost of 192 ± 47 pmol O2 h− 1 (μg protein)− 1. While there were differences in the cost to deposit protein (i.e., protein growth, the balance of synthesis and degradation), there were no differences in the energetic cost of protein synthesis for all food concentrations tested. The energetic cost of protein synthesis was fixed at 13.8 (± 0.92) Joules (mg protein synthesized)− 1 and was independent of developmental stage, growth rates, and large changes (58-fold) in protein synthesis rates. A major conclusion from this study is that larvae grown in high-food environments not only grew faster, but did so for considerably less energy. Defining the complex relationships of food availability and metabolic efficiency will provide more accurate predictions of larval growth under variable food conditions in the ocean.  相似文献   

10.
Oysters and mussels are among the most farmed species in aquaculture industry around the world. The aim of this study was to test the toxicity of cryoprotective agents to trochophore larvae from two different species of bivalves and develop an improved cryopreservation protocol to ensure greater efficiency in the development of cryopreserved trochophores (14 h old oyster larvae and 20 h old mussel larvae) to normal D-larvae for future developments of hatchery spat production. The cryopreservation protocol producing the best results for oyster trochophores (60.0 ± 6.7% normal D-larvae) was obtained by holding at 0 °C for 5 min then cooling at 1 °C min−1 to −10 °C and holding for 5 min before cooling at 0.5 °C to −35 °C, holding 5 min and then plunging into liquid nitrogen (LN), using 10% ethylene glycol. For mussel experiments, no significant differences were found when cooling at 0.5 °C min−1 or at 1 °C min−1 for CPA combinations with 10% ethylene glycol and at 0.5 °C min−1. Using these combinations, around half of trochophores were able to develop to normal D-larvae post-thawing (48.9 ± 7.6% normal D-larvae).  相似文献   

11.
Over recent years, several planktonic and benthic freshwater diatom taxa have been established as laboratory model strains. In common with most freshwater diatoms the pennate diatom Planothidium frequentissimum suffers irreversible cell shrinkage on prolonged maintenance by serial transfers, without induction of the sexual cycle. Therefore, alternative strategies are required for the long-term maintenance of this strain. Conventional colligative cryopreservation approaches have previously proven unsuccessful with no regrowth. However, in this study using 5% dimethyl sulfoxide (Me2SO), controlled cooling at 1 °C min−1, automated ice seeding and cooling to −40 °C with a final plunge into liquid nitrogen, viability levels were enhanced from 0.3 ± 0.4% to 80 ± 3%, by incorporating a 48 h dark-recovery phase after rewarming. Omission, or reduction, of this recovery step resulted in obvious cell damage with photo-bleaching of pigments, indicative of oxidative-stress induced cell damage, with subsequent deterioration of cellular architecture.  相似文献   

12.
The aim of the present work was the investigation of microtubule organization related to developmental processes of Ceratophyllum demersum, a submergent aquatic macrophyte, as affected by microcystin-LR (MCY-LR), a cyanobacterial toxin. We studied the time- and dose-dependent effects of the cyanotoxin in a concentration range of 0.01-20 μg mL−1 (0.01-20.1 μM) at exposure times of 2-16 d. At short term (4 d) of MCY-LR exposure we observed the inhibition of C. demersum shoot tip elongation. This phenomenon was already observed at 0.01 μg mL−1 MCY-LR (reduction of shoot tip length to 56 ± 3.6% of controls) and correlated with the induction of cortical microtubule (CMT) reorientation from transverse to longitudinal known to induce radial expansion of meristematic cells instead of normal elongation. Concomitantly we detected the increase of the percentage of cells in early mitosis in shoot tip meristems, from 1.17 ± 0.2% for controls to 1.93 ± 0.3 at 0.01 μg mL−1 MCY-LR and 6.19 ± 0.5 at 10 μg mL−1 MCY-LR. Cyanotoxin exposure induced the inhibition of general shoot elongation that was more pronounced than inhibition of the increase of leaf whorl number or fresh weight in the treatment period and this was observable at as short as 2-4 d of 2.5 μg mL−1 MCY-LR exposure. This observation further proved that the MCY-LR-induced inhibition of cell elongation is responsible mainly for growth inhibition in C. demersum. Concomitantly with developmental and growth changes MCY-LR decreased protein and chlorophyll content at 16 d of exposure: at 20 μg mL−1 of cyanotoxin, protein content was reduced to 53.3 ± 2.8%, while total chlorophyll content to 46.53 ± 2.7% of controls. This is the first study showing that MCY-LR inhibits the growth of C. demersum through cytoskeletal reorganization. This plant proved to be a powerful model system for toxicological as well as plant cell biology studies.  相似文献   

