首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Summary Cytotoxic T lymphocytes (CTL), CD3+, / T-cell-receptor-positive, are important effector cells with specific immunity in melanoma patients. The establishment and expansion in vitro of CTL of a specific phenotype to tumor cells strongly depends on the method of activation and sensitization with tumor cells. We generated CD3+ CTL lines to melanoma by co-culturing peripheral blood lymphocytes with autologous irradiated melanoma cells and repetitive stimulation with high-dose interleukin-4 in a cocktail culture medium. CTL lines were investigated for their specificity to kill autologous and allogeneic melanoma. Histocompatibility locus antigen (HLA) class I (A, B) molecules are important restrictive recognition antigens for CTL. Although these antigens are highly polymorphic, they can share a similar immunogenic molecular epitope(s) and can be immunologically cross-reactive. The CTL lines generated were found to kill not only autologous melanoma, but also allogeneic melanomas having class I HLA-A antigens shared or cross-reactive with autologous HLA-A. These CTL lines were poor killers of melanomas bearing non-shared or non-cross-reactive HLA-A. Cold-target inhibition assays demonstrated this CTL cross-reactivity to allogeneic melanoma specificity. Epstein-Barr-virus-transformed autologous and allogeneic B lymphoblastoid cell lines failed to block autologous melanoma killing, indicating that CTL were not recognizing major histocompatibility complex antigens, serum proteins or culture medium products as the primary target antigen. HLA-A2 was the major shared HLA-A antigen recognized by CTL lines on the melanoma lines studied. CTL lines also recognized shared HLA-A11 and A24 on allogeneic melanoma. There were no CTL lines showing restriction to HLA-B. These results suggest that common tumor-associated antigens are present on melanomas and are recognized in association with distinct HLA-A epitopes by CTL.This study was supported by grant CA12 582 awarded by the National Cancer Institute, USA  相似文献   

2.
Stimulation with live dengue virus of peripheral blood mononuclear cells from a dengue virus type 4-immune donor generated virus-specific, serotype-cross-reactive, CD8+, class I-restricted cytotoxic T lymphocytes (CTL) capable of lysing dengue virus-infected cells and cells pulsed with dengue virus antigens of all four serotypes. These CTL lysed autologous fibroblasts infected with vaccinia virus-dengue virus recombinant viruses containing the E gene or several nonstructural dengue virus type 4 genes. These results demonstrate that both dengue virus structural and nonstructural proteins are targets for the cytotoxic T-cell-mediated immune response to dengue virus and suggest that serotype-cross-reactive CD8+ CTL may be important mediators of viral clearance and of virus-induced immunopathology during secondary dengue virus infections.  相似文献   

3.
Graft-versus-host disease is a major complication after allogeneic bone marrow transplantation (BMT) caused by donor T cells. Immunosuppression mediated by CD4(+)CD25(+) regulatory T cells has been shown to ameliorate such pathogenic immune responses in animal models. Here, we summarize recent findings from experimental and clinical studies and propose a model for peripheral tolerance induction after BMT.  相似文献   

4.
EBV transformation of human B cells in vitro results in establishment of immortalized cell lines (lymphoblastoid cell lines (LCL)) that express viral transformation-associated latent genes and exhibit a fixed, lymphoblastoid phenotype. In this report, we show that CD4(+) T cells can modify the differentiation state of EBV-transformed LCL. Coculture of LCL with EBV-specific CD4(+) T cells resulted in an altered phenotype, characterized by elevated CD38 expression and decreased proliferation rate. Relative to control LCL, the cocultured LCL were markedly less susceptible to lysis by EBV-specific CD8(+) CTL. In contrast, CD4(+) T cell-induced differentiation of LCL did not diminish sensitivity of LCL to lysis by CD8(+) CTL specific for an exogenously loaded peptide Ag or lysis by alloreactive CD8(+) CTL, suggesting that differentiation is not associated with intrinsic resistance to CD8(+) T cell cytotoxicity and that evasion of lysis is confined to EBV-specific CTL responses. CD4(+) T cell-induced differentiation of LCL and concomitant resistance of LCL to lysis by EBV-specific CD8(+) CTL were associated with reduced expression of viral latent genes. Finally, transwell cocultures, in which direct LCL-CD4(+) T cell contact was prevented, indicated a major role for CD4(+) T cell cytokines in the differentiation of LCL.  相似文献   

