首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
In the present study, we investigated the protective mechanism of paeoniflorin (PF), a monoterpene glycoside extracted from Radix Paeoniae alba roots, on MPP+-induced neurotoxicity in cultured rat pheochromocytoma cells (PC12). Our work included examination of cell viability assessment, amounts of released lactic dehydrogenase (LDH), intracellular Ca2+ concentration, cell apoptosis, mitochondrial membrane potential, caspase-3 activity, and expression profiling of two apoptosis-related genes (Bcl-2 and Bax). It was shown that, PF functioned as an MPP+ antagonist, being able to suppress apoptosis, decrease LDH release and Ca2+ concentration, attenuate membrane potential collapse and, inhibit caspase-3 activation, decrease in Bax/Bcl-2 ratio. These observations suggest that PF could protect PC12 cells against MPP+-induced injury and the mechanism PF’s neuroprotective effect was closely associated with Bcl-2 up-regulation and Bax down-regulation. PF has neuroprotective effects on MPP+-induced apoptosis in PC12 cells via regulating mitochondrial membrane potential and Bcl-2/Bax/caspase-3 signaling pathways, and this new insight will help develop a PF-based therapeutic strategy for treatmenting neurodegenerative diseases and injury.  相似文献   

2.
In the present study, we investigated the effects of tetramethylpyrazine (TMP) on hydrogen peroxide (H2O2)-induced apoptosis in PC12 cells. The apoptosis in H2O2-induced PC12 cells was accompanied by a decrease in Bcl-2/Bax protein ratio, release of cytochrome c to cytosol and the activation of caspase-3. TMP not only suppressed the down-regulation of Bcl-2, up-regulation of Bax and the release of mitochondrial cytochrome c to cytosol, but also attenuated caspase-3 activation and eventually protected against H2O2-induced apoptosis. These results indicated that TMP blocked H2O2-induced apoptosis by the regulation of Bcl-2 family members, suppression of cytochrome c release, and caspase cascade activation in PC12 cells.  相似文献   

3.
Defects in mitochondrial function have been shown to participate in the induction of neuronal cell injury. The aim of the present study was to assess the influence of the mitochondrial membrane permeability transition inhibition against the toxicity of 1-methyl-4-phenylpyridinium (MPP+) and 6-hydroxydopamine (6-OHDA) in relation to the mitochondria-mediated cell death process and role of oxidative stress. Both MPP+ and 6-OHDA induced the nuclear damage, the changes in the mitochondrial membrane permeability, leading to the cytochrome c release and caspase-3 activation, the formation of reactive oxygen species and the depletion of GSH in differentiated PC12 cells. Cyclosporin A (CsA), trifluoperazine and aristolochic acid, inhibitors of mitochondrial permeability transition, significantly attenuated the MPP+-induced mitochondrial damage leading to caspase-3 activation, increased oxidative stress and cell death. In contrast to MPP+, the cytotoxicity of 6-OHDA was not reduced by the addition of the mitochondrial permeability transition inhibitors. The results show that the cytotoxicity of MPP+ may be mediated by the mitochondrial permeability transition formation, which is associated with formation of reactive oxygen species and the depletion of GSH. In contrast, the 6-OHDA-induced cell injury appears to be mediated by increased oxidative stress without intervention of the mitochondrial membrane permeability transition.  相似文献   

4.
We used a rat pheochromocytoma (PC12) cell line to study the effects of salidroside on hydrogen peroxide (H(2)O(2))-induced apoptosis. In PC12 cells, H(2)O(2)-induced apoptosis was accompanied by the down-regulation of Bcl-2, the up-regulation of Bax, the release of mitochondrial cytochrome c to cytosol, and the activation of caspase-3, -8 and -9. However, salidroside suppressed the down-regulation of Bcl-2, the up-regulation of Bax and the release of mitochondrial cytochrome c to cytosol. Moreover, salidroside attenuated caspase-3, -8 and -9 activation, and eventually protected cells against H(2)O(2)-induced apoptosis. Taken together, these results suggest that treatment of PC12 cells with salidroside can block H(2)O(2)-induced apoptosis by regulating Bcl-2 family members and by suppressing cytochrome c release and caspase cascade activation.  相似文献   

