首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
MT1-MMP and TIMP-2 are well known for their roles in remodelling of extracellular matrix components. However, reports are emerging on the involvement of these molecules in cell kinetics. In the rat incisor tooth, a shortening treatment increases the eruption and cell proliferation rates. However, the role of MT1-MMP and TIMP-2 proteins in these processes is still to be evaluated. Male Wistar rats were divided in two groups. In the normofunctional group (NF) the lower teeth of the rats remained in a normal eruption process. In the hypofunctional group (HP) rats their lower left incisor tooth was shortened every 2 days during 12 days. The eruption rate was estimated during the shortening period and MT1-MMP, TIMP-2 and Ki-67 protein expression from the odontogenic region was measured after the treatment. In HP groups an increase in eruption rate, and in MT1-MMP/TIMP-2 and Ki-67 expression were observed. We conclude that there is a relationship between the increase in eruption rate, and in levels of MT1-MMP, TIMP-2 and Ki-67 in the HP group. This suggests that MT1-MMP and TIMP-2 may have some role in cell proliferation during the eruption of the rat incisor tooth.  相似文献   

2.
MMP-9 and MMP-2 are metalloproteinases which degrade the denatured collagen fibers. However, there is no report about roles of these MMPs in the odontogenic region of the adult rat incisor tooth under different eruption conditions. Male Wistar rats were divided in a normofunctional group (NF) in which their lower teeth remained in a normal eruption. In a hypofunctional group (HP) rats underwent shortening of their lower left incisor tooth every 2 days during 12 days. The eruption rate as well as the expression and activities of MMP-9 and MMP-2 were evaluated using imunohistochemistry and zymography. Although the shortening increased the eruption rate, no changes in the MMP-9 and MMP-2 were observed. We conclude that in adult rats, in opposite to development of tooth, the MMP-9 and MMP-2 present in the odontogenic region does not seem to play a direct role in the remodeling matrix, even after post-shortening procedures which to lead an acceleration of the eruption process in the incisor.  相似文献   

3.
The membrane type 1 matrix metalloproteinase (MT1-MMP) is increased in left ventricular (LV) failure. However, the direct effects of altered MT1-MMP levels on survival, LV function, and geometry following myocardial infarction (MI) and the proteolytic substrates involved in this process remain unclear. MI was induced in mice with cardiac-restricted overexpression of MT1-MMP (MT1-MMPexp; full length human), reduced MT1-MMP expression (heterozygous; MT1-MMP(+/-)), and wild type. Post-MI survival was reduced with MT1-MMPexp and increased with MT1-MMP(+/-) compared with WT. LV ejection fraction was lower in the post-MI MT1-MMPexp mice compared with WT post-MI and was higher in the MT1-MMP(+/-) mice. In vivo localization of MT1-MMP using antibody-conjugated microbubbles revealed higher MT1-MMP levels post-MI, which were the highest in the MT1-MMPexp group and the lowest in the MT1-MMP(+/-) group. LV collagen content within the MI region was higher in the MT1-MMPexp vs. WT post-MI and reduced in the MT1-MMP(+/-) group. Furthermore, it was demonstrated that MT1-MMP proteolytically processed the profibrotic molecule, latency-associated transforming growth factor-1-binding protein (LTBP-1), and MT1-MMP-specific LTBP-1 proteolytic activity was increased by over fourfold in the post-MI MT1-MMPexp group and reduced in the MT1-MMP(+/-) group, which was directionally paralleled by phospho-Smad-3 levels, a critical signaling component of the profibrotic transforming growth factor pathway. We conclude that modulating myocardial MT1-MMP levels affected LV function and matrix structure, and a contributory mechanism for these effects is through processing of profibrotic signaling molecules. These findings underscore the diversity of biological effects of certain MMP types on the LV remodeling process.  相似文献   

