首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 539 毫秒
1.
Long-term proliferation of human embryonic stem (hES) cells is currently achieved by co-culturing with mitotically inactive primary mouse embryonic fibroblasts (mEFs), which serve as feeder cells. This study explores the possibility that proliferative mEFs can be used as feeder cells to maintain the prolonged expansion of hES cells. All undifferentiated hES cell clumps were re-plated on six different densities of proliferative mEFs. hES colonies cultured on 1 x 10(5) - 5 x 10(5) proliferative mEFs amplified over 130 days of continuous culture and remained undifferentiated, as did those cultured on mitotically inactive mEFs. This suggests that certain densities of proliferative mEFs can maintain the propagation of hES cells, which may be helpful for identifying the cytokines and adhesion molecules that are required for their self-renewal.  相似文献   

2.
The conventional method for the derivation of human embryonic stem cells (hESCs) involves inner cell mass (ICM) co-culture with a feeder layer of inactivated mouse or human embryonic fibroblasts in an in vitro fertilisation culture dish. Growth factors potentially involved in primary derivation of hESCs may be lost or diluted in such a system. We established a microdrop method which maintained feeder cells and efficiently generated hESCs. Embryos were donated for stem cell research after fully informed patient consent. A feeder cell layer was made by incubating inactivated mouse embryonic fibroblasts (MEFs) feeder cells in a 50 μl drop of medium (DMEM/10% foetal calf serum) under mineral oil in a small tissue culture dish. MEFs formed a confluent layer and medium was replaced with human embryonic stem medium supplemented with 10% Plasmanate (Bayer) and incubated overnight. Cryopreserved embryos were thawed and cultured until the blastocyst stage and the zona pellucida removed with pronase (2 mg/ml; Calbiochem). A zona-free intact blastocyst was placed in the feeder microdrop and monitored for ES derivation with medium changed every 2-3 d. Proliferating hESCs were passaged into other feeder drops and standard feeder preparation by manual dissection until a stable cell line was established. Six hESC lines (Shef 3-8) were derived. From a total of 46 blastocysts (early to expanded), five hESC lines were generated (Shef 3-7). Shef 3-6 were generated on MEFs from 25 blastocysts. Shef7 was generated on human foetal gonadal embryonic fibroblasts from a further 21 blastocysts. From our experience, microdrop technique is more efficient than conventional method for derivation of hESCs and it is much easier to monitor early hESC derivation. The microdrop method lends itself to good manufacturing practice derivation of hESCs.  相似文献   

3.
The culture of human embryonic stem cells (hESCs) is limited, both technically and with respect to clinical potential, by the use of mouse embryonic fibroblasts (MEFs) as a feeder layer. The concern over xenogeneic contaminants from the mouse feeder cells may restrict transplantation to humans and the variability in MEFs from batch-to-batch and laboratory-to-laboratory may contribute to some of the variability in experimental results. Finally, use of any feeder layer increases the work load and subsequently limits the large-scale culture of human ES cells. Thus, the development of feeder-free cultures will allow more reproducible culture conditions, facilitate scale-up and potentiate the clinical use of cells differentiated from hESC cultures. In this review, we describe various methods tested to culture cells in the absence of MEF feeder layers and other advances in eliminating xenogeneic products from the culture system.  相似文献   

4.
Human embryonic stem cells (hESCs) can serve as an unlimited cell source for cellular transplantation and tissue engineering due to their prolonged proliferation capacity and their unique ability to differentiate into derivatives of all three-germ layers. In order to reliably and safely produce hESCs, use of reagents that are defined, qualified, and preferably derived from a non-animal source is desirable. Traditionally, mouse embryonic fibroblasts (MEFs) have been used as feeder cells to culture undifferentiated hESCs. We recently reported a scalable feeder-free culture system using medium conditioned by MEFs. The base and conditioned medium (CM) still contain unknown bovine and murine-derived components, respectively. In this study, we report the development of a hESC culture system that utilizes a commercially available serum-free medium (SFM) containing human sourced and recombinant proteins supplemented with recombinant growth factor(s) and does not require conditioning with feeder cells. In this system, which employs human laminin coated surface and high concentration of hbFGF, the hESCs maintained undifferentiated hESC morphology and had a twofold increase in expansion compared to hESCs grown in MEF-CM. The hESCs also expressed surface markers SSEA-4 and Tra-1-60 and maintained expression of hTERT, Oct4, and Cripto genes similar to cells cultured in MEF-CM. In addition, hESCs maintained in this culture system were able to differentiate in vitro and in vivo into cells of all three-germ layers. The cells maintained a normal karyotype after prolonged culture in SFM. In summary, this study demonstrates that the hESCs cultured in defined non-conditioned serum-free medium (NC-SFM) supplemented with growth factor(s) retain the characteristics and replicative potential of hESCs. The use of defined culture system with NC-SFM on human laminin simplifies scale-up and allows for reproducible generation of hESCs under defined and controlled conditions that would serve as a starting material for production of hESC derived cells for therapeutic use.  相似文献   

