首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Activating and inhibitory receptors control natural killer (NK) cell activity. T-cell immunoglobulin and ITIM (immunoreceptor tyrosine-based inhibition motif) domain (TIGIT) was recently identified as a new inhibitory receptor on T and NK cells that suppressed their effector functions. TIGIT harbors the immunoreceptor tail tyrosine (ITT)-like and ITIM motifs in its cytoplasmic tail. However, how its ITT-like motif functions in TIGIT-mediated negative signaling is still unclear. Here, we show that TIGIT/PVR (poliovirus receptor) engagement disrupts granule polarization leading to loss of killing activity of NK cells. The ITT-like motif of TIGIT has a major role in its negative signaling. After TIGIT/PVR ligation, the ITT-like motif is phosphorylated at Tyr225 and binds to cytosolic adapter Grb2, which can recruit SHIP1 to prematurely terminate phosphatidylinositol 3-kinase (PI3K) and MAPK signaling, leading to downregulation of NK cell function. In support of this, Tyr225 or Asn227 mutation leads to restoration of TIGIT/PVR-mediated cytotoxicity, and SHIP1 silencing can dramatically abolish TIGIT/PVR-mediated killing inhibition.  相似文献   

2.
The inhibitory Fc receptors function to regulate the antigen-driven activation and expansion of lymphocytes. In B cells, the Fc gammaRIIB1 is a potent inhibitor of B cell antigen receptor (BCR) signaling when coligated to the BCR by engagement of antigen-containing immune complexes. Inhibition is mediated by the recruitment of the inositol phosphatase, SHIP, to the Fc gammaRIIB1 phosphorylated tyrosine-based inhibitory motif (ITIM). Here we show that BCR-independent aggregation of the Fc gammaRIIB1 transduces an ITIM- and SHIP-independent proapoptotic signal that is dependent on members of the c-Abl tyrosine kinase family. These results define a novel Abl family kinase-dependent Fc gammaRIIB1 signaling pathway that functions independently of the BCR in controlling antigen-driven B cell responses.  相似文献   

3.
Natural killer (NK) cells employ an unconventional mode of recognition: they kill target cells that lack ligands for inhibitory NK cell receptors. Activation of NK cytotoxicity is tightly controlled by inhibitory receptors that recruit and activate the tyrosine phosphatase SHP-1 through the tyrosine-phosphorylated [I/V]xYxxL amino acid sequence in their cytoplasmic tail. This sequence motif, often referred to as an immunoreceptor tyrosine-based inhibitory motif (ITIM), is found in several other receptors that deliver similar negative signals in diverse types of cells. We suggest that this kind of regulation through inhibition is a widespread mechanism for the control of various cellular responses.  相似文献   

4.
 Human natural killer (NK) cells express on their surface several members of the C-type lectin family such as NKR-P1, CD94, and NKG2 that are probably involved in recognition of target cells and delivery of signals modulating NK cell cytotoxicity. To elucidate the mechanisms involved in signaling via these receptors, we solubilized in vitro cultured human NK cells by a mild detergent, Brij-58, immunoprecipitated molecular complexes containing the NKR-P1 or CD94 molecules, respectively, by specific monoclonal antibodies, and performed in vitro kinase assays on the immunoprecipitates. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis, autoradiography, and phospho-amino acid analysis revealed the presence of in vitro tyrosine phosphorylated proteins that were subsequently identified by re-precipitation (and/or by western blotting) as the respective C-type lectin molecules and Src family kinases Lck, Lyn, and Fyn. The NKR-P1 and the CD94-containing complexes were independent of each other and both very large, as judged by Sepharose 4B gel chromatography. Crosslinking of NKR-P1 on the cell surface induced transient in vivo tyrosine phosphorylation of cellular protein substrates. These results indicate involvement of the associated Src-family kinases in signaling via the NKR-P1 and CD94 receptors. Received: 4 February 1997 / Revised: 28 February 1997  相似文献   

