首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 64 毫秒
1.
Lanthanides have been reported to induce apoptosis in cancer cell lines. Human cervical cancer cell line HeLa was found to be more sensitive to dicitratolanthanum (III) complex ([LaCit2]3−) than other cancer cell lines. However, the effect and mechanism of dicitratoytterbium (III) complex ([YbCit2]3−) on HeLa cells is unknown. Using biochemical and comparative proteomic analyses, [YbCit2]3− was found to inhibit HeLa cell growth and induce apoptosis. Similar to the effects of [LaCit2]3−, proteomics results from [YbCit2]3−-treated cells revealed profound changes in proteins relating to mitochondria and oxidative stress, suggesting that mitochondrial dysfunction plays a key role in [YbCit2]3−-induced apoptosis. This was confirmed by the decreased mitochondrial transmembrane potential and the increased generation of reactive oxygen species in [YbCit2]3−-treated cells. Western blot analysis showed that [YbCit2]3−-induced apoptosis was accompanied by the activation of caspase-9 and specific proteolytic cleavage of PARP, leading to an increase in the pro-apoptotic protein Bax and a decrease in the anti-apoptotic protein Bcl-2. These results suggest a mitochondrial pathway of cell apoptosis in [YbCit2]3−-treated cells, which will help us understand the molecular mechanisms of lanthanide-induced apoptosis in tumor cells.  相似文献   

2.
Loss of synapses and synaptic damage are the best correlates of cognitive decline identified in patients with Alzheimer's disease (AD), and mitochondrial oxidative damage and synaptic pathology have been identified as early events in the progression of AD. The progressive accumulation of amyloid beta (Aβ) in synapses and synaptic mitochondria are hypothesized to cause synaptic degeneration and cognitive decline in patients with AD. However, the precise mechanistic link between Aβ and mitochondria is not well understood. The purpose of this study was to better understand the effects of Aβ on mitochondrial axonal transport and synaptic alterations in AD. Using mouse hippocampal neurons and Aβ25-35 peptide, we studied axonal transport of mitochondria, including mitochondrial motility, mitochondrial length and size, mitochondrial index per neurite, and synaptic alterations of the hippocampal neurons. In the PBS-treated neurons, 36.4 ± 4.7% of the observed mitochondria were motile, with 21.0 ± 1.3% moving anterograde and 15.4 ± 3.4% moving retrograde and the average speed of movement was 12.1 ± 1.8 μm/min. In contrast, in the Aβ-treated neurons, the number of motile mitochondria were significantly less, at 20.4 ± 2.6% (P < 0.032), as were those moving anterograde (10.1 ± 2.6%, P < 0.016) relative to PBS-treated neurons, suggesting that the Aβ25-35 peptide impairs axonal transport of mitochondria in AD neurons. In the Aβ-treated neurons, the average speed of motile mitochondria was also less, at 10.9 ± 1.9 μm/min, and mitochondrial length was significantly decreased. Further, synaptic immunoreactivity was also significantly less in the Aβ-treated neurons relative to the PBS-treated neurons, indicating that Aβ affects synaptic viability. These findings suggest that, in neurons affected by AD, Aβ is toxic, impairs mitochondrial movements, reduces mitochondrial length, and causes synaptic degeneration.  相似文献   

3.
Reactive oxygen species (ROS) are said to participate in the autophagy signaling. Supporting evidence is obscured by interference of autophagy and apoptosis, whereby the latter heavily relies on ROS signaling. To dissect autophagy from apoptosis we knocked down expression of cytochrome c, the key component of mitochondria-dependent apoptosis, in HeLa cells using shRNA. In cytochrome c deficient HeLa1.2 cells, electron transport was compromised due to the lack of electron shuttle between mitochondrial respiratory complexes III and IV. A rapid and robust LC3-I/II conversion and mitochondria degradation were observed in HeLa1.2 cells treated with staurosporine (STS). Neither generation of superoxide nor accumulation of H2O2 was detected in STS-treated HeLa1.2 cells. A membrane permeable antioxidant, PEG-SOD, plus catalase exerted no effect on STS-induced LC3-I/II conversion and mitochondria degradation. Further, STS caused autophagy in mitochondria DNA-deficient ρ° HeLa1.2 cells in which both electron transport and ROS generation were completely disrupted. Counter to the widespread view, we conclude that mitochondrial ROS are not required for the induction of autophagy.  相似文献   