5.
Various types of feeder cells have been adopted for the culture of human embryonic stem cells (hESCs) to improve their attachment and provide them with stemness-supporting factors. However, feeder cells differ in their capacity to support the growth of undifferentiated hESCs. Here, we compared the expression and secretion of four well-established regulators of hESC pluripotency and/or differentiation among five lines of human foreskin fibroblasts and primary mouse embryonic fibroblasts throughout a standard hESC culture procedure. We found that human and mouse feeder cells secreted comparable levels of TGF beta 1. However, mouse feeder cells secreted larger quantities of activin A than human feeder cells. Conversely, FGF-2, which was produced by human feeder cells, could not be detected in culture media from mouse feeder cells. The quantity of BMP-4 was at about the level of detectability in media from all feeder cell types, although BMP-4 dimers were present in all feeder cells. Production of TGF beta 1, activin A, and FGF-2 varied considerably among the human-derived feeder cell lines. Low- and high-producing human feeder cells as well as mouse feeder cells were evaluated for their ability to support the undifferentiated growth of hESCs. We found that a significantly lower proportion of hESCs maintained on human feeder cell types expressed SSEA3, an undifferentiated cell marker. Moreover, SSEA3 expression and thus the pluripotent hESC compartment could be partially rescued by addition of activin A. Cumulatively, these results suggest that the ability of a feeder layer to promote the undifferentiated growth of hESCs is attributable to its characteristic growth factor production.  相似文献   

6.
7.
Human embryonic stem cells (hESCs) are typically cultured on fibroblast feeder cells or in fibroblast conditioned medium supplemented with fibroblast growth factor 2 (FGF2, also known as bFGF). FGF signaling appears to be important for hESC self-renewal and is required to enable the culture of hESCs in an undifferentiated state. In this study, we generated a transgenic fibroblast feeder line stably expressing a secretable FGF4 signal peptide tagged hFGF2 (4SP-hFGF2). The expression of this transgene functionally replaced the requirement for exogenous FGF2 when using these cells as feeders for the maintenance of hESCs. Under these conditions, hESCs maintained the typical marker of pluripotency assessed after long term culture, while still retaining the capacity for differentiation to all three germ layers. This transgene could be applied to mass produce 4SP-hFGF2 protein, serving to be an economical and effective strategy for culturing pluripotent stem cells as feeder cells.  相似文献   

8.
目的:研究比较三种经典饲养层体系使用的成纤维细胞中Wnt基因的表达,及其对共培养的人胚胎干细胞的影响。方法:PCR验证19种Wnt基因在三种不同来源饲养层细胞中的表达情况,q PCR验证各组共培养人胚胎干细胞的Wnt/β-Catenin信号通路相关基因表达水平,流式检测其在不同密度饲养层条件下的增殖分化情况。结果:在全部19种Wnt基因(Wnt1,Wnt2,Wnt2b,Wnt3,Wnt3a,Wnt4,Wnt5a,Wnt5b,Wnt6,Wnt7a,Wnt7b,Wnt8a,Wnt8b,Wnt9a,Wnt9b,Wnt10a,Wnt10b,Wnt11,Wnt16)的表达检测中,昆明白小鼠来源饲养层细胞表达其中的16种,ICR小鼠来源饲养层细胞表达其中的10种,人成纤维细胞来源饲养层细胞表达其中的10种;增加饲养层细胞密度能够不同程度活化Wnt/β-Catenin信号通路下游基因的表达,并激活人胚胎干细胞中的负反馈机制;高密度小鼠饲养层条件促进人胚胎干细胞的分化,高密度人饲养层条件促进人胚胎干细胞的增殖和分化。结论:不同经典饲养层体系提供的Wnt环境不同,其培养的人胚胎干细胞状态也有差异。  相似文献   