13.
14.
Immortal cell lines have not yet been reported from Penaeus monodon, which delimits the prospects of investigating the associated viral pathogens especially white spot syndrome virus (WSSV). In this context, a method of developing primary hemocyte culture from this crustacean has been standardized by employing modified double strength Leibovitz-15 (L-15) growth medium supplemented with 2% glucose, MEM vitamins (1×), tryptose phosphate broth (2.95 g l−1), 20% FBS, N-phenylthiourea (0.2 mM), 0.06 μg ml−1 chloramphenicol, 100 μg ml−1 streptomycin and 100 IU ml−1 penicillin and hemolymph drawn from shrimp grown under a bio-secured recirculating aquaculture system (RAS). In this medium the hemocytes remained viable up to 8 days. 5-Bromo-2′-deoxyuridine (BrdU) labeling assay revealed its incorporation in 22 ± 7% of cells at 24 h. Susceptibility of the cells to WSSV was confirmed by immunofluoresence assay using a monoclonal antibody against 28 kDa envelope protein of WSSV. A convenient method for determining virus titer as MTT50/ml was standardized employing the primary hemocyte culture. Expression of viral genes and cellular immune genes were also investigated. The cell culture could be demonstrated for determining toxicity of a management chemical (benzalkonium chloride) by determining its IC50. The primary hemocyte culture could serve as a model for WSSV titration and viral and cellular immune related gene expression and also for investigations on cytotoxicity of aquaculture drugs and chemicals.  相似文献   

15.
We have previously found that transforming growth factor-β1 (TGF-β1) inhibits the mitogenic activity of platelet-derived growth factor (PDGF) in cultures of human neonatal fibroblasts in a density-dependent fashion. In the present investigation we determined the effect of TGF-β1 on the PDGF α-receptor, which binds all PDGF isoforms, as well as on the β-receptor, which binds only PDGF-BB with high affinity. We found that the inhibitory effect of TGF-β1 on PDGF-AA-induced mitogenesis was density-dependent; when dense cell cultures were preincubated with TGF-β1, there was an complete inhibition of 3H-thymidine incorporation, whereas the effect was less in sparse cultures. A similar density-dependent effect of TGF-β1 was seen in PDGF-BB treated cells, although less pronounced. The binding of 125I-labeled PDGF-AA and PDGF-BB to the α-receptor was significantly reduced after treatment with TGF-β1 in dense cultures, whereas the sparse cultures were less affected. A decrease of α-receptor mRNA was also seen. The levels of β-receptor protein and mRNA were unaffected. We conclude that the growth inhibitory effect of TGF-β1 is cell density-dependent and involves down-regulation of PDGF α-receptors. © 1993 Wiley-Liss, Inc.  相似文献   

16.
For stem cell therapy to become a routine reality, one of the major challenges to overcome is their storage and transportation. Currently this is achieved by cryopreserving cells utilising the cryoprotectant dimethyl sulfoxide (Me2SO). Me2SO is toxic to cells, leads to loss of cell functionality, and can produce severe side effects in patients. Potentially, cells could be frozen using the cryoprotectant trehalose if it could be delivered into the cells at a sufficient concentration. The novel amphipathic membrane permeabilising agent PP-50 has previously been shown to enhance trehalose uptake by erythrocytes, resulting in increased cryosurvival. Here, this work was extended to the nucleated human cell line SAOS-2. Using the optimum PP-50 concentration and media osmolarity, cell viability post-thaw was 60 ± 2%. In addition, the number of metabolically active cells 24 h post-thaw, normalised to that before freezing, was found to be between 103 ± 4% and 91 ± 5%. This was found to be comparable to cells frozen using Me2SO. Although reduced (by 22 ± 2%, p = 0.09), the doubling time was found not to be statistically different to the non-frozen control. This was in contrast to cells frozen using Me2SO, where the doubling time was significantly reduced (by 41 ± 4%, p = 0.004). PP-50 mediated trehalose delivery into cells could represent an alternative cryopreservation protocol, suitable for research and therapeutic applications.  相似文献   

17.
A new thiol-reactive electrophilic, disubstituted rhodamine-based fluorogenic probe (bis-2,4-dinitrobenzenesulfonyl rhodamine [BDR]) with very high quantum yield was synthesized and described recently [A. Shibata et al., Bioorg. Med. Chem. Lett. 18 (2008) 2246-2249]. Because hydrophobic electrophiles are often conjugated by glutathione transferases, the BDR or monosubstituted rhodamine derivatives (2,4-dinitrobenzenesulfonyl rhodamine [DR]) were tested with microsomal glutathione transferase 1 (MGST1) and shown to function as substrates. The kinetic parameters for purified enzyme and DR were kcat = 0.075 ± 0.005 s−1 and Km = 21 ± 3 μM (kcat/Km = 3.6 × 103 ± 5.6 × 102 M−1 s−1), giving a rate enhancement of 106 compared with the nonenzymatic reaction. In cells overexpressing MGST1, the addition of BDR caused a time-dependent increase of fluorescence compared with control cells. Preincubating the cells with a thiol reagent (N-ethylmaleimide) abolished the fluorescent signal. By using DR, we could determine the MGST1 activity in whole cell extracts with high sensitivity. In addition, the activity could be increased by thiol reagents (a hallmark of MGST1). Thus, we have identified a new fluorogenic substrate for MGST1 that will be a useful tool in the study of this enzyme and related enzymes.  相似文献   