5.
S Mahmood  N Kanwar  J Tran  ML Zhang  SK Kung 《PloS one》2012,7(8):e44244
Balance of signals generated from the engaged activating and inhibitory surface receptors regulates mature NK cell activities. The inhibitory receptors signal through immunoreceptor tyrosine based inhibitory motifs (ITIM), and recruit phosphatases such as SHP-1 to inhibit NK cell activation. To directly examine the importance of SHP-1 in regulating activities and cell fate of mature NK cells, we used our established lentiviral-based engineering protocol to knock down the SHP-1 protein expression in primary C57BL/6NCrl cells. Gene silencing of the SHP-1 in primary NK cells abrogated the ability of ITIM-containing NK inhibitory receptors to suppress the activation signals induced by NK1.1 activating receptors. We followed the fates of stably transduced SHP-1 silenced primary NK cells over a longer period of time in IL-2 containing cultures. We observed an impaired IL-2 induced proliferation in the SHP-1 knockdown NK cells. More interestingly, these "de-regulated" SHP-1 knockdown NK cells mediated specific self-killing in a real-time live cell microscopic imaging system we developed to study NK cell cytotoxicity in vitro. Selective target recognition of the SHP-1 knockdown NK cells revealed also possible involvement of the SHP-1 phosphatase in regulating other NK functions in mature NK cells.  相似文献   

6.
Natural killer (NK) cell activation is well orchestrated by a wide array of NK cell receptor repertoire. T-cell immunoglobulin and ITIM domain (TIGIT) receptor was recently defined as an inhibitory receptor that is expressed on NK cells and T cells. TIGIT receptor/poliovirus receptor (PVR) ligand engagement signaling inhibits cytotoxicity mediated by NK and CD8+ T cells. However, it is unclear how TIGIT/PVR signaling regulates cytokine secretion in NK cells. Here we show that TIGIT/PVR engagement suppresses interferon-γ (IFN-γ) production of NK cells. TIGIT transgenic NK cells generate less IFN-γ undergoing TIGIT/PVR ligation. Moreover, TIGIT knock-out NK cells produce much more IFN-γ. TIGIT/PVR ligation signaling mediates suppression of IFN-γ production via the NF-κB pathway. We identified a novel adaptor β-arrestin 2 that associates with phosphorylated TIGIT for further recruitment of SHIP1 (SH2-containing inositol phosphatase 1) through the ITT-like motif. Importantly, SHIP1, but not other phosphatases, impairs the TNF receptor-associated factor 6 (TRAF6) autoubiquitination to abolish NF-κB activation, leading to suppression of IFN-γ production in NK cells.  相似文献   

7.
The NKR-P1B gene product is an inhibitory receptor on SJL/J NK cells   总被引:2,自引:0,他引:2  
The mouse NKR-P1 family includes at least three genes: NKR-P1A, -B, -C. Neither surface expression nor function of the NKR-P1B gene product has previously been shown. Here, we demonstrate that the SJL/J allele of the NKR-P1B gene product is expressed on SJL/J NK cells, and is recognized by PK136 mAb. Interestingly, the same mAb does not recognize the NKR-P1B gene product of C57BL/6. We have also generated a novel mAb, 1C10, that recognizes an activation receptor on SJL/J NK cells. Activation of the NKR-P1B receptor-inhibited 1C10 mAb induced redirected lysis and recruited SHP-1, indicating that NKR-P1B is an inhibitory receptor. Therefore, the mouse NKR-P1 gene family, like the Ly49 family, includes both activation and inhibitory receptors.  相似文献   

8.
Two clusters of rat Nkrp1 genes can be distinguished based on phylogenetic relationships and functional characteristics. The proximal (centromeric) cluster encodes the well-studied NKR-P1A and NKR-P1B receptors and the distal cluster, the largely uncharacterized, NKR-P1F and NKR-P1G receptors. The inhibitory NKR-P1G receptor is expressed only by the Ly49s3+ NK cell subset as detected by RT-PCR, while the activating NKR-P1F receptor is detected in both Ly49s3+ and NKR-P1B+ NK cells. The mouse NKR-P1G ortholog is expressed by both NKR-P1D and NKR-P1D+ NK cells in C57BL/6 mice. The rat and mouse NKR-P1F and NKR-P1G receptors demonstrate a striking, cross-species conservation of specificity for Clr ligands. NKR-P1F and NKR-P1G reporter cells reacted with overlapping panels of tumour cell lines and with cells transiently transfected with rat Clr2, Clr3, Clr4, Clr6 and Clr7 and mouse Clrc, Clrf, Clrg and Clrd/x, but not with Clr11 or Clrb, which serve as ligands for NKR-P1 from the proximal cluster. These data suggest that the conserved NKR-P1F and NKR-P1G receptors function as promiscuous receptors for a rapidly evolving family of Clr ligands in rodent NK cells.  相似文献   