4.
5.
Gonadotropins stimulate ovarian proteolytic enzyme activity that is believed to be important for the remodeling of the follicular extracellular matrix. Membrane type 1-matrix metalloproteinase (MT1-MMP) has been identified in vitro as an activator of pro-MMP-2 by forming a complex with tissue inhibitors of metalloproteinase-2 (TIMP-2). In the present study, the expression pattern of MT1-MMP mRNA and the role of MT1-MMP were examined in the ovary using the gonadotropin-treated immature rat model. Ovaries were collected at selected times after eCG or hCG. RNase protection assays revealed a transient increase in MT1-MMP mRNA beginning 4 h after hCG. High expression of MT1-MMP mRNA was localized to the theca-interstitial layer of developing and preovulatory follicles, while low expression was observed in the granulosa cell layer of developing follicles by in situ hybridization. The localization pattern of MT1-MMP mRNA was compared with TIMP-2 mRNA. Both MMP-2 and TIMP-2 mRNA were expressed in the theca layer of preovulatory follicles, showing a similarity to MT1-MMP mRNA expression. To further determine whether MT1-MMP activates pro-MMP-2 in the ovary, crude plasma membrane fractions from preovulatory ovaries were analyzed by gelatin zymography. In plasma membrane fractions, pro-MMP-2 increased around the time of ovulation. Upon incubation, pro-MMP-2 was activated with the highest levels of activation at 12 h post-hCG. The addition of MT1-MMP antibody or excess TIMP-2 to membrane fractions inhibited pro-MMP-2 activation. The increase in MT1-MMP mRNA may be an important part of the mechanism necessary for the efficient generation of active MMP-2 during the ovulatory process.  相似文献   

6.
Summary The relationship between the formation of dental enamel and tooth eruption was investigated. Rat mandibular incisor eruption rate was accelerated by maintaining incisors out of occlusion. Rate of eruption, enamel thickness, secretory zone length and matrix breakdown were measured. Eruption rate increased by 120% in experimental teeth but enamel secretion increased by only 90%. There were no obvious differences between control and experimental teeth in final enamel thickness or in the molecular weight distribution of the enamel matrix proteins.  相似文献   

7.
Membrane-type 1 matrix metalloproteinase (MT1-MMP) is an integral membrane proteinase that degrades the pericellular extracellular matrix (ECM) and is expressed in many migratory cells, including invasive cancer cells. MT1-MMP has been shown to localize at the migration edge and to promote cell migration; however, it is not clear how the enzyme is regulated during the migration process. Here, we report that MT1-MMP is internalized from the surface and that this event depends on the sequence of its cytoplasmic tail. Di-leucine (Leu571-572 and Leu578-579) and tyrosine573 residues are important for the internalization, and the mu2 subunit of adaptor protein 2, a component of clathrin-coated pits for membrane protein internalization, was found to bind to the LLY573 sequence. MT1-MMP was internalized predominantly at the adherent edge and was found to colocalize with clathrin-coated vesicles. The mutations that disturb internalization caused accumulation of the enzyme at the adherent edge, though the net proteolytic activity was not affected much. Interestingly, whereas expression of MT1-MMP enhances cell migration and invasion, the internalization-defective mutants failed to promote either activity. These data indicate that dynamic turnover of MT1-MMP at the migration edge by internalization is important for proper enzyme function during cell migration and invasion.  相似文献   

8.
Membrane-type 1 matrix metalloproteinase (MT1-MMP) plays an important role in extracellular matrix-induced cell migration and the activation of extracellular signal-regulated kinase (ERK). We showed here that transfection of the MT1-MMP gene into HeLa cells promoted fibronectin-induced cell migration, which was accompanied by fibronectin degradation and reduction of stable focal adhesions, which function as anchors for actin-stress fibers. MT1-MMP expression attenuated integrin clustering that was induced by adhesion of cells to fibronectin. The attenuation of integrin clustering was abrogated by MT1-MMP inhibition with a synthetic MMP inhibitor, BB94. When cultured on fibronectin, HT1080 cells, which endogenously express MT1-MMP, showed so-called motile morphology with well-organized focal adhesion formation, well-oriented actin-stress fiber formation, and the lysis of fibronectin through trails of cell migration. Inhibition of endogenous MT1-MMP by BB94 treatment or expression of the MT1-MMP carboxyl-terminal domain, which negatively regulates MT1-MMP activity, resulted in the suppression of fibronectin lysis and cell migration. BB94 treatment promoted stable focal adhesion formation concomitant with enhanced phosphorylation of tyrosine 397 of focal adhesion kinase (FAK) and reduced ERK activation. These results suggest that lysis of the extracellular matrix by MT1-MMP promotes focal adhesion turnover and subsequent ERK activation, which in turn stimulates cell migration.  相似文献   