4.
The effects of mild hyperthermia on bovine mammary epithelial cells exposed to 40 °C for 1 h were studied. The results showed that cell viability, ultrastructural features as well as mitochondrial function were significantly influenced by the mild heat treatment (40 °C). There was a considerate decrease in cell viability accompanied by cell loss resulting from apoptosis and necrosis followed by G2/M arrest. Cell death followed the typical cascade, namely decrease in the ratio of Bcl-2/Bax and mitochondrial membrane potential (ΔΨm), mitochondrial swelling and caspase-3 activities dramatically increased; DNA was also damaged. In conclusion, hyperthermia depresses cell viability and induces bovine mammary cell apoptosis and necrosis through the mitochondrial-triggered cell death pathway.  相似文献   

5.
Transformed and tumoral cells share the characteristic of being able to proliferate even when external calcium concentration is very low. We have investigated whether Human Embryonic Kidney 293 cells, human hepatoma cell Huh-7 and HeLa cells were able to proliferate when kept 72 h in complete culture medium without external calcium. Our data showed that cell proliferation rate was similar over a range of external calcium concentration (2 μM to 1.8 mM). Incubation in the absence of external calcium for 72 h had no significant effect on endoplasmic reticulum (ER) Ca2 + contents but resulted in a significant decrease in cytosolic free calcium concentration in all 3 cell types. Cell proliferation rates were dependent on Orai1 and Orai3 expression levels in HEK293 and HeLa cells. Silencing Orai1 or Orai3 resulted in a 50% reduction in cell proliferation rate. Flow cytometry analysis showed that Orai3 induced a small but significant increase in cell number in G2/M phase. RO-3306, a cdk-1 inhibitor, induced a 90% arrest in G2/M reversible in less than 15 min. Our data showed that progression through G2/M phase after release from RO-3306-induced cell cycle arrest was slower in both Orai1 and Orai3 knock-downs. Overexpressing Orai1, Orai3 and the dominant negative non-permeant mutants E106Q-Orai1 and E81Q-Orai3 induced a 50% increase in cell proliferation rate in HEK293 cells. Our data clearly demonstrated that Orai1 and Orai3 proteins are more important than calcium influx to control cell proliferation in some cell lines and that this process is probably independent of ICRAC and Iarc.  相似文献   

6.
Exposure of cells to mild temperatures (40 °C) induces thermotolerance, which renders cells resistant to subsequent toxic insults. Thermotolerance is usually associated with accumulation of heat shock proteins. This study determines whether mild thermotolerance (40 °C, 3 h) can induce other defense proteins (e.g. antioxidants, anti-apoptosis proteins), and protect HeLa cells against apoptosis triggered by H2O2. Protein expression and enzymatic activity of MnSOD and catalase were increased in thermotolerant cells, as well as intracellular glutathione levels and γ-glutamylcysteine synthetase expression. Furthermore, levels of reactive oxygen species (ROS) were increased in thermotolerant cells, which caused mitochondrial membrane hyperpolarisation. Mild thermotolerance inhibited activation of the mitochondrial cascade of apoptosis by H2O2. This entailed inhibition of mitochondrial Bax translocation, mitochondrial membrane depolarisation, cytochrome c release, activation of caspases-9/-3 and chromatin condensation. Thermotolerance inhibited H2O2-induced caspase-independent apoptosis involving apoptosis-inducing factor, and activation of p53 and increased expression of its target protein PUMA. Thermotolerance induced at mild physiological temperatures protects cells against both caspase-dependent and caspase-independent apoptosis triggered by oxidative stress.  相似文献   