9.
Murine NK cells express Ly-49 family receptors capable of either inhibiting or activating lytic function. The overlapping patterns of expression of the various receptors have complicated their precise biochemical characterization. Here we describe the use of the Jurkat T cell line as the model for the study of Ly-49s. We demonstrate that Ly-49D is capable of delivering activation signals to Jurkat T cells even in the absence of the recently described Ly-49D-associated chain, DAP-12. Ly-49D signaling in Jurkat leads to tyrosine phosphorylation of TCRzeta and requires Syk/Zap70 family kinases and arginine 54 of Ly-49D, suggesting that Ly-49D signals via association with TCRzeta. Coexpression studies in 293-T cells confirmed the ability of Ly-49D to associate with TCRzeta. In addition, we have used this model to study the functional interactions between an inhibitory Ly-49 (Ly-49G2) and an activating Ly-49 (Ly-49D). Ly-49G2 blocks activation mediated by Ly-49D in an immunoreceptor tyrosine-based inhibitory motif (ITIM)-dependent manner. In contrast, Ly-49G2 was incapable of inhibiting activation by the TCR even though human killer cell inhibitory receptor (KIR) (KIR3DL2(GL183)) effectively inhibits TCR. Both the ability of Ly-49G2 to block Ly-49D activation and the failure of Ly-49G2 to inhibit TCR signaling were confirmed in primary murine NK cells and NK/T cells, respectively. These data demonstrate the dominant effects of the inhibitory receptors over those that activate and suggest an inability of the Ly-49 type II inhibitory receptors to efficiently inhibit type I transmembrane receptor signaling in T cells and NK cells.  相似文献   

10.
Syk and ZAP-70 subserve nonredundant functions in B and T lymphopoiesis. In the absence of Syk, B cell development is blocked, while T cell development is arrested in the absence of ZAP-70. The receptors and the signaling molecules required for differentiation of NK cells are poorly characterized. Here we investigate the role of the Syk protein tyrosine kinase in NK cell differentiation. Hemopoietic chimeras were generated by reconstituting alymphoid (B-, T-, NK-) recombinase-activating gene-2 x common cytokine receptor gamma-chain double-mutant mice with Syk-/- fetal liver cells. The phenotypically mature Syk-/- NK cells that developed in this context were fully competent in natural cytotoxicity and in calibrating functional inhibitory receptors for MHC molecules. Syk-deficient NK cells demonstrated reduced levels of Ab-dependent cellular cytotoxicity. Nevertheless, Syk-/- NK cells could signal through NK1. 1 and 2B4 activating receptors and expressed ZAP-70 protein. We conclude that the Syk protein tyrosine kinase is not essential for murine NK cell development, and that compensatory signaling pathways (including those mediated through ZAP-70) may sustain most NK cell functions in the absence of Syk.  相似文献   

11.
Activating NK cell receptors transduce signals through ITAM-containing adaptors, including FcRgamma and DAP12. Although the caspase recruitment domain (CARD)9-Bcl10 complex is essential for FcRgamma/DAP12-mediated NF-kappaB activation in myeloid cells, its involvement in NK cell receptor signaling is unknown. Herein we show that the deficiency of CARMA1 or Bcl10, but not CARD9, resulted in severe impairment of cytokine/chemokine production mediated by activating NK cell receptors due to a selective defect in NF-kappaB activation, whereas cytotoxicity mediated by the same receptors did not require CARMA1-Bcl10-mediated signaling. IkappaB kinase (IKK) activation by direct protein kinase C (PKC) stimulation with PMA plus ionomycin (P/I) was abrogated in CARMA1-deficient NK cells, similar to T and B lymphocytes, whereas CARD9-deficient dendritic cells (DCs) exhibited normal P/I-induced IKK activation. Surprisingly, CARMA1 deficiency also abrogated P/I-induced IKK activation in DCs, indicating that CARMA1 is essential for PKC-mediated NF-kappaB activation in all cell types, although the PKC-CARMA1 axis is not used downstream of myeloid ITAM receptors. Consistently, PKC inhibition abrogated ITAM receptor-mediated activation only in NK cells but not in DCs, suggesting PKC-CARMA1-independent, CARD9-dependent ITAM receptor signaling in myeloid cells. Conversely, the overexpression of CARD9 in CARMA1-deficient cells failed to restore the PKC-mediated NF-kappaB activation. Thus, NF-kappaB activation signaling through ITAM receptors is regulated by a cell type-specific mechanism depending on the usage of adaptors CARMA1 and CARD9, which determines the PKC dependence of the signaling.  相似文献   