9.
Reactive astrocytes occurring in response to neurodegeneration are thought to play an important role in neuronal regeneration by upregulating the expression of extracellular matrix (ECM) components as well as the ECM degrading metalloproteinases (MMPs). We examined the mRNA levels and cellular distribution of membrane type matrix metalloproteinase 1 (MT1-MMP) and tissue inhibitors 1-4 of MMPs (TIMPs) in brain stem and spinal cord of wobbler (WR) mutant mice affected by progressive neurodegeneration and astrogliosis. MT1-MMP, TIMP-1 and TIMP-3 mRNA levels were elevated, whereas TIMP-2 and TIMP-4 expression was not affected. MT1-MMP was expressed in reactive astrocytes of WR. In primary astrocyte cultures, MT1-MMP mRNA was upregulated by exogeneous tumor necrosis factor alpha. Increased plasma membrane and secreted MMP activities were found in primary WR astrocytes.  相似文献   

10.
Matrix metalloproteinases are thought to play an important role in endothelial cell migration and matrix remodeling. We have used an in vitro wound healing migration model and newly generated anti-membrane type 1-matrix metalloproteinase (MT1-MMP) monoclonal antibodies (mAbs) to characterize the role of MT1-MMP during this process. First, the expression and shedding of MT1-MMP are up-regulated upon induction of migration in endothelial cells, as demonstrated by flow cytometry and Western blot analysis. Furthermore, MT1-MMP is concentrated at discrete areas in migrating endothelial cells, in contrast to the diffuse pattern observed in confluent cells. Interestingly, migration of endothelial cells results in the stimulation of MT1-MMP activity, as shown by its ability to process pro-MMP-2 and to degrade fibrinogen assessed by zymography. Moreover, MT1-MMP-mediated gelatin degradation is enriched at migration sites. mAbs generated against the MT1-MMP catalytic domain are shown to inhibit MT1-MMP enzymatic activity and to impair both phorbol 12-myristate 13-acetate-induced endothelial migration and invasion of collagen and fibrin gels. Furthermore, a reduction in the formation of capillary tubes in Matrigel is also observed when endothelial cells are pretreated with the blocking anti-MT1-MMP mAbs. Altogether, these data demonstrate that MT1-MMP plays an important role during endothelial cell migration, and its activity can modulate endothelial migration, invasion, and formation of capillary tubes during the angiogenic response.  相似文献   

11.
Takino T  Nagao R  Manabe R  Domoto T  Sekiguchi K  Sato H 《FEBS letters》2011,585(21):3378-3384
Fibronectin (FN) matrix assembly is an essential process in normal vertebrate development, which is frequently lost in tumor cells. Here we show that membrane-type 1 matrix metalloproteinase (MT1-MMP) regulates FN matrix assembly. MT1-MMP knockdown induced FN assembly in breast carcinoma cells. Ectopic expression of MT1-MMP reduced specifically the assembled FN matrix level without affecting whole FN production in fibroblasts. Treatment of fibrosarcoma HT1080 cells with dexamethasone (DEX) enhanced FN synthesis, resulting in short fibrils but not dense matrix formation. Combined treatment of DEX and MT1-MMP inhibitor accelerated FN matrix assembly, which mediated cellular adhesion and reduced cell migration and invasion. These results indicate that MT1-MMP stimulates cell migration and invasion by negatively regulating FN assembly.  相似文献   

12.
13.
Amyloid-beta precursor protein (APP) was identified on expression cloning from a human placenta cDNA library as a gene product that modulates the activity of membrane-type matrix metalloproteinase-1 (MT1-MMP). Co-expression of MT1-MMP with APP in HEK293T cells induced cleavage and shedding of the APP ectodomain when co-expressed with APP adaptor protein Fe65. Among the MT-MMPs tested, MT3-MMP and MT5-MMP also caused efficient APP shedding. The recombinant APP protein was cleaved by MT3-MMP in vitro at the A463-M464, N579-M580, H622-S623, and H685-Q686 peptide bonds, which included a cleavage site within the amyloid beta peptide region known to produce a C-terminal fragment. The Swedish-type mutant of APP, which produces a high level of amyloid beta peptide, was more effectively cleaved by MT3-MMP than wild-type APP in both the presence and absence of Fe65; however, amyloid beta peptide production was not affected by MT3-MMP expression. Expression of MT3-MMP enhanced Fe65-dependent transactivation by APP fused to the Gal4 DNA-binding and transactivation domains. These results suggest that MT1-MMP, MT3-MMP and MT5-MMP should play an important role in the regulation of APP functions in tissues including the central nervous system.  相似文献   