7.
Proto-oncogenes and tumor suppressors critically control cell-fate decisions like cell survival, adaptation and death. These processes are regulated by Ca2 + signals arising from the endoplasmic reticulum, which at distinct sites is in close proximity to the mitochondria. These organelles are linked by different mechanisms, including Ca2 +-transport mechanisms involving the inositol 1,4,5-trisphosphate receptor (IP3R) and the voltage-dependent anion channel (VDAC). The amount of Ca2 + transfer from the endoplasmic reticulum to mitochondria determines the susceptibility of cells to apoptotic stimuli. Suppressing the transfer of Ca2 + from the endoplasmic reticulum to the mitochondria increases the apoptotic resistance of cells and may decrease the cellular responsiveness to apoptotic signaling in response to cellular damage or alterations. This can result in the survival, growth and proliferation of cells with oncogenic features. Clearly, proper maintenance of endoplasmic reticulum Ca2 + homeostasis and dynamics including its links with the mitochondrial network is essential to detect and eliminate altered cells with oncogenic features through the apoptotic pathway. Proto-oncogenes and tumor suppressors exploit the central role of Ca2 + signaling by targeting the IP3R. There are an increasing number of reports showing that activation of proto-oncogenes or inactivation of tumor suppressors directly affects IP3R function and endoplasmic reticulum Ca2 + homeostasis, thereby decreasing mitochondrial Ca2 + uptake and mitochondrial outer membrane permeabilization. In this review, we provide an overview of the current knowledge on the proto-oncogenes and tumor suppressors identified as IP3R-regulatory proteins and how they affect endoplasmic reticulum Ca2 + homeostasis and dynamics.  相似文献   

8.
The human immunodeficiency virus type 1 (HIV-1) accessory protein Vpr induces apoptosis after cell cycle arrest at the G2 phase in primate cells. We have reported previously that C81, a carboxy-terminally truncated form of Vpr, interferes with cell proliferation and results in apoptosis without G2 arrest. Here, we investigated whether this property of Vpr and C81 could be exploited for use as a potential anticancer agent. First, we demonstrated that C81 induced G1 arrest and apoptosis in all tumor cells tested. In contrast, Vpr resulted in G2 arrest and apoptosis in HeLa and 293 T cells. Vpr also suppressed the damaged-DNA-specific binding protein 1 (DDB1) in HepG2 cells, thereby inducing apoptosis without G2 arrest. G2 arrest was restored when DDB1 was overexpressed in cells that also expressed Vpr. Surprisingly, C81 induced G2 arrest when DDB1 was overexpressed in HepG2 cells, but not in HeLa or 293 T cells. Thus, the induction of Vpr- and C81-mediated cell cycle arrest appears to depend on the cell type, whereas apoptosis was observed in all tumor cells tested. Overall, Vpr and C81 have potential as novel therapeutic agents for treatment of cancer.  相似文献   

9.
Hsu JC  Lin LC  Tzen JT  Chen JY 《Peptides》2011,32(5):900-910
The antimicrobial peptide, chrysophsin-1, exhibits antimicrobial activities with similar efficiencies for both gram-negative and gram-positive bacteria. In this study, we examined the antitumor activity and modulation of the inflammatory response of a synthetic chrysophsin-1 peptide. In vitro results showed that chrysophsin-1 had greater inhibitory effects against human fibrosarcoma (HT-1080), histiocytic lymphoma (U937), and epithelial carcinoma (HeLa) cells. LDH release by HeLa cells was comparable to that of an MTS assay after treatment with 1.5-3 μg/ml chrysophsin-1 for 24 h. Under SEM and TEM observations, we found no intact cell membranes after chrysophsin-1 treatment of HeLa cells for 8 h. The suggested mechanism of the cytotoxic activity of chrysophsin-1 was disruption of cancer cell membranes. In addition, we also examined caspase-3, -8, and -9 activities by Western blotting; the results excluded the participation of apoptosis in chrysophsin-1's effect on HeLa cells. Stimulation by lipopolysaccharide induced tumor necrosis factor (TNF)-α which was able to modulate chrysophsin-1 treatment of RAW264.7 cells and inhibited endogenous TNF-α release but did not block its secretion. With data from this study, we demonstrate that chrysophsin-1 has antimicrobial and antitumor activities and modulates the inflammatory response in RAW264.7 cells.  相似文献   