9.
Mouse embryonic fibroblasts (MEFs) were used to establish human embryonic stem cells (hESCs) cultures after blastocyst isolation1. This feeder system maintains hESCs from undergoing spontaneous differentiation during cell expansion. However, this co-culture method is labor intensive, requires highly trained personnel, and yields low hESC purity4. Many laboratories have attempted to minimize the number of feeder cells in hESC cultures (i.e. incorporating matrix-coated dishes or other feeder cell types5-8). These modified culture systems have shown some promise, but have not supplanted the standard method for culturing hESCs with mitomycin C-treated mouse embyronic fibroblasts in order to retard unwanted spontaneous differentiation of the hESC cultures. Therefore, the feeder cells used in hESC expansion should be removed during differentiation experiments. Although several techniques are available for purifying the hESC colonies (FACS, MACS, or use of drug resistant vectors) from feeders, these techniques are labor intensive, costly and/or destructive to the hESC. The aim of this project was to invent a method of purification that enables the harvesting of a purer population of hESCs. We have observed that in a confluent hESC culture, the MEF population can be removed using a simple and rapid aspiration of the MEF sheet. This removal is dependent on several factors, including lateral cell-to-cell binding of MEFs that have a lower binding affinity to the styrene culture dish, and the ability of the stem cell colonies to push the fibroblasts outward during the generation of their own "niche". The hESC were then examined for SSEA-4, Oct3/4 and Tra 1-81 expression up to 10 days after MEF removal to ensure maintenance of pluripotency. Moreover, hESC colonies were able to continue growing from into larger formations after MEF removal, providing an additional level of hESC expansion.  相似文献   

10.
Human embryonic stem cells (hESCs) are pluripotent cells that have indefinite replicative potential and the ability to differentiate into derivatives of all three germ layers. hESCs are conventionally grown on mitotically inactivated mouse embryonic fibroblasts (MEFs) or feeder cells of human origin. In addition, feeder-free culture systems can be used to support hESCs, in which the adhesive substrate plays a key role in the regulation of stem cell self-renewal or differentiation. Extracellular matrix (ECM) components define the microenvironment of the niche for many types of stem cells, but their role in the maintenance of hESCs remains poorly understood. We used a proteomic approach to characterize in detail the composition and interaction networks of ECMs that support the growth of self-renewing hESCs. Whereas many ECM components were produced by supportive and unsupportive MEF and human placental stromal fibroblast feeder cells, some proteins were only expressed in supportive ECM, suggestive of a role in the maintenance of pluripotency. We show that identified candidate molecules can support attachment and self-renewal of hESCs alone (fibrillin-1) or in combination with fibronectin (perlecan, fibulin-2), in the absence of feeder cells. Together, these data highlight the importance of specific ECM interactions in the regulation of hESC phenotype and provide a resource for future studies of hESC self-renewal.  相似文献   

11.

Background

Human embryonic stem cells (hESCs) are a promising and powerful source of cells for applications in regenerative medicine, tissue engineering, cell-based therapies, and drug discovery. Many researchers have employed conventional culture techniques using feeder cells to expand hESCs in significant numbers, although feeder-free culture techniques have recently been developed. In regard to stem cell expansion, gap junctional intercellular communication (GJIC) is thought to play an important role in hESC survival and differentiation. Indeed, it has been reported that hESC-hESC communication through connexin 43 (Cx43, one of the major gap junctional proteins) is crucial for the maintenance of hESC stemness during expansion. However, the role of GJIC between hESCs and feeder cells is unclear and has not yet been reported.

Methodology/Principal Findings

This study therefore examined whether a direct Cx43-mediated interaction between hESCs and human adipose-derived stem cells (hASCs) influences the maintenance of hESC stemness. Over 10 passages, hESCs cultured on a layer of Cx43-downregulated hASC feeder cells showed normal morphology, proliferation (colony growth), and stemness, as assessed by alkaline phosphatase (AP), OCT4 (POU5F1-Human gene Nomenclature Database), SOX2, and NANOG expression.

Conclusions/Significance

These results demonstrate that Cx43-mediated GJIC between hESCs and hASC feeder cells is not an important factor for the conservation of hESC stemness and expansion.  相似文献   

12.
一种新的人胚胎干细胞自身来源的滋养层支持其体外培养   总被引:2,自引:0,他引:2  
摘要: 通过人胚胎干细胞(Human embryonic stem cells, hESCs)经体内分化获取间充质干细胞(Mesenchymal stem cells, MSCs)为人胚胎干细胞提供一种新的滋养层。将约5×106个hESCs注射入重症免疫联合缺陷小鼠形成畸胎瘤, 8周后再从畸胎瘤中分离MSCs并鉴定, 将MSCs作为hESCs的滋养层细胞, 并检测和观察hESCs的生长情况、细胞特性和分化能力。从畸胎瘤中获得了纯度较高的具有类似骨髓来源的MSC特性的细胞群, 其形态相似、表面抗原标志相似(CD34和CD45阴性, CD29、CD49b、CD105、CD73和CD90阳性), 经诱导可以向成骨细胞和成脂细胞分化。将hESCs在MSCs滋养层细胞上传代培养10代以上, hESCs依然具有正常的细胞形态, 反转录PCR证实其特异转录因子Oct4、Nanog的表达, 干细胞表面标记SSEA-1显示为阴性, SSEA-4、TRA-1-60、TRA-1-81显示为阳性, 碱性磷酸酶染色显示为阳性, 并且核型正常。体外EB形成和体内畸胎瘤形成证明了其全能性。因此来源于hESCs本身的MSCs可以被用来作为支持胚胎干细胞生长并维持其未分化状态的滋养层细胞。  相似文献   