14.
Membrane type-1 matrix metalloproteinase (MT1-MMP) is the prototypical member of a subgroup of membrane-anchored proteinases that belong to the matrix metalloproteinase family. Although synthesized as a zymogen, MT1-MMP plays an essential role in extracellular matrix remodeling after an undefined process that unmasks its catalytic domain. We now report the existence of a proprotein convertase-MT1-MMP axis that regulates the processing and functional activity of the metalloproteinase. Two sets of basic motifs in the propeptide region of MT1-MMP are identified that potentially can be recognized by the proprotein convertase family of subtilisin-like proteases. Processing of proMT1-MMP as well as the expression of its proteolytic activity were blocked by mutating these recognition motifs or by inhibiting the proprotein convertases furin and PC6 with the serpin-based inhibitor alpha(1) antitrypsin Portland. Furthermore, both furin-dependent and furin-independent MT1-MMP processing pathways are identified that require tethering of the metalloproteinase to the cell surface. These findings demonstrate the existence of a proprotein convertase-MT1-MMP axis that can regulate extracellular matrix remodeling.  相似文献   

15.
《Cellular signalling》2014,26(5):917-924
Plant lectins have been considered as possible anti-tumor drugs because of their property to induce autophagic cell death. Given that expression of membrane type-1 matrix metalloproteinase (MT1-MMP) has been found to regulate expression of the autophagy biomarker Bcl-2/adenovirus E1B 19 kDa interacting protein 3 (BNIP3), we sought to investigate possible signaling interplay mechanisms between MT1-MMP and BNIP3 in Concanavalin-A (ConA) lectin-activated U87 glioblastoma cells. ConA induced acidic vacuole organelle formation as well as BNIP3 and MT1-MMP gene and protein expressions, whereas only BNIP3 expression was dose-dependently inhibited by the JAK2 tyrosine kinase inhibitor AG490 suggesting a requirement for some STAT-mediated signaling. Gene silencing of MT1-MMP and of STAT3 abrogated ConA-induced STAT3 phosphorylation and BNIP3 expression. Correlative analysis shows that STAT3 signaling events occur downstream from MT1-MMP induction. Overexpression of a full length MT1-MMP recombinant protein led to increased BNIP3 gene and protein expressions. The cytoplasmic domain of MT1-MMP was also found necessary for transducing STAT3 phosphorylation. Among JAK1, JAK2, JAK3, and TYK2, only JAK2 gene silencing abrogated ConA's effects on MT1-MMP and BNIP3 gene and protein expressions. Our study elucidates how MT1-MMP signals autophagy, a process which could contribute to the chemoresistance phenotype in brain cancer cells.  相似文献   

16.
Membrane-type 1 matrix metalloproteinase (MT1-MMP) is the most ubiquitous and widely studied of the membrane-type metalloproteinases (MT-MMPs). It was thus surprising to find no published data on chicken MT1-MMP. We report here the characterization of the chicken gene. Its low sequence identity with the MT1-MMP genes of other species, high GC content, and divergent catalytic domain explains the absence of data and our difficulties in characterizing the gene. The absence of structural features in the chicken gene that have been suggested to be critical for the activation of MMP-2 by MT1-MMP; for the effect of MT1-MMP on cell migration and for the recycling of MT1-MMP suggest these features are either not essential or that MT1-MMP does not perform these functions in chickens. Comparison of the expression of chicken MT1-MMP with MT3-MMP and with MMP-2 and MMP-13 has confirmed the previously recognized co-expression of MT1-MMP with MMP-2 and MMP-13 in fibrous and vascular tissues, particularly those surrounding the developing long bones in other species. By contrast, MT3-MMP expression differs markedly from that of MT1-MMP and of both MMP-2 and MMP-13. MT3-MMP is expressed by chondrocytes of the developing articular surface. Similar expression patterns of this group of MT-MMPs and MMPs have been observed in mouse embryos and suggest distinct and specific functions for MT1-MMP and MT3-MMP in skeletal development.  相似文献   