10.
11.
A high concentration (50 μg/ml) of gamma-linolenic acid (GLA) induced morphological lesions typical of apoptosis, as well as DNA fragmentation, in HeLa cells. A lower concentration of GLA (20 μg/ml), caused an increased proliferating cell nuclear antigen (PCNA) labelling, with 92.7% cells positive, compared to 27.7% at a concentration of 50 μg/ml GLA. In correlation with these results, the number of cells with degraded DNA below the G0/G1 peak increased significantly in the 50 μg/ml GLA-treated cells, but increased only slightly in cells exposed to the lower level of GLA. The high levels of PCNA induced by 20 μg/ml GLA, in both G1 and S phases, may indicate a state of DNA repair synthesis, whilst at the higher concentration of GLA, most of the cells became apoptotic. Since apoptosis is associated with the deregulation of c-Myc expression, and as the Raf-1-MAP kinase cascade activates the expression of c-Myc and c-Jun, we investigated the effects of 20 and 50 μg/ml GLA on the Raf-1, c-Myc and c-Jun levels, and on the activity of MAP kinase. The results showed that 50 μg/ml GLA lowered the activity of MAP kinase. As expected with the decreased MAP kinase activity in the cells exposed to the higher level GLA, the c-Jun levels were also lowered. The levels of c-Myc, however, were increased. It is therefore possible that the deregulated expression of c-Myc in the HeLa cells exposed to the high level of GLA (50 μg/ml) may contribute to the induction of apoptosis in HeLa cells.  相似文献   

12.
Buforin IIb, a novel cell-penetrating anticancer peptide derived from histone H2A, has been reported to induce mitochondria-dependent apoptosis in tumor cells. However, increasing evidence suggests that endoplasmic reticulum and mitochondria cooperate to signal cell death. In this study, we investigated the mechanism of buforin IIb-induced apoptosis in human cervical carcinoma HeLa cells by focusing on ER stress-mediated mitochondrial membrane permeabilization. Two-dimensional PAGE coupled with MALDI-TOF and western blot analysis showed that buforin IIb treatment of HeLa cells resulted in upregulation of ER stress proteins. PBA (ER stress inhibitor) and BAPTA/AM (Ca2+ chelator) pretreatment rescued viability of buforin IIb-treated cells through abolishing phosphorylation of SAPK/JNK and p38 MAPK. SP600125 (SAPK/JNK inhibitor) and SB203580 (p38 MAPK inhibitor) attenuated down-regulation of Bcl-xL/Bcl-2, mitochondrial translocation of Bax, and cytochrome c release from mitochondria. Taken together, our data suggest that the ER stress pathway has an important role in the buforin IIb-induced apoptosis in HeLa cells.  相似文献   

13.
It has been previously shown that Walker 256 tumor cells express a high content of the anti-apoptotic protein Bcl-2 which protects mitochondria against the damaging effects of Ca2+. In the present study, we analyze H2O2-induced apoptotic death in two different types of tumor cells: Walker 256 and SCC-25. Treatment with H2O2 (4mM) increased reactive oxygen species generation and the concentration of cytosolic free Ca2+. These alterations preceded apoptosis in both cell lines. In Walker cells, which show a high Bcl-2/Bax ratio, apoptosis was dependent on calcineurin activation and independent of changes in mitochondrial membrane potential (Δ < eqid1 > m), as well as cytochrome c release. In contrast, in SCC-25 cells, which show a lower Bcl-2/Bax ratio, apoptosis was preceded by a decrease in Δ < eqid2 > m, mitochondrial permeability transition, and cytochrome c release. Caspase-3 activation occurred in both cell lines. The data suggest that although the high Bcl-2/Bax ratio protected the mitochondria of Walker cells from oxidative stress, it was not sufficient to prevent apoptosis through calcineurin pathways.  相似文献   

14.
Peptides derived from larger molecules that are important modulators in cancer regression are becoming leads for development of therapeutic drugs. It has been reported that Abrus abrin, isolated from the seeds of Abrus precatorius, showed in vitro and in vivo antitumor properties by the induction of apoptosis. The present study was designed to evaluate the in vivo therapeutic effectiveness of abrin-derived peptide (ABP) fraction in Dalton's lymphoma (DL) mice model. The lethal dose (LD50) of ABP was found to be 2.25 mg/kg body weight and further the acute toxicity was determined with sublethal doses in normal mice. The acute toxicity like body weight, peripheral blood cell count, lympho-hematological and biochemical parameters remained unaffected till 200 μg/kg body weight of ABP. The sublethal doses of ABP showed very significant growth inhibitory properties in vivo DL mice model. There were 24%, 70.8% and 89.7% reductions in DL cell survival in 25, 50 and 100 μg/kg body weight of ABP, respectively. Analysis of the growth inhibitory mechanism in DL cells revealed nuclear fragmentation, and condensation with the appearance of the sub-G0/G1 peak is indicative of apoptosis. Further, the Western blotting showed that apoptosis was mediated by the reduction in the ratio of Bcl-2 and Bax protein expression, and activation of caspase-3 through the release of cytochrome c in DL cells. Kaplan–Meier survival analysis showed an effective antitumor response (104.6 increase in life span (ILS) %) with a dose of 100 μg/kg body weight.  相似文献   