5.
Platelet activating factor (PAF) has been suggested to play a critical role in the pathogenesis of neurological disorders. We assessed the effect of PAF against the toxicity of 1-methyl-4-phenylpyridinium (MPP+), a parkinsonian toxin, in relation to apoptotic process. PAF exhibited differential effect against the MPP+ toxicity in differentiated PC12 cells depending on concentration. Treatment with 0.75 μM PAF significantly attenuated the MPP+-induced increase in Bax levels, decrease in Bid and Bcl-2 levels, and mitochondrial membrane potential loss that lead to the release of cytochrome c and subsequent caspase-3 activation. The inhibitory effect of PAF was not associated with nuclear factor-κB activation. In contrast, PAF at the concentrations greater than 2.5 μM exhibited a toxicity and additive effect on the MPP+ toxicity. The results show that PAF at low concentrations, which does not induce a significant toxicity, may prevent the MPP+ toxicity by suppressing the apoptosis-related protein activation and mitochondrial membrane permeability change that lead to the cytochrome c release and caspase-3 activation. The preventive effect seems to be associated with the inhibitory effect on the formation of reactive oxygen species and depletion of GSH. In contrast, PAF at higher concentrations may exhibit an additive toxic effect against the MPP+ toxicity by increasing apoptosis-related protein activation.  相似文献   

6.
1-Methyl-4-phenylpyridinium (MPP+) or 6-hydroxydopamine (6-OHDA) caused a nuclear damage, the mitochondrial membrane permeability changes, leading to the cytochrome c release and caspase-3 activation, the formation of reactive oxygen species and the depletion of GSH in PC12 cells. Nicardipine (a calcium channel blocker), EGTA (an extracellular calcium chelator), BAPTA-AM (a cell permeable calcium chelator) and calmodulin antagonists (W-7 and calmidazolium) attenuated the MPP+-induced mitochondrial damage and cell death. In contrast, the compounds did not reduce the toxicity of 6-OHDA. Treatment with MPP+ or 6-OHDA evoked the elevation of intracellular Ca2+ levels. Unlike cell injury, addition of nicardipine, BAPTA-AM and calmodulin antagonists prevented the elevation of intracellular Ca2+ levels due to both toxins. The results show that the MPP+-induced formation of the mitochondrial permeability transition seems to be mediated by elevation of intracellular Ca2+ levels and calmodulin action. In contrast, the 6-OHDA-induced cell death seems to be mediated by Ca2+-independent manner.  相似文献   

7.
Lee CS  Han ES  Lee WB 《Neurochemical research》2003,28(12):1833-1841
Phenelzine, deprenyl, and antioxidants (SOD, catalase, ascorbate, or rutin) reduced the loss of cell viability in differentiated PC12 cells treated with 250 M MPP+, whereas N-acetylcysteine and dithiothreitol did not inhibit cell death. Phenelzine reduced the condensation and fragmentation of nuclei caused by MPP+ in PC12 cells. Phenelzine and deprenyl prevented the MPP+-induced decrease in mitochondrial membrane potential, cytochrome c release, formation of reactive oxygen species, and depletion of GSH in PC12 cells. Phenelzine revealed a scavenging action on hydrogen peroxide and reduced the hydrogen peroxide–induced cell death in PC12 cells, whereas deprenyl did not depress the cytotoxic effect of hydrogen peroxide. Both compounds reduced the iron and EDTA-mediated degradation of 2-deoxy-d-ribose degradation. The results suggest that phenelzine attenuates the MPP+-induced viability loss in PC12 cells by reducing the alteration of mitochondrial membrane permeability that seems to be mediated by oxidative stress.  相似文献   

8.
The aim of present study is to explore the cytoprotection of curcumin against 1-methyl-4-phenylpridinium ions (MPP+)-induced apoptosis and the molecular mechanisms underlying in PC12 cells. Our findings indicated that MPP+ significantly reduced the cell viability and induced apoptosis of PC12 cells. Curcumin protected PC12 cells against MPP+-induced cytotoxicity and apoptosis not only by inducing overexpression of Bcl-2, but also reducing the loss of mitochondrial membrane potential (MMP), an increase in intracellular reactive oxygen species (ROS) and overexpression of inducible nitric oxide synthase (iNOS). The selective iNOS inhibitor AG partly blocked MPP+-induced apoptosis of PC12 cells. The results of present study suggested that the cytoprotective effects of curcumin might be mediated, at least in part, by the Bcl-2-mitochondria-ROS-iNOS pathway. Because of its non-toxic property, curcumin could be further developed to treat the neurodegenerative diseases which are associated with oxidative stress, such as Parkinson’s disease (PD). J. Chen and X. Q. Tang are contributed equally to this work.  相似文献   