17.
Membrane-type matrix metalloproteinase-1 (MT1-MMP) is expressed by mechanosensitive osteocytes and affects bone mass. The extracellular domain of MT1-MMP is connected to extracellular matrix, while its intracellular domain is a strong modulator of cell signaling. In theory MT1-MMP could thus transduce mechanical stimuli into a chemical response. We hypothesized that MT1-MMP plays a role in the osteocyte response to mechanical stimuli. MT1-MMP-positive and knockdown (siRNA) MLO-Y4 osteocytes were mechanically stimulated with a pulsating fluid flow (PFF). Focal adhesions were visualized by paxillin immunostaining. Osteocyte number, number of empty lacunae, and osteocyte morphology were measured in long bones of MT1-MMP(+/+) and MT1-MMP(-/-) mice. PFF decreased MT1-MMP mRNA and protein expression in MLO-Y4 osteocytes, suggesting that mechanical loading may affect pericellular matrix remodeling by osteocytes. MT1-MMP knockdown enhanced NO production and c-jun and c-fos mRNA expression in response to PFF, concomitantly with an increased number and size of focal adhesions, indicating that MT1-MMP knockdown osteocytes have an increased sensitivity to mechanical loading. Osteocytes in MT1-MMP(-/-) bone were more elongated and followed the principle loading direction, suggesting that they might sense mechanical loading. This was supported by a lower number of empty lacunae in MT1-MMP(-/-) bone, as osteocytes lacking mechanical stimuli tend to undergo apoptosis. In conclusion, mechanical stimulation decreased MT1-MMP expression by MLO-Y4 osteocytes, and MT1-MMP knockdown increased the osteocyte response to mechanical stimulation, demonstrating a novel and unexpected role for MT1-MMP in mechanosensing.  相似文献   

18.
The pattern of gene expression for extracellular matrix metalloproteinase inducer (EMMPRIN) was revealed in the tooth germ of mouse mandibular molars using quantitative real-time PCR. In situ hybridization and immunohistochemical study demonstrated the characteristic distribution of EMMPRIN in the different stages of tooth germ development. To investigate the functional role played by EMMPRIN in tooth germ development, EMMPRIN siRNA interference approach was carried out in cultured mouse mandibles at embryonic day 11.0 (E11.0). The results showed that EMMPRIN siRNA-treated explants exhibited a marked growth inhibition of tooth germ compared to the control and scrambled siRNA-treated explants. Meanwhile, a significant increase in MT1-MMP mRNA expression and a reduction in MMP-2, MMP-3, MMP-9, MMP-13 and MT2-MMP mRNA expression were observed in the mouse mandibles following EMMPRIN abrogation. The current results indicate that EMMPRIN could thus be involved in the early stage of tooth germ development and morphogenesis, possibly by regulating the expression of MMP genes.  相似文献   

19.
Membrane type 1 matrix metalloproteinase (MT1-MMP/MMP14) is a zinc-dependent type I transmembrane metalloproteinase playing pivotal roles in the regulation of pericellular proteolysis and cellular migration. Elevated expression levels of MT1-MMP have been demonstrated to correlate with a poor prognosis in cancer. MT1-MMP has a short intracellular domain (ICD) that has been shown to play important roles in cellular migration and invasion, although these ICD-mediated mechanisms remain poorly understood. In this study, we report that MT1-MMP is mono-ubiquitinated at its unique lysine residue (Lys(581)) within the ICD. Our data suggest that this post-translational modification is involved in MT1-MMP trafficking as well as in modulating cellular invasion through type I collagen matrices. By using an MT1-MMP Y573A mutant or the Src family inhibitor PP2, we observed that the previously described Src-dependent MT1-MMP phosphorylation is a prerequisite for ubiquitination. Taken together, these findings show for the first time an additional post-translational modification of MT1-MMP that regulates its trafficking and cellular invasion, which further emphasizes the key role of the MT1-MMP ICD.  相似文献   

20.

Background

Atherosclerosis is understood to be a blood vessel inflammation. High-mobility group box-1 (HMGB-1) plays a key role in the systemic inflammation. Tissue factor (TF) is known to lead to inflammation which promotes thrombus formation. Membrane type1 matrix metalloprotease (MT1-MMP) associates with advanced glycation endproducts (AGE) triggered-TF protein expression and phosphorylation of NF-κB. However, it is still unclear about the correlation of MT1-MMP and HMBG-1-mediated TF expression. In this study, we investigated the molecular mechanisms of TF expression in response to HMGB-1 stimulation and the involvement of MT1-MMP in endothelial cells.

Methods and Results

Pull-down assays and Western blotting revealed that HMGB-1 induced RhoA/Rac1 activation and NF-kB phosphorylation in cultured human aortic endothelial cells. HMGB-1 increased the activity of MT1-MMP, and inhibition of RAGE or MT1-MMP by siRNA suppressed HMGB-1-induced TF upregulation as well as HMGB-1-triggered RhoA/Rac1 activation and NF-kB phosphorylation.

Conclusions

The present study showed that RAGE/MT1-MMP axis modified HMBG-1-mediated TF expression through RhoA and Rac1 activation and NF-κB phosphorylation in endothelial cells. These results suggested that MT1-MMP was involved in vascular inflammation and might be a good target for treating atherosclerosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号