15.
Black tea is recently reported to have anti-carcinogenic effects through pro-oxidant property, but the underlying mechanisms remain unclear. Mammalian cytosolic thioredoxin reductase (TrxR1) is well -known for its anti-oxidation activity. In this study, we found that black tea extract (BTE) and theaflavins (TFs), the major black tea polyphenols, inhibited the purified TrxR1 with IC50 44 μg/ml and 21 ± 1 μg/ml, respectively. Kinetics of TFs exhibited a mixed type of competitive and non-competitive inhibition, with Kis 4 ± 1 μg/ml and Kii 26 ± 5 μg/ml against coenzyme NADPH, and with Kis 12 ± 3 μg/ml and Kii 27 ± 5 μg/ml against substrate DTNB. In addition, TFs inhibited TrxR1 in a time-dependent manner. In an equilibrium step, a reversible TrxR1-TFs complex (E * I) forms, which is followed by a slow irreversible first-order inactivation step. Rate constant of the inactivation was 0.7 min−1, and dissociation constant of E * I was 51.9 μg/ml. Treatment of NADPH-reduced TrxR1 with TFs decreased 5-(Iodoacetamido) fluorescein incorporation, a fluorescent thiol-reactive reagent, suggesting that Sec/Cys residue(s) in the active site may be involved in the binding of TFs. The inhibitory capacity of TFs depends on their structure. Among the TFs tested, gallated forms had strong inhibitory effects. The interactions between TFs and TrxR1 were investigated by molecular docking, which revealed important features of the binding mechanism of theaflavins. An inhibitory effect of BTE on viability of HeLa cells was observed with IC50 29 μg/ml. At 33 μg/ml of BTE, TrxR1 activity in HeLa cells was decreased by 73% at 22 h after BTE treatment. TFs inhibited cell viability with IC50 10 ± 4 μg/ml for HeLa cells and with IC50 20 ± 5 μg/ml for EAhy926 cells. The cell susceptibility to TFs was inversely correlated to cellular levels of TrxR1. The inhibitory actions of TFs on TrxR1 may be an important mechanism of their anti-cancer properties.  相似文献   

16.
17.
Many researches have shown that anionic clays can be used as delivery carriers for drug or gene molecules due to their efficient cellular uptake in vitro, and enhanced permeability and retention effect in vivo. It is, therefore, highly required to establish a guideline on their potential toxicity for practical applications. The toxicity of anionic clay, layered metal hydroxide nanoparticle, was evaluated in two human lung epithelial cells, carcinoma A549 cells and normal L-132 cells, and compared with that in other human cancer cell lines such as cervical adenocarcinoma cells (HeLa) and osteosarcoma cells (HOS). The present nanoparticles showed little cytotoxic effects on the proliferation and viability of four cell lines tested at the concentrations used (<250 μg/ml) within 48 h. However, exposing cancer cells to high concentrations (250-500 μg/ml) for 72 h resulted in an inflammatory response with oxidative stress and membrane damage, which varied with the cell type (A549 > HOS > HeLa). On the other hand, the toxicity mechanism seems to be different from that of other inorganic nanoparticles frequently studied for biological and medicinal applications such as iron oxide, silica, and single walled carbon nanotubes. Iron oxide caused cell death associated with membrane damage, while single walled carbon nanotube induced oxidative stress followed by apoptosis. Silica triggered an inflammation response without causing considerable cell death for both cancer cells and normal cells, whereas layered metal hydroxide nanoparticle did not show any cytotoxic effects on normal L-132 cells in terms of inflammation response, oxidative stress, and membrane damage at the concentration of less than 250 μg/ml. It is , therefore, highly expected that the present nanoparticle can be used as a efficient vehicle for drug delivery and cancer cell targeting as well.  相似文献   

18.