9.
Tang XQ  Fang HR  Li YJ  Zhou CF  Ren YK  Chen RQ  Wang CY  Hu B 《Neurochemical research》2011,36(11):2176-2185
Asymmetric dimethylarginine (ADMA), an endogenous nitric oxide synthase (NOS) inhibitor, is profoundly protective against 1-methy-4-phenylpyridinium ion (MPP+)-induced neurotoxicity. Reactive oxygen species (ROS) overproduction contributes to the neurotoxicity of MPP+; while hydrogen sulfide (H2S) is a pivotal endogenous antioxidant. This study is to assess the potential role of endogenous H2S in the neuroprotection of ADMA against MPP+-induced toxicity in PC12 cells. We showed that ADMA prevented MPP+-induced inhibition of endogenous H2S generation through inhibiting the down-regulation of cystathionine-β-synthetase (CBS, the major enzyme responsible for endogenous H2S generation in PC12 cells) expression and activity elicited by MPP+. ADMA obviously attenuated MPP+-triggered accumulation of intracellular ROS, dissipation of mitochondrial membrane potential (MMP), release of cytochrome c (Cyt-c), and downregulation of Bcl-2 protein expression in PC12 cells. Inhibition of CBS activity by amino-oxyacetate and CBS silencing with a short hairpin RNA vector targeting rat CBS gene reversed the protective action of ADMA against MPP+-caused cytotoxicity, ROS overproduction, and MMP loss in PC12 cells. These results indicate that the protection of ADMA against MPP+-mediated neurotoxicity involves the melioration of MPP+-induced inhibition of endogenous H2S generation. Our findings suggest that modulation of H2S production provide new therapeutic targets for the treatment of neurodegenerative disease, such as Parkinson’s disease.  相似文献   

10.
Feng W  Wei H  Liu GT 《Molecular neurobiology》2005,31(1-3):295-300
FLZ is a synthetic new derivative of squamosamide. Pharmacological study found that FLZ given orally improved the abnormal behavior caused by the functional disturbance of dopaminergic and cholinergic neurons in mice. FLZ significantly increased the content of dopamine and its metabolites in striatum in MPTP model mice. FLZ also remarkably protected dopaminergic PC-12 cells against dopamine and MPP+ induced injury and apoptosis in vitro. The compound inhibited the formation of dopamine-melanin and protein polymers. Additionally, FLZ inhibited cytochrome-c release from mitochondria and caspase-3 activation by dopamine in PC-12 cells. The above results suggest that compound FLZ possesses anti-PD activity through neuroprotection.  相似文献   

11.
The hematopoietic cytokines erythropoietin (Epo) and granulocyte-colony stimulating factor (G-CSF) provide neuroprotection in several in vitro and in vivo models of Parkinson’s disease (PD). The molecular mechanism by which Epo and G-CSF signals reduce the neuronal death in PD is not clear. Here, we show that in rat pheochromocytoma PC12 cells, Epo and G-CSF efficiently repressed the 1-methyl-4-phenylpyridinium (MPP+)-induced expression of the proapoptotic protein PUMA (p53 up-regulated modulator of apoptosis). Accordingly, Epo and G-CSF treatment reduced the PC12 cell fraction that underwent apoptosis by MPP+ treatment and thus improved cell viability. Downregulation of PUMA expression by Epo and G-CSF in MPP+-treated PC12 cells seems to be mediated by repression of p53, as the expression of p53 was increased by MPP+-treatment and reduced by Epo and G-CSF. Together, these results suggest that the neuroprotective activities of Epo and G-CSF in an experimental model of PD involve the repression of the apoptosis-inducing action of PUMA.  相似文献   

