首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 67 毫秒
1.
Human embryonic stem cells (hESCs) are pluripotent cells that have indefinite replicative potential and the ability to differentiate into derivatives of all three germ layers. hESCs are conventionally grown on mitotically inactivated mouse embryonic fibroblasts (MEFs) or feeder cells of human origin. In addition, feeder-free culture systems can be used to support hESCs, in which the adhesive substrate plays a key role in the regulation of stem cell self-renewal or differentiation. Extracellular matrix (ECM) components define the microenvironment of the niche for many types of stem cells, but their role in the maintenance of hESCs remains poorly understood. We used a proteomic approach to characterize in detail the composition and interaction networks of ECMs that support the growth of self-renewing hESCs. Whereas many ECM components were produced by supportive and unsupportive MEF and human placental stromal fibroblast feeder cells, some proteins were only expressed in supportive ECM, suggestive of a role in the maintenance of pluripotency. We show that identified candidate molecules can support attachment and self-renewal of hESCs alone (fibrillin-1) or in combination with fibronectin (perlecan, fibulin-2), in the absence of feeder cells. Together, these data highlight the importance of specific ECM interactions in the regulation of hESC phenotype and provide a resource for future studies of hESC self-renewal.  相似文献   

2.
目的:比较人皮肤成纤维细胞(humandermalfibroblasts,HDFs)与小鼠胚胎成纤维细胞(Mouseembryonicfibroblasts,MEFs)的增殖能力及研究人皮肤成纤维细胞作为饲养层支持人胚胎干细胞(humanembryonicstemcells,hESCs)未分化生长的能力。方法:利用组织贴壁法从人皮肤中分离出HDFs,通过细胞形态的观察和生长曲线的绘制比较HDFs与MEFs的体外增殖能力。将HDFs作为饲养层细胞与hESCs共培养,传代12代后,检测hESCs碱性磷酸酶(AKP)、表面特异性标志及胚胎干细胞特异性转录因子。结果:HDFs可连续传代培养15代以上,10代以下的HDFs增殖迅速,而MEFs自第4代起,增殖能力就明显下降;hESCs在HDFs饲养层上可传代培养12代以上,克隆边界清晰,细胞排列紧密,碱性磷酸酶、表面标志物检测均呈阳性,表达了hESCs特异性转录因子。结论:HDFs比MEFs具有更强的增殖能力;HDFs可作为培养hEscs的饲养层细胞。  相似文献   

3.
The conventional method for the derivation of human embryonic stem cells (hESCs) involves inner cell mass (ICM) co-culture with a feeder layer of inactivated mouse or human embryonic fibroblasts in an in vitro fertilisation culture dish. Growth factors potentially involved in primary derivation of hESCs may be lost or diluted in such a system. We established a microdrop method which maintained feeder cells and efficiently generated hESCs. Embryos were donated for stem cell research after fully informed patient consent. A feeder cell layer was made by incubating inactivated mouse embryonic fibroblasts (MEFs) feeder cells in a 50 μl drop of medium (DMEM/10% foetal calf serum) under mineral oil in a small tissue culture dish. MEFs formed a confluent layer and medium was replaced with human embryonic stem medium supplemented with 10% Plasmanate (Bayer) and incubated overnight. Cryopreserved embryos were thawed and cultured until the blastocyst stage and the zona pellucida removed with pronase (2 mg/ml; Calbiochem). A zona-free intact blastocyst was placed in the feeder microdrop and monitored for ES derivation with medium changed every 2-3 d. Proliferating hESCs were passaged into other feeder drops and standard feeder preparation by manual dissection until a stable cell line was established. Six hESC lines (Shef 3-8) were derived. From a total of 46 blastocysts (early to expanded), five hESC lines were generated (Shef 3-7). Shef 3-6 were generated on MEFs from 25 blastocysts. Shef7 was generated on human foetal gonadal embryonic fibroblasts from a further 21 blastocysts. From our experience, microdrop technique is more efficient than conventional method for derivation of hESCs and it is much easier to monitor early hESC derivation. The microdrop method lends itself to good manufacturing practice derivation of hESCs.  相似文献   