Background

Calreticulin (CRT), a Ca2+-binding chaperone of the endoplasmic reticulum, can also be found in several other locations including the cytosol, nucleus, secretory granules, the outer side of the plasma membrane, and the extracellular matrix. Whether CRT is localized at mitochondria of cardiomyocytes and whether such localization is affected under DCM are still unclear.

Methods and results

The DCM model was generated in rats by the daily oral administration of furazolidone for thirty weeks. Echocardiographic and hemodynamic studies demonstrated enlarged left ventricular dimensions and reduced systolic and diastolic function in DCM rats. Immuno-electron microscopy and Western blot showed that CRT was present in cardiomyocyte mitochondria and the mitochondrial content of CRT was increased in DCM hearts (< 0.05). Morphometric analysis showed notable myocardial apoptosis and mitochondrial swelling with fractured or dissolved cristae in the DCM hearts. Compared with the control group, the mitochondrial membrane potential level of the freshly isolated cardiac mitochondria and the enzyme activities of cytochrome c oxidase and succinate dehydrogenase in the model group were significantly decreased (< 0.05), and the myocardial apoptosis index and the caspase activities of caspase-9 and caspase-3 were significantly increased (< 0.05). Pearson linear correlation analysis showed that the mitochondrial content of CRT had negative correlations with the mitochondrial function, and a positive correlation with myocardial apoptosis index (< 0.001). The protein expression level of cytochrome c and the phosphorylation activity of STAT3 in the mitochondrial fraction were significantly decreased in the model group compared with the control group (< 0.05).

Conclusions

These data demonstrate that CRT is localized at cardiomyocyte mitochondria and its mitochondrial content is increased in DCM hearts.  相似文献   

19.
Hsu JC  Lin LC  Tzen JT  Chen JY 《Peptides》2011,32(6):1110-1116
Pardaxin, a pore-forming antimicrobial peptide that encodes 33 amino acids was isolated from the Red Sea Moses sole, Pardachirus mamoratus. In this study, we investigated its antitumor activity in human fibrosarcoma (HT-1080) cells and epithelial carcinoma (HeLa) cells. In vitro results showed that the synthetic pardaxin peptide had antitumor activity in these two types of cancer cells and that 15 μg/ml pardaxin did not lyse human red blood cells. Moreover, this synthetic pardaxin inhibited the proliferation of HT1080 cells in a dose-dependent manner and induced programmed cell death in HeLa cells. DNA fragmentation and increases in the subG1 phase and caspase 8 activities suggest that pardaxin caused HeLa cell death by inducing apoptosis, but had a different mechanism in HT1080 cells.  相似文献   

20.
Lipid rafts and mitochondria are promising targets in cancer therapy. The synthetic antitumor alkyl-lysophospholipid analog edelfosine (1-O-octadecyl-2-O-methyl-rac-glycero-3-phosphocholine) has been reported to target lipid rafts. Here, we have found that edelfosine induced loss of mitochondrial membrane potential and apoptosis in human cervical carcinoma HeLa cells, both responses being abrogated by Bcl-xL overexpression. We synthesized a number of new fluorescent edelfosine analogs, which preserved the proapoptotic activity of the parent drug, and colocalized with mitochondria in HeLa cells. Edelfosine induced swelling in isolated mitochondria, indicating an increase in mitochondrial membrane permeability. This mitochondrial swelling was independent of reactive oxygen species generation. A structurally related inactive analog was unable to promote mitochondrial swelling, highlighting the importance of edelfosine molecular structure in its effect on mitochondria. Raft disruption inhibited mitochondrial localization of the drug in cells and edelfosine-induced swelling in isolated mitochondria. Edelfosine promoted a redistribution of lipid rafts from the plasma membrane to mitochondria, suggesting a raft-mediated link between plasma membrane and mitochondria. Our data suggest that direct interaction of edelfosine with mitochondria eventually leads to mitochondrial dysfunction and apoptosis. These observations unveil a new framework in cancer chemotherapy that involves a link between lipid rafts and mitochondria in the mechanism of action of an antitumor drug, thus opening new avenues for cancer treatment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号