12.
Parkinson’s disease is an incurable progressive neurological condition caused by a degeneration of dopamine-producing cells characterized by motor and non-motor symptoms. The major mechanisms of the antiepileptic actions of ZNS are inhibition of voltage-gated Na+ channel, T-type voltage-sensitive Ca2+ channel, Ca2+-induced Ca2+ releasing system, and neuronal depolarization-induced glutamate release; and enhancement of release of inhibitory neurotransmitters; however, the detailed mechanism of antiparkinsonian effects of ZNS remains to be clarified. We aimed to investigate to the effect of ZNS on the oxidative stress, cell viability, Ca2+ signaling, and caspase activity that induced by the MPP+ model of Parkinson’s in neuronal PC12 cells. Neuronal PC12 cells were divided into four groups namely, control, ZNS, MPP+, and ZNS+MPP+ groups. The dose and duration of ZNS and MPP+ were determined according to cell viability (MTT) analysis which used to assess the cell viability. The cells in ZNS, MPP+, and ZNS+MPP+ groups were incubated for 5 h with 100 μM ZNS, 10 h with 100 μM MPP+, and 10 h with ZNS and MPP+, respectively. Lipid peroxidation and cytosolic free Ca2+ concentrations were higher in the MPP+ group than in control although their levels were lower in ZNS and the ZNS+MPP+ groups than in control. Reduced glutathione and glutathione peroxidase values were lower in the MPP+ group although they were higher in the ZNS and the ZNS+MPP+ groups than in control. Caspase-3 activity was lower in the ZNS group than in the MPP+ group. In conclusion, ZNS induced modulator effects on the oxidative stress, intracellular Ca2+, and the caspase-3 values in an experimental model of Parkinson disease.  相似文献   

13.
Apoptosis is a contributing cause of dopaminergic neuron loss in Parkinson disease. Recent work has shown that erythropoietin (EPO) offers protection against apoptosis in a wide variety of tissues. We demonstrate that exposure of PC12 cells to 1-methyl-4-phenylpyridinium ion (MPP+) with recombinant human EPO, significantly decreased apoptosis as measured by TUNEL and caspase-3 activity when compared to MPP+ treatment alone. EPO induced sustained phosphorylation of Akt and its substrate, GSK-3β, reduced caspase-3 activities in PC12 cells. The anti-apoptotic effect of EPO was abrogated by co-treatment with LY294002, the specific blocker of phosphatidylinositol 3-kinase (PI3K). The effects of EPO on GSK-3β and caspase-3 activities were also blocked by LY294002. LiCl, the inhibitor of GSK-3β, downregulated the caspase-3 activity and blocked the apoptosis induced by MPP+. Finally, we determined that EPO transiently activated the ERK signaling pathway, but PD98059, a specific inhibitor of ERK, does not alter the survival effect of EPO in this model system. Thus, these findings indicate that EPO protects against apoptosis in PC12 cells exposed to MPP+, through the Akt/GSK-3β/caspase-3 signaling pathway, but the ERK pathway is not involved in the EPO-dependent survival enhancing effect in this model system. The authors Yan Wu and You Shang are equally contributed to this work.  相似文献   

14.
Feng  Huiqiong  Xi  Fuqiang 《Neurochemical research》2022,47(10):3137-3149

Miltirone is a phenanthrene-quinone derived from Salvia miltiorrhiza Bunge with anti-inflammatory and anti-oxidant effects. Our study aimed to explore the protective effect of miltirone on 1-methyl-4-phenylpyridinium (MPP+)-induced cell model of Parkinson’s disease (PD). PharmMapper database was employed to predict the targets of miltirone. PD-related genes were identified using GeneCards database. The overlapping genes between miltirone and PD were screened out using Venn diagram. KEGG analysis was performed using DAVID and KOBAS databases. Cell viability, reactive oxygen species (ROS) generation, apoptosis, and caspase-3 activity were detected by CCK-8 assay, a ROS assay kit, TUNEL, and caspase-3 activity assay, respectively. Effect of miltirone on the phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt) pathway was explored by western blot analysis. A total of 214 targets of miltirone and 372 targets related to PD were attained, including 29 overlapping targets. KEGG analysis demonstrated that the 29 overlapping targets were both significantly enriched in the PI3K/Akt pathway. MPP+ stimulation reduced the cell viability in SH-SY5Y cells and neuronal primary cultures derived from human brain. Miltirone or N-acetylcysteine (NAC) attenuated MPP+-induced reduction in cell viability, ROS production, SOD activity reduction, apoptosis, and increase of caspase-3 activity. Additionally, miltirone recuperated MPP+-induced inactivation of the PI3K/Akt pathway. Moreover, treatment with LY294002, an inhibitor of the PI3K/Akt pathway, reversed the inhibitory effect of miltirone on MPP+-induced ROS generation and apoptosis in SH-SY5Y cells and neuronal primary cultures. In conclusion, miltirone attenuated ROS-dependent apoptosis in MPP+-induced cellular model of PD through activating the PI3K/Akt pathway.