4.
Decellularized human extracellular matrices (ECMs) are an extremely appealing biomaterial for tissue engineering and regenerative medicine. In this study, we decellularized human adipose tissue, fabricated a thin ECM sheet and explored the potential of this human adipose-derived ECM sheet as a substrate to support the formation of tissues other than adipose tissue. Acellular ECM sheets were fabricated from human adipose tissue through successive physical and chemical treatments: homogenization, centrifugation, casting, freeze-drying and sodium dodecyl sulfate treatment. The ECM sheets exhibited good mechanical properties, despite their porous structure. They degraded quickly in the presence of collagenase and the degradation rate increased with the collagenase concentration in phosphate-buffered saline. Five different human cell types, covering a broad range of cells and applications (normal human dermal fibroblasts, human aortic smooth muscle cells, human chondrocytes, human umbilical vein endothelial cells and human adipose-derived stem cells), were seeded onto the ECM sheets. All the human cell types spread well, proliferated and were successfully integrated into the decellularized ECM sheet. Overall, the results suggest that recellularized ECM sheets are a promising substitute for defective or damaged human tissues.  相似文献   

5.
Cell-derived extracellular matrices (ECMs) are a key factor in regulating cell functions in tissue engineering and regenerative medicine. The fact that cells are surrounded by their specific ECM in vivo elicits the need to elucidate the effects of ECM derived from different cell sources on cell functions. Here, three types of ECM were prepared by decellularizing cultured chondrocytes, fibroblasts, and mesenchymal stem cells (MSC) and used for chondrocyte culture to compare their effects on chondrocyte adhesion, proliferation, and differentiation. Chondrocyte adhesion to the chondrocyte-derived ECM was greater than those to the fibroblast- and MSC-derived ECM. Chondrocyte proliferation on the chondrocyte-derived ECM was lower than those on the fibroblast- and MSC-derived ECM. The ECM showed no evident effect on chondrocyte differentiation. The effects of ECM on cell functions depended on the cell source used to prepare the ECM.  相似文献   

6.
Cell and extracellular matrix (ECM) interaction plays an important role in development and normal cellular function. Cell adhesion and cell spreading on ECM are two basic cellular behaviors related to cell-ECM interaction. Here we show that palladin, a novel actin cytoskeleton-associated protein, is actively involved in the regulation of cell-ECM interaction. It was found that palladin-deficient mouse embryonic fibroblasts (MEFs) display decreased cell adhesion and compromised cell spreading on various ECMs. Disorganized actin cytoskeleton architecture characterized by faint stress fibers, less lamellipodia and focal adhesions can account for the weakened cell-ECM interaction in palladin(-/-) MEFs. Furthermore, decreased polymerized filament actin and increased globular actin can be observed in palladin(-/-) MEFs, strongly suggesting that palladin is essential for the formation or stabilization of polymerized filament actin. Elevated phospho-cofilin level and proper responses in cofilin phosphorylation to either Rho signal agonist or antagonist in palladin(-/-) MEFs indicate that disrupted stress fibers in palladin(-/-) MEFs is not associated with cofilin phosphorylation. More interestingly, the protein level of ECM receptor beta1-integrin is dramatically decreased in MEFs lacking palladin. Down-regulation of beta1-integrin protein can be restored by proteasome inhibitor MG-132 treatment. All these data implicate that palladin is essential for cell-ECM interaction through maintaining normal actin cytoskeleton architecture and stabilizing beta1-integrin protein.  相似文献   

7.
Extracellular matrices (ECMs) of phylogenetically very distant organisms were tested for their ability to support cell adhesion, spreading and DNA replication in reciprocal xenograft adhesion tests. Mechanically dissociated cells of the medusa Podocoryne carnea (Cnidaria, Hydrozoa) were seeded on ECMs of polyps and medusa, and on several ECM glycoproteins or entire ECMs from vertebrates. In reciprocal experiments, cells from different vertebrate cell-lines were seeded on ECMs of polyps, medusae and also on electrophoresed and blotted extracts of both types of ECMs. The results demonstrate that medusa cells adhere and spread on polyp and medusa ECMs but do not recognize vertebrate ECMs or purified ECM glycoproteins. Vertebrate cells in contrast adhere, spread and proliferate on ECMs of polyps and medusae. The number of attached cells depends on the cell type, the type of ECM and, in certain cases, on the stage of the cell cycle. Cell adhesion experiments with pretreated ECMs of polyps and medusae, e.g. oxidation of carbohydrate residues with sodium-metaperiodate, or blocking of certain carbohydrate moieties with the lectin wheat germ agglutinin or a carbohydrate-specific monoclonal antibody, demonstrate that ECM carbohydrates are more important for cell-ECM interactions of medusa cells than for vertebrate cells. Furthermore, the experiments indicate that polyp and medusa ECMs contain different components which strongly modulate adhesion, spreading and DNA replication of vertebrate cells.  相似文献   