13.
Various feeder layers have been extensively applied to support the prolonged growth of human pluripotent stem cells (hPSCs) for in vitro cultures. Among them, mouse embryonic fibroblast (MEF) and mouse fibroblast cell line (SNL) are most commonly used feeder cells for hPSCs culture. However, these feeder layers from animal usually cause immunogenic contaminations, which compromises the potential of hPSCs in clinical applications. In the present study, we tested human umbilical cord mesenchymal stem cells (hUC-MSCs) as a potent xeno-free feeder system for maintaining human induced pluripotent stem cells (hiPSCs). The hUC-MSCs showed characteristics of MSCs in xeno-free culture condition. On the mitomycin-treated hUC-MSCs feeder, hiPSCs maintained the features of undifferentiated human embryonic stem cells (hESCs), such as low efficiency of spontaneous differentiation, stable expression of stemness markers, maintenance of normal karyotypes, in vitro pluripotency and in vivo ability to form teratomas, even after a prolonged culture of more than 30 passages. Our study indicates that the xeno-free culture system may be a good candidate for growth and expansion of hiPSCs as the stepping stone for stem cell research to further develop better and safer stem cells.  相似文献   

14.
Fibroblast feeder cells play an important role in supporting the derivation and long term culture of undifferentiated, pluripotent human embryonic stem cells (hESCs). The feeder cells secrete various growth factors and extracellular matrix (ECM) proteins into extracellular milieu. However, the roles of the feeder cell-secreted factors are largely unclear. Animal feeder cells and use of animal serum also make current feeder cell culture conditions unsuitable for derivation of clinical grade hESCs. We established xeno-free feeder cell lines using human serum (HS) and studied their function in hESC culture. While human foreskin fibroblast (hFF) feeder cells were clearly hESC supportive, none of the established xeno-free human dermal fibroblast (hDF) feeder cells were able to maintain undifferentiated hESC growth. The two fibroblast types were compared for their ECM protein synthesis, integrin receptor expression profiles and key growth factor secretion. We show that hESC supportive feeder cells produce laminin-511 and express laminin-binding integrins α3ß1, α6ß1 and α7ß1. These results indicate specific laminin isoforms and integrins in maintenance of hESC pluripotency in feeder-dependent cultures. In addition, several genes with a known or possible role for hESC pluripotency were differentially expressed in distinct feeder cells.  相似文献   

15.
目的:比较人皮肤成纤维细胞(humandermalfibroblasts,HDFs)与小鼠胚胎成纤维细胞(Mouseembryonicfibroblasts,MEFs)的增殖能力及研究人皮肤成纤维细胞作为饲养层支持人胚胎干细胞(humanembryonicstemcells,hESCs)未分化生长的能力。方法:利用组织贴壁法从人皮肤中分离出HDFs,通过细胞形态的观察和生长曲线的绘制比较HDFs与MEFs的体外增殖能力。将HDFs作为饲养层细胞与hESCs共培养,传代12代后,检测hESCs碱性磷酸酶(AKP)、表面特异性标志及胚胎干细胞特异性转录因子。结果:HDFs可连续传代培养15代以上,10代以下的HDFs增殖迅速,而MEFs自第4代起,增殖能力就明显下降;hESCs在HDFs饲养层上可传代培养12代以上,克隆边界清晰,细胞排列紧密,碱性磷酸酶、表面标志物检测均呈阳性,表达了hESCs特异性转录因子。结论:HDFs比MEFs具有更强的增殖能力;HDFs可作为培养hEscs的饲养层细胞。  相似文献   

16.
Various types of human cells have been tested as feeder cells for the undifferentiated growth of human embryonic stem cells (hESCs) in vitro. We report here the successful culture of two hESC lines (H1 and H9) on human umbilical cord blood (UCB)-derived fibroblast-like cells. These cells permit the long-term continuous growth of undifferentiated and pluripotent hESCs. The cultured hESCs had normal karyotypes, expressed OCT-4, SSEA-4, TRA-1-60, and TRA-1-81, formed cystic embryonic body in vitro and teratomas in vivo after injected into immunodeficient mice. The wide availability of clinical-grade human UCB makes it a promising source of support cells for the growth of hESC for use in cell therapies.  相似文献   