  相似文献   

15.
To investigate the role of nitric oxide (NO)/reactive oxygen species (ROS) redox signaling in Parkinson's disease-like neurotoxicity, we used 1-methyl-4-phenylpyridinium (MPP+) treatment (a model of Parkinson's disease). We show that MPP+-induced neurotoxicity was dependent on ROS from neuronal NO synthase (nNOS) in nNOS-expressing PC12?cells (NPC12?cells) and rat cerebellar granule neurons (CGNs). Following MPP+ treatment, we found production of 8-nitroguanosine 3′,5′-cyclic monophosphate (8-nitro-cGMP), a second messenger in the NO/ROS redox signaling pathway, in NPC12?cells and rat CGNs, that subsequently induced S-guanylation and activation of H-Ras. Additionally, following MPP+ treatment, extracellular signal-related kinase (ERK) phosphorylation was enhanced. Treatment with a mitogen-activated protein kinase (MAPK)/ERK kinase (MEK) inhibitor attenuated MPP+-induced ERK phosphorylation and neurotoxicity. In conclusion, we demonstrate for the first time that NO/ROS redox signaling via 8-nitro-cGMP is involved in MPP+-induced neurotoxicity and that 8-nitro-cGMP activates H-Ras/ERK signaling. Our results indicate a novel mechanism underlying MPP+-induced neurotoxicity, and therefore contribute novel insights to the mechanisms underlying Parkinson's disease.  相似文献   

16.
Danggui-Shaoyao-San (DSS), a traditional Chinese medicine used for centuries for the enhancement of women's health, has been shown to display therapeutic efficacy on senile dementia. In the present study, using a rat pheochromocytoma (PC12) cell line, the effect of DSS on hydrogen peroxide (H2O2) induced apoptosis was studied. The apoptosis in H2O2-induced PC12 cells was accompanied by downregulation of Bcl-2, upregulation of Bax, the release of mitochondrial cytochrome c into cytosol, and sequential activation of caspase-9 and -3. DSS was able to suppress all these changes and eventually protected against H2O2-induced apoptosis. Taken together, these results suggest that treatment of PC12 cells with DSS can block H2O2-induced apoptosis by the regulation of Bcl-2 family members, as well as suppression of cytochrome c release and caspase cascade activation.  相似文献   

17.
Disturbances in Ca2+ homeostasis have been implicated in a variety of neuropathological conditions including Parkinson's disease (PD). However, the importance of store-operated Ca2+ entry (SOCE) channels in PD remains to be investigated. In the present study, we have scrutinized the significance of TRPC1 in 1-methyl-4-phenyl-1,2,3,6-tetrahyrdro-pyridine (MPTP)-induced PD using C57BL/6 animal model and PC12 cell culture model. Both sub-acute and sub-chronic treatments of MPTP significantly reduced TRPC1, and tyrosine hydroxylase levels, but not TRPC3, along with increased neuronal death. Furthermore, MPTP induces mitochondrial dysfunction, which was associated with reduced mitochondrial membrane potential, decreased level of Bcl2, Bcl-xl, and an altered Bcl-xl/Bax ratio thereby initiating apoptosis. Importantly, TRPC1 overexpression in PC12 cells showed significant protection against MPP+ induced neuronal apoptosis, which was attributed to the restoration of cytosolic Ca2+ and preventing loss of mitochondrial membrane potential. Silencing of TRPC1 or addition of TRPC1 channel blockers decreased mitochondrial membrane potential, whereas activation of TRPC1 restored mitochondrial membrane potential in cells overexpressing TRPC1. TRPC1 overexpression also inhibited Bax translocation to the mitochondria and thereby prevented cytochrome c release and mitochondrial-mediated apoptosis. Overall, these results provide compelling evidence for the role of TRPC1 in either onset/progression of PD and restoration of TRPC1 levels could limit neuronal degeneration in MPTP mediated PD.  相似文献   