12.
13.
Natural killer (NK) lymphocytes use a variety of activating receptors to recognize and kill infected or tumorigenic cells during an innate immune response. To prevent targeting healthy tissue, NK cells also express numerous inhibitory receptors that signal through immunotyrosine-based inhibitory motifs (ITIMs). Precisely how signals from competing activating and inhibitory receptors are integrated and resolved is not understood. To investigate how ITIM receptor signaling impinges on activating pathways, we developed a photochemical approach for stimulating the inhibitory receptor KIR2DL2 during ongoing NK cell-activating responses in high-resolution imaging experiments. Photostimulation of KIR2DL2 induces the rapid formation of inhibitory receptor microclusters in the plasma membrane and the simultaneous suppression of microclusters containing activating receptors. This is followed by the collapse of the peripheral actin cytoskeleton and retraction of the NK cell from the source of inhibitory stimulation. These results suggest a cell biological basis for ITIM receptor signaling and establish an experimental framework for analyzing it.  相似文献   

14.
Killer cell Ig-like receptor (KIR)2DL4 (2DL4, CD158d) was previously described as the only KIR expressed by every human NK cell. It is also structurally atypical among KIRs because it possesses a basic transmembrane residue, which is characteristic of many activating receptors, but also contains a cytoplasmic immunoreceptor tyrosine-based inhibitory motif (ITIM). We expressed epitope-tagged 2DL4 in an NK-like cell line to study receptor function. Three distinct 2DL4 cDNA clones were analyzed: one encoding the "conventional" 2DL4 with the cytoplasmic ITIM (2DL4.1) and two encoding different cytoplasmic truncated forms lacking the ITIM (2DL4.2 and 2DL4(*)). Surprisingly, one truncated receptor (2DL4.2), which is the product of a prevalent human 2DL4 allele, was not expressed on the cell surface, indicating that some individuals may lack functional 2DL4 protein expression. Conversely, both 2DL4.1 and 2DL4(*) were expressed on the cell surface and up-regulated by IL-2. Analysis of primary NK cells with anti-2DL4 mAb confirmed the lack of surface expression in a donor with the 2DL4.2 genotype. Donors with the 2DL4.1 genotype occasionally expressed receptor only on CD56(high) NK cells, although their expression was up-regulated by IL-2. Interestingly, Ab engagement of epitope-tagged 2DL4 triggered rapid and robust IFN-gamma production, but weak redirected cytotoxicity in an NK-like cell line, which was the opposite pattern to that observed upon engagement of another NK cell activating receptor, NKp44. Importantly, both 2DL4.1 and 2DL4(*) exhibited similar activation potential, indicating that the ITIM does not influence 2DL4.1 activating function. The unique activation properties of 2DL4 suggest linkage to a distinct signaling pathway.  相似文献   

15.
16.
Killer cell immunoglobulin-like receptors (KIR) inhibit the cytotoxic activity of natural killer (NK) cells by recruitment of the tyrosine phosphatase SHP-1 to immunoreceptor tyrosine-based inhibition motif (ITIM) sequences in the KIR cytoplasmic tail [1]. The precise steps in the NK activation pathway that are inhibited by KIR are yet to be defined. Here, we have studied whether the initial step of adhesion molecule LFA-1-dependent adhesion to target cells was altered by the inhibitory signal. Using stable expression of an HLA-C-specific KIR in the NK cell line YTS [2] and a two-color flow cytometry assay for conjugate formation, we show that adhesion to a target cell expressing cognate HLA-C was disrupted by KIR engagement. Conjugate formation was abruptly interrupted by KIR within less than 5 minutes. Inhibition of adhesion to target cells was mediated by a chimeric KIR molecule carrying catalytically active SHP-1 in place of its cytoplasmic tail. These results suggest that other ITIM-bearing receptors, many of which have no known function, may regulate adhesion in a wide variety of cell types.  相似文献   

17.
The proximal region of the NK gene complex encodes the NKR-P1 family of killer cell lectin-like receptors which in mice bind members of the genetically linked C-type lectin-related family, while the distal region encodes Ly49 receptors for polymorphic MHC class I molecules. Although certain members of the NKR-P1 family are expressed by all NK cells, we have identified a novel inhibitory rat NKR-P1 molecule termed NKR-P1C that is selectively expressed by a Ly49-negative NK subset with unique functional characteristics. NKR-P1C(+) NK cells efficiently lyse certain tumor target cells, secrete cytokines upon stimulation, and functionally recognize a nonpolymorphic ligand on Con A-activated lymphoblasts. However, they specifically fail to kill MHC-mismatched lymphoblast target cells. The NKR-P1C(+) NK cell subset also appears earlier during development and shows a tissue distribution distinct from its complementary Ly49s3(+) subset, which expresses a wide range of Ly49 receptors. These data suggest the existence of two major, functionally distinct populations of rat NK cells possessing very different killer cell lectin-like receptor repertoires.  相似文献   