8.
Regulation of membrane-type 1 matrix metalloproteinase (MT1-MMP) by different extracellular matrices (ECMs) on human endothelial cells (ECs) has been investigated. First, MT1-MMP is found at the intercellular contacts of confluent ECs grown on beta1 integrin-dependent matrix such as type 1 collagen (COL I), fibronectin (FN), or fibrinogen (FG), but not on gelatin (GEL) or vitronectin (VN). The novel localization of MT1-MMP at cell-cell contacts is assessed by confocal videomicroscopy of MT1-MMP-GFP-transfected ECs. Moreover, MT1-MMP colocalizes with beta1 integrins at the intercellular contacts, whereas it is preferentially found with alphavbeta3 integrin at motility-associated structures on migrating ECs. In addition, clustered integrins recruit MT1-MMP and neutralizing anti-beta1 or anti-alphav integrin mAb displace MT1-MMP from its specific sites, pointing to a biochemical association that is finally demonstrated by coimmunoprecipitation assays. On the other hand, COL I, FN, or FG up-regulate cell surface MT1-MMP on confluent ECs by an impairment of its internalization, whereas expression and internalization are not modified on GEL or VN. In addition, MT1-MMP activity is diminished in confluent ECs on COL I, FN, or FG. Finally, MT1-MMP participates and cooperates with beta1 and alphavbeta3 integrins in the migration of ECs on different ECM. These data show a novel mechanism by which ECM regulates MT1-MMP association with beta1 or alphavbeta3 integrins at distinct cellular compartments, thus modulating its internalization, activity, and function on human ECs.  相似文献   

9.
10.
Feeder cells are commonly used to culture embryonic stem cells to maintain their undifferentiated and pluripotent status. Conventionally, mouse embryonic fibroblasts (MEFs), supplemented with leukemia inhibitory factor (LIF), are used as feeder cells to support the growth of mouse embryonic stem cells (mESCs) in culture. To prepare for fresh MEF feeder or for MEF-conditioned medium, sacrifice of mouse fetuses repeatedly is unavoidable in these tedious culture systems. Here we report the discovery of a human endothelial cell line (ECV-304 cell line) that efficiently supports growth of mESCs LIF-free conditions. mESCs that were successfully cultured for eight to 20 passages on ECV-304 feeders showed morphological characteristics similar to cells cultured in traditional feeder cell systems. These cells expressed the stem cell markers Oct3/4, Nanog, Sox2, and SSEA-1. Furthermore, cells cultured on the ECV-304 cell line were able to differentiate into three germ layers and were able to generate chimeric mice. Compared with traditional culture systems, there is no requirement for mouse fetuses and exogenous LIF does not need to be added to the culture system. As a stable cell line, the ECV-304 cell line efficiently replaces MEFs as an effective feeder system and allows the efficient expansion of mESCs.  相似文献   

11.
Induced pluripotent stem(iPS) cells can be derived from human somatic cells by cellular reprogramming.This technology provides a potential source of non-controversial therapeutic cells for tissue repair,drug discovery,and opportunities for studying the molecular basis of human disease.Normally,mouse embryonic fibroblasts(MEFs) are used as feeder layers in the initial derivation of iPS lines.The purpose of this study was to determine whether SNL fibroblasts can be used to support the growth of human iPS cell...  相似文献   