17.
Human embryonic stem cells (hESCs) are routinely cultured on fibroblast feeder layers or in fibroblast-conditioned medium (CM). Bone morphogenetic proteins (BMPs) have previously been shown to induce hESC differentiation, in apparent contrast to mouse embryonic stem (ES) cells, in which BMP4 synergizes with leukemia inhibitory factor (LIF) to maintain self-renewal. Here we demonstrate that hESCs cultured in unconditioned medium (UM) are subjected to high levels of BMP signaling activity, which is reduced in CM. The BMP antagonist noggin synergizes with basic fibroblast growth factor (bFGF) to repress BMP signaling and sustain undifferentiated proliferation of hESCs in the absence of fibroblasts or CM. These findings suggest a basic difference in the self-renewal mechanism between mouse and human ES cells and simplify the culture of hESCs.  相似文献   

18.
Objective:  Spontaneous differentiation of human embryonic stem cell (hESC) cultures is a major concern in stem cell research. Physical removal of differentiated areas in a stem cell colony is the current approach used to keep the cultures in a pluripotent state for a prolonged period of time. All hESCs available for research require unidentified soluble factors secreted from feeder layers to maintain the undifferentiated state and pluripotency. Under experimental conditions, stem cells are grown on various matrices, the most commonly used being Matrigel.
Materials and Methods:  We propose an alternative method to prevent spontaneous differentiation of hESCs grown on Matrigel that uses low amounts of recombinant noggin. We make use of the porosity of Matrigel to serve as a matrix that traps noggin and gradually releases it into the culture to antagonize bone morphogenetic proteins (BMP). BMPs are known to initiate differentiation of hESCs and are either present in the conditioned medium or are secreted by hESCs themselves.
Results:  hESCs grown on Matrigel supplemented with noggin in conditioned medium from feeder layers (irradiated mouse embryonic fibroblasts) retained both normal karyotype and markers of hESC pluripotency for 14 days. In addition, these cultures were found to have increased cell proliferation of stem cells as compared to hESCs grown on Matrigel alone.
Conclusion:  Noggin can be utilized for short term prevention of spontaneous differentiation of stem cells grown on Matrigel.  相似文献   

19.
Human embryonic stem cell (hESC) lines are traditionally derived and maintained on mouse embryonic fibroblasts (MEF) which are xenogeneic and enter senescence rapidly. In view of the clinical implications of hESCs, the use of human fibroblast as feeders has been suggested as a plausible alternative. However, use of fibroblast cells from varying sources leads to culture variations along with the need to add FGF2 in cultures to sustain ES cell pluripotency. In this study we report the derivation of FGF2 expressing germ layer derived fibroblast cells (GLDF) from hESC lines. These feeders could support the pluripotency, karyotypes and proliferation of hESCs with or without FGF2 in prolonged cultures as efficiently as that on MEF. GLDF cells were derived from embryoid bodies and characterized for expression of fibroblast markers by RT-PCR, Immunofluorescence and by flow cytometry for CD marker expression. The expression and secretion of FGF2 was confirmed by RT-PCR, Western blot, and ELISA. The hESC lines cultured on MEF and GLDF were analyzed for various stemness markers. These feeder cells with fibroblast cells like properties maintained the properties of hESCs in prolonged culture over 30 passages. Proliferation and pluripotency of hESCs on GLDF was comparable to that on mouse feeders. Further we discovered that these GLDF cells could secrete FGF2 and maintained pluripotency of hESC cultures even in the absence of supplemental FGF2. To our knowledge, this is the first study reporting a novel hESC culture system which does not warrant FGF2 supplementation, thereby reducing the cost of hESC cultures.  相似文献   

20.
Human embryonic stem cells (hESCs) and human induced pluripotent stem cells (hiPSCs), collectively termed human pluripotent stem cells (hPSCs), are typically derived and maintained in adherent and semi-defined culture conditions. Recently a number of groups, including Chen et al., 2012, have demonstrated that hESCs can now be expanded efficiently and maintain pluripotency over long-term passaging as aggregates in a serum-free defined suspension culture system, permitting the preparation of scalable cGMP derived hPSC cultures for cell banking, high throughput research programs and clinical applications. In this short commentary we describe the utility and potential future uses of suspension culture systems for hPSCs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号