18.
Vascular endothelial growth factor (VEGF), a specific pro-angiogenic peptide, has shown neuroprotective effects in the Parkinson’s disease (PD) models, but the underlying mechanisms remain elusive. In this study, the neuroprotective properties of VEGF on 1-methyl-4-phenylpyridinium ion (MPP+)-induced neurotoxicity in primary cerebellar granule neurons were investigated. Pretreatment of VEGF prevented MPP+-induced neuronal apoptosis in a concentration- and time-dependent manner. And this prevention was blocked by PTK787/ZK222584, a VEGF receptor-2 specific inhibitor. Both inhibition of the Akt pathway and activation of the extracellular signal-regulated kinase (ERK) pathway contribute to MPP+-induced neuronal apoptosis. VEGF reversed the inhibition of phosphoinositide 3-kinase (PI3-K)/Akt pathway caused by MPP+, but further enhanced the activation of ERK induced by MPP+. Interestingly, VEGF and PD98059 (an ERK kinase inhibitor) play a synergistic role in protecting neurons from MPP+-induced toxicity. Collectively, these findings suggest that the PI3-K/Akt and ERK pathways activated by VEGF play opposite roles in MPP+-induced neuronal apoptosis. This finding offers not only a new and clinically significant modality as to how VEGF exerts its neuroprotective effects but also a novel therapeutic strategy for PD by differentially regulating PD-associated signaling pathways.  相似文献   

19.
Calbindin-D28K protects against apoptotic and necrotic cell death; these effects have been attributed to its ability to buffer calcium. In this study, we investigated the mechanisms underlying the neuroprotective effects of calbindin-D28K in staurosporine (STS)-induced apoptosis and 1-methyl-4-phenylpyridinium (MPP+)-induced necrosis. Treatment of the dopaminergic neuronal cell line MN9D with STS or MPP+ induced cell death that was associated with increased levels of free intracellular calcium. However, only MPP+-induced death was inhibited by co-treatment of the cells with a calcium chelator or a sodium/calcium antiporter inhibitor. Overexpression of calbindin-D28K prevented MPP+-induced MN9D cell death, which occurs in the absence of any detectable caspase activation. These pro-survival effects of calbindin-D28K were associated with the inhibition of calcium-mediated calpain activation, as determined by processing of Bax. Overexpression of calbindin-D28K also blocked STS-induced MN9D death. However, this effect was accompanied by the inhibition of capase-3 cleavage, poly(ADP-ribose)polymerase cleavage, and caspase activity. These findings suggest that calbindin-D28K protects against both types of cell death by inhibiting caspase- or calcium-mediated death signaling pathway.  相似文献   

20.
Reactive oxygen species produced by oxidative stress may participate in the apoptotic death of dopamine neurons distinctive of Parkinson’s disease. Resveratrol, a red wine extract, and quercetin, found mainly in green tea, are two natural polyphenols, presenting antioxidant properties in a variety of cellular paradigms. The aim of this study was to evaluate the effect of resveratrol and quercetin on the apoptotic cascade induced by the administration of 1-methyl-4-phenylpyridinium ion (MPP+), a Parkinsonian toxin, provoking the selective degeneration of dopaminergic neurons. Our results show that a pre-treatment for 3 h with resveratrol or quercetin before MPP+ administration could greatly reduce apoptotic neuronal PC12 death induced by MPP+. We also demonstrated that resveratrol or quercetin modulates mRNA levels and protein expression of Bax, a pro-apoptotic gene, and Bcl-2, an anti-apoptotic gene. We then evaluated the release of cytochrome c and the nuclear translocation of the apoptosis-inducing factor (AIF). Altogether, our results indicate that resveratrol and quercetin diminish apoptotic neuronal cell death by acting on the expression of pro- and anti-apoptotic genes. These findings support the role of these natural polyphenols in preventive and/or complementary therapies for several human neurodegenerative diseases caused by oxidative stress and apoptosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号