18.
Inhibition of Rho-associated coiled-coil kinase (ROCK) activity promoted recovery and growth of frozen-thawed human embryonic stem cells. The primary objective was to determine if a ROCK inhibitor (Y-27632) in post-thaw culture medium improved revivability of vitrified IVP bovine blastocysts. Expanding or expanded blastocysts (7 d after IVF) were vitrified (minimum volume cooling procedure, using a Cryotop) in 15% ethylene glycol, 15% DMSO and 0.5 M sucrose. When post-warm blastocysts were cultured in mSOF medium, survival rate (re-expansion of blastocoel at 24 h of culture) was improved (P < 0.05) by the addition of 10 μM Y-27632 (94.9 ± 2.4%, mean ± SEM) compared to a control (78.0 ± 6.0%). Conversely, after 48 h of culture, there were no significant differences in hatching rate (62.8 ± 11.1 vs. 59.6 ± 9.4%) and mean total cell number (135.2 ± 13.1 vs. 146.7 ± 13.3). In non-vitrified IVP bovine blastocysts, the hatching rate on Day 9 was improved by Y-27632 (91.7 ± 3.8 vs. 54.7 ± 8.9%, P < 0.05), with no difference in mean total cell number of blastocysts (230.0 ± 23.0 vs. 191.2 ± 22.2, P = 0.23). In an additional experiment, Y-27632 was added to culture medium on either Day 0, Day 2, or Day 4 (and remained present until Day 8), resulting in no improvement in blastocyst yield compared to a control group (7.5 ± 2.1, 31.4 ± 2.3, 36.2 ± 3.2, and 28.6 ± 6.9%, respectively). In conclusion, adding a ROCK inhibitor to post-thaw culture medium improved revivability of IVP bovine blastocysts after vitrification and warming.  相似文献   

19.
The bindings of biogenic polyamines spermine (spm), spermidine (spmd) and synthetic polyamines 3,7,11,15-tetrazaheptadecane·4HCl (BE-333) and 3,7,11,15,19-pentazahenicosane·5HCl (BE-3333) with β-lactoglobulin (β-LG) were determined in aqueous solution. FTIR, UV-vis, CD and fluorescence spectroscopic methods as well as molecular modeling were used to determine the polyamine binding sites and the effect of polyamine complexation on protein stability and secondary structure. Structural analysis showed that polyamines bind β-LG via both hydrophilic and hydrophobic contacts. Stronger polyamine-protein complexes formed with synthetic polyamines than biogenic polyamines, with overall binding constants of Kspm-β-LG = 3.2(±0.6) × 104 M−1, Kspmd-β-LG = 1.8(±0.5) × 104 M−1, KBE-333-β-LG = 5.8(±0.3) × 104 M−1 and KBE-3333-β-LG = 6.2(±0.05) × 104 M−1. Molecular modeling showed the participation of several amino acids in the polyamine complexes with the following order of polyamine-protein binding affinity: BE-3333 > BE-333 > spermine > spermidine, which correlates with their positively charged amino group content. Alteration of protein conformation was observed with a reduction of β-sheet from 57% (free protein) to 55-51%, and a major increase of turn structure from 13% (free protein) to ∼21% in the polyamine-β-LG complexes, indicating a partial protein unfolding.  相似文献   

20.
Sperm cryobanking could be a good alternative to breeding in captivity in order to preserve genetic diversity. Sperm from two well-characterized brown trout populations originating from two river basins in the Northwest of Spain (Esla and Duerna), both threatened by extinction, was cryopreserved. In order to determine whether a sperm cryobank is the best option for preserving genetic profiles, cell viability, chromatin fragmentation, fertility and genetic variability of the offspring obtained with fresh and frozen sperm, were analyzed. Sperm viability was not reduced by freezing (87.0 ± 3.32% to 77.9 ± 3.59% and 77.6 ± 6.53% to 76.6 ± 2.61% in fresh and frozen sperm from Esla and Duerna, respectively). The percentage of fragmented DNA increased after freezing in spermatozoa from Esla males (from 4.7 ± 0.23% to 6.0 ± 0.28%), but not those from Duerna males.After freezing/thawing, the percentage of eyed embryos drops from 66.8 ± 6.77% to 16.1 ± 3.46% and from 50 ± 8.97% to 11.5 ± 2.50% in the Esla and Duerna basins, respectively. This reduction indicates that many spermatozoa have lost their ability to contribute to embryo development and this loss is not related to either spermatozoa viability or the DNA integrity. Genotypic determination by microsatellite analysis showed that frozen/thawed sperm provided offspring with a similar genetic profile to unfrozen milt, demonstrating the accuracy of the cryopreservation procedure.Taking into account the prolificacy of this species, even a low rate of success of fry after cryopreservation, could provide enough individuals to recover stable populations without altering the genetic profiles of the preserved strains. Therefore, cryopreservation is considered a safe, simple and cheap technology for gene banking in the analyzed brown trout populations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号