18.
NKp44 (NCR2) is a member of the natural cytotoxicity receptor (NCR) family that is expressed on activated human NK cells. We dissected structural attributes of NKp44 to determine their contributions to receptor function. Our results demonstrate that surface expression and NK cell activation by NKp44 is mediated through noncovalent association with the immunoreceptor tyrosine-based activation motif-containing protein, DAP12. Physical linkage to DAP12 requires lysine-183 in the NKp44 transmembrane domain. Intriguingly, the cytoplasmic domain of NKp44 also contains a sequence that matches the immunoreceptor tyrosine-based inhibitory motif (ITIM) consensus. By expressing a chimeric receptor in an NK-like cell line, we found that this ITIM-like motif from NKp44 lacks inhibitory capacity in a redirected cytotoxicity assay. The NKp44 cytoplasmic tyrosine was efficiently phosphorylated in the chimeric receptor upon treating the cells with pervanadate, but it was unable to recruit ITIM-binding negative effector phosphatases. We also generated NK-like cell lines expressing epitope-tagged wild-type or tyrosine to phenylalanine mutant (Y238F) versions of NKp44 and compared their capacities to induce activation marker expression, promote IFN-gamma production, or stimulate target cell cytotoxicity. We did not detect any tyrosine-dependent reduction or enhancement of NK cell activation through wild-type vs. Y238F mutant NKp44. Finally, the cytoplasmic tyrosine-based sequence did not provide a docking site for the AP-2 clathrin adaptor, nor did it potentiate receptor internalization. In summary, all activating properties and surface expression of NKp44 are mediated through its association with DAP12, and the putative ITIM in the NKp44 cytoplasmic domain does not appear to attenuate activating function.  相似文献   

19.
Killer cell inhibitory receptors (KIRs) inhibit NK and T cell cytotoxicity when recognizing MHC class I molecules on target cells. They possess two tandem intracytoplasmic immunoreceptor tyrosine-based inhibition motifs (ITIMs) that, when phosphorylated, each bind to the two Src homology 2 domain-bearing protein tyrosine phosphatases SHP-1 and SHP-2 in vitro. Using chimeric receptors having an intact intracytoplasmic KIR domain bearing both ITIMs (N + C-KIR), a deleted domain containing the N-terminal ITIM only (N-KIR), or a deleted domain containing the C-terminal ITIM only (C-KIR), we examined the respective contributions of the two ITIMs in the inhibition of cell activation in two experimental models (a rat mast cell and a mouse B cell line) that have been widely used to analyze KIR functions. We found that the two KIR ITIMs play distinct roles. When coaggregated with immunoreceptor tyrosine-based activation motif-bearing receptors such as high-affinity IgE receptors or B cell receptors, the N + C-KIR and the N-KIR chimeras, but not the C-KIR chimera, inhibited mast cell and B cell activation, became tyrosyl-phosphorylated, and recruited phosphatases in vivo. The N + C-KIR chimera recruited SHP-1 as expected, but also SHP-2. Surprisingly, the N-KIR chimera failed to recruit SHP-1; however, it did recruit SHP-2. Consequently, the N-terminal ITIM is sufficient to recruit SHP-2 and to inhibit cell activation, whereas the N-terminal and the C-terminal ITIMs are both necessary to recruit SHP-1. The two KIR ITIMs, therefore, are neither mandatory for inhibition nor redundant. Rather than simply amplifying inhibitory signals, they differentially contribute to the recruitment of distinct phosphatases that may cooperate to inhibit cell activation.  相似文献   

20.
The inhibitory NKR-P1B receptor identifies a subset of rat splenic NK cells that is low in Ly49 receptors but enriched for CD94/NKG2 receptors. We report in this study a novel NKR-P1B(bright) NK subpopulation that is prevalent in peripheral blood, liver, and gut-associated lymphoid organs and scarce in the spleen, peripheral lymph nodes, bone marrow, and lungs. This NKR-P1B(bright) NK subset displays an activated phenotype, expressing CD25, CD93, CX(3)CR1 and near absence of CD62-L, CD11b, and CD27. Functionally, NKR-P1B(bright) NK cells are highly responsive in terms of IFN-γ production and exert potent cytolytic activity. They show little spontaneous proliferation, are reduced in numbers upon in vivo activation with polyinosinic:polycytidylic acid, and have poor survival in ex vivo cytokine cultures. Our findings suggest that NKR-P1B(bright) NK cells are fully differentiated effector cells that rapidly die upon further activation. The identification of this novel rat NK cell subset may facilitate future translational research of the role of distinct NK cell subsets under normal physiological conditions and during ongoing immune responses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号