12.
The stem cells (SCs) of the corneal epithelium located in the limbal basal layer are the ultimate source to maintain corneal epithelial homeostasis. Like other adult tissue-specific SCs, self renewal and fate decision of limbal SCs are regulated by a specialized in vivo microenvironment, termed "niche". Loss of limbal SCs or dysfunction of the limbal niche renders corneas with a unique clinical disease labeled limbal stem cell deficiency (LSCD). Besides transplantation of autologous or allogeneic limbal SCs or amniotic membrane, a new strategy of treating LSCD is to transplant a bio-engineered graft by expanding limbal SCs ex vivo. Herein, we conduct a critical appraisal of six protocols that have successfully been practiced in treating human patients with LSCD, and identify issues whether niche regulation has been disrupted or maintained during isolation and expansion. Consequently, we propose a future direction that may circumvent the potential pitfalls existing in these conventional protocols by preserving the interaction between limbal SCs and their native niche cells during isolation and expansion. Such an approach may one day help realize considerable promise held by adult SCs in treating a number of diseases.  相似文献   

13.
The extracellular matrix (ECM) provides the principal means by which mechanical information is communicated between tissue and cellular levels of function. These mechanical signals play a central role in controlling cell fate and establishing tissue structure and function. However, little is known regarding the mechanisms by which specific structural and mechanical properties of the ECM influence its interaction with cells, especially within a tissuelike context. This lack of knowledge precludes formulation of biomimetic microenvironments for effective tissue repair and replacement. The present study determined the role of collagen fibril density in regulating local cell-ECM biomechanics and fundamental fibroblast behavior. The model system consisted of fibroblasts seeded within collagen ECMs with controlled microstructure. Confocal microscopy was used to collect multidimensional images of both ECM microstructure and specific cellular characteristics. From these images temporal changes in three-dimensional cell morphology, time- and space-dependent changes in the three-dimensional local strain state of a cell and its ECM, and spatial distribution of beta1-integrin were quantified. Results showed that fibroblasts grown within high-fibril-density ECMs had decreased length-to-height ratios, increased surface areas, and a greater number of projections. Furthermore, fibroblasts within low-fibril-density ECMs reorganized their ECM to a greater extent, and it appeared that beta1-integrin localization was related to local strain and ECM remodeling events. Finally, fibroblast proliferation was enhanced in low-fibril-density ECMs. Collectively, these results are significant because they provide new insight into how specific physical properties of a cell's ECM microenvironment contribute to tissue remodeling events in vivo and to the design and engineering of functional tissue replacements.  相似文献   

14.
Fibroblast growth factors (FGFs) play critical roles in development, maintenance, and repair following injury or disease in the lung. Their activity is modulated by a variety of factors, including FGF-binding protein (FGF-BP; HBp-17) and N-deacetylase/N-sulfotransferase-1 (NDST-1). Functionally, FGF-BP shuttles FGFs from binding sites in ECMs to cell surfaces and enhances FGF binding and signaling, whereas NDST-1 adds sulfate groups to FGF coreceptor proteoglycans and modulates alveolar type II (ATII) cell maturation and differentiation. Since the sulfated nature of ECMs is a critical determinant of their relationship with FGFs, we predicted that ECMs and their sulfation would modulate the expression of FGF-BP and NDST-1. To examine this question, selected culture conditions of rat ATII cells were manipulated [with and without coculture with rat lung fibroblasts (RLFs)] by treatment with heparin or sodium chlorate (inhibitor of sulfation) for 24-96 h. In addition, ECMs biosynthesized by RLFs for up to 10 days before coculture were used as model intervening barriers to communication between alveolar cells and fibroblasts. FGF-BP expression was enhanced in ATII cells by coculture with RLF cells and least suppressed by desulfated heparin. NDST-1 expression in ATII cells was most sensitive to the amount of sulfation in medium and ECM and enhanced by fully sulfated heparin. Preformed ECM appears to supply factors that modify subsequent treatment effects. These results demonstrate a potentially important modulatory influence of sulfated ECMs and fibroblasts on FGF-BP and NDST-1 at the gene expression level.  相似文献   

15.
Long-term proliferation of human embryonic stem (hES) cells is currently achieved by co-culturing with mitotically inactive primary mouse embryonic fibroblasts (mEFs), which serve as feeder cells. This study explores the possibility that proliferative mEFs can be used as feeder cells to maintain the prolonged expansion of hES cells. All undifferentiated hES cell clumps were re-plated on six different densities of proliferative mEFs. hES colonies cultured on 1 x 10(5) - 5 x 10(5) proliferative mEFs amplified over 130 days of continuous culture and remained undifferentiated, as did those cultured on mitotically inactive mEFs. This suggests that certain densities of proliferative mEFs can maintain the propagation of hES cells, which may be helpful for identifying the cytokines and adhesion molecules that are required for their self-renewal.  相似文献   

16.
The culture of human embryonic stem cells (hESCs) is limited, both technically and with respect to clinical potential, by the use of mouse embryonic fibroblasts (MEFs) as a feeder layer. The concern over xenogeneic contaminants from the mouse feeder cells may restrict transplantation to humans and the variability in MEFs from batch-to-batch and laboratory-to-laboratory may contribute to some of the variability in experimental results. Finally, use of any feeder layer increases the work load and subsequently limits the large-scale culture of human ES cells. Thus, the development of feeder-free cultures will allow more reproducible culture conditions, facilitate scale-up and potentiate the clinical use of cells differentiated from hESC cultures. In this review, we describe various methods tested to culture cells in the absence of MEF feeder layers and other advances in eliminating xenogeneic products from the culture system.  相似文献   

17.
Abstract The adherence of Candida albicans yeasts and other Candida species to human umbilical vein endothelial cells (HUVEC), bovine aortic endothelial cells (BAEC) and their respective subendothelial extracellular matrices (ECM) was studied. Yeast adherence to confluent HUVEC and BAEC appeared to occur at intercellular junctions and edges of endothelial cells in preference to the contoured surface of the endothelial cell. Both endothelial cell lines characteristically resisted yeast adherence. The resistance of endothelium to yeast adherence was especially pronounced in the presence of serum. On the other hand, there was avid yeast binding to the subendothelial ECMs, on the order of 200–500% greater than to monolayers of syngeneic endothelial cells.  相似文献   

18.
The attachment and proliferation of a well-established, neuron-like cell line, rat pheochromocytoma (PC12) cells, on different extracellular matrices (ECMs) was monitored using cellular impedance sensing (CIS). Commonly used ECMs, including fibronectin, laminin, poly-l-lysine, collagen and poly-l-lysine followed by laminin, in addition to DMEM cell culture media alone as a control, were studied: CIS identified the dynamic progress of the adhesion and proliferation of the cells on different ECMs. Among these modified ECM surfaces, the laminin- and poly-l-lysine/laminin-modified surfaces were the best suited for the neuron-to-electrode surface attachment and proliferation, which was confirmed by MTT assays and a scanning electron microscopy analysis. This work provides a simple method to study neuron cell/ECM interactions in a real-time, label-free, and quantitative manner.  相似文献   

19.
The extracellular matrix (ECM) in contact with the cells and the soluble growth factors (GFs) binding to their cell surface receptors are the two main signals that directly regulate cell motility. Human keratinocytes and dermal fibroblasts are two primary cell types in skin that must undergo migration for skin wounds to heal. In this cell migration, ECMs play an "active" role by providing the cells with both focal adhesions and a migration-initiating signal, even in the absence of GFs. In contrast, GFs cannot initiate cell migration in the absence of a pro-migratory ECM. Rather, GFs play a "passive" role by enhancing the ECM-initiated motility and giving the moving cells directionality. Inside the cells, the initiation signal of the ECM and the optimization signals of the GFs are propagated by both overlapping and discrete signaling networks. However, activation of no single signaling pathway by itself is sufficient to replace the role of ECMs or GFs. This review focuses on our current understanding of both the individual and the combined functions of ECMs and GFs in the control of skin cell motility. An abbreviation of the terminologies used in this article is provided.  相似文献   

20.
小鼠胚胎干细胞的培养   总被引:1,自引:0,他引:1  
目的:建立小鼠胚胎干细胞(embryonic stem cells,ES)的培养方法。方法:制备G418抗性的原代小鼠胚胎成纤维细胞,经丝裂霉素C处理后成滋养层细胞,将小鼠胚胎干细胞复苏后,应用含白血病抑制因子的ES细胞培养液,培养小鼠ES细胞,观察集落的生长情况,并在光镜下观察细胞形态。结果:小鼠胚胎成纤维细胞生长良好,ES细胞呈克隆状生长,且保持未分化状态。结论:建立了小鼠胚胎干细胞培养的有效方法,为下一步基因打靶奠定基础。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号