5.
Cytotoxic cells specific for Toxoplasma gondii-infected cells were detected in the peripheral blood leukocytes from a patient with acute toxoplasmosis. The cytotoxicity was mediated by CD5+, CD4-, CD8+ cells. The cytotoxic T cells lysed Toxoplasma-infected target cells with HLA class I restriction. Two types of T cell clones were established from peripheral blood leukocytes of a patient with chronic toxoplasmosis; one was a CD5+, CD4-, CD8+ cytotoxic cell specific for Toxoplasma-infected cells, and the other was a CD5+, CD4+, CD8- proliferative cell that responded to Toxoplasma antigen. Toxoplasma-infected cell-specific cytotoxic cloned T cells recognize the infected target cells in the context of the HLA class I molecules, and the CD8 molecule was involved in the cytotoxicity. Toxoplasma antigen-specific proliferative cloned T cells were stimulated by Toxoplasma antigen-pulsed or Toxoplasma-infected cells in conjunction with HLA-DR molecule on the target cells. Thus, antigen presentation by Toxoplasma-infected cells for activation of both cytotoxic and proliferative T cells has been demonstrated.  相似文献   

6.
A comprehensive analysis of human alloimmune cytotoxic T lymphocytes (CTLs) specific for the HLA-A2 antigen identified 11% of HLA-A2 positive cells as outliers. In total, 11 unrelated serologically indistinguishable, but distinguishable by cell-mediated lympholysis (CML) HLA-A2 positive outlier cells were identified. The outlier cells could be subdivided in two subgroups according to reactivity patterns obtained with CTLs directed against the HLA-A2 antigen of outlier cells and their inhibitory capacity in specific competitive inhibition experiments. Thus, the serologically defined HLA-A2 specificity can be divided into at least three subtypes using CTLs specific for the HLA-A2 antigen. Moreover, CTLs specific for an HLA-A2 subtype could be induced when responder cells expressed a different HLA-A2 subtype antigen. On the basis of several family studies, we conclude that the subtype HLA-A2 antigens are inherited in a codominant way.  相似文献   

7.

Background

CD4+CD25highFOXP3+ regulatory T (Treg) cells, which include thymus-derived and peripherally induced cells, play a central role in immune regulation, and are therefore crucial to prevent graft-versus-host disease (GVHD). The increasing use of allogeneic hematopoietic stem cell transplantation (allo-HSCT) for elderly patients with thymus regression, and our case of allo-HSCT shortly after total thymectomy, raised questions about the activity of thymus-derived Treg cells and peripherally induced Treg cells, which are otherwise indistinguishable.

Results

We found that despite pre-transplant thymectomy or older age, both naïve and effector Treg cells, as well as naïve and effector conventional T cells, proliferated in allo-HSCT recipients. Higher proportions of total Treg cells 1 month post allo-HSCT, and naïve Treg cells 1 year post allo-HSCT, appeared in patients achieving complete chimera without developing significant chronic GVHD, including our thymectomized patient, compared with patients who developed chronic GVHD.

Conclusions

Treg cells that modulate human allogeneic immunity may arise peripherally as well as in the thymus of allo-HSCT recipients.  相似文献   

8.
Cohen JL  Salomon BL 《Cytotherapy》2005,7(2):166-170
The subpopulation of CD4+ CD25+ immunoregulatory T cells constitutes less than of the entire CD4+ T-cell pool in mice and 2% in humans. These cells play a crucial role in the control of autoimmune processes. More recently, in vitro and in vivo data also indicate that CD4+ CD25+ immunoregulatory T cells can regulate alloreactivity. This renders them good candidates for innovative strategies in the field of transplantation. Inducing a state of immune tolerance with immunoregulatory T cells would alleviate the need for immunosuppression, and the occurrence of late allograft failure represents a major goal of transplantation immunology. Here we discuss how these naturally occurring CD4+ CD25+ immunoregulatory T cells can be used to modulate alloreactivity in hematopoietic stem cell and solid organ transplantation.  相似文献   

9.
The M2 protein of respiratory syncytial virus (RSV) is a protective antigen in H-2d, but not H-2b or H-2k mice. None of the other RSV proteins, excluding the surface glycoproteins that induce neutralizing antibodies, is protective in mice bearing these haplotypes. Thus, the M2 protein stands alone as a nonglycoprotein-protective antigen of RSV. The M2 protein is a target for murine Kd-restricted cytotoxic T lymphocytes (CTLs), and the resistance induced by infection with a vaccinia virus-RSV M2 (vac-M2) recombinant is mediated by CD8+ CTLs. Since the nonameric consensus sequence for H-2 Kd-restricted T-cell epitopes and the amino acid sequence of the M2 protein of subgroup A and B strains of RSV are known, the present study sought to identify the specific epitope(s) on the M2 protein recognized by CD8+ CTLs. This was done by examining the ability of four predicted Kd-specific motif peptides present in the M2 amino acid sequence of an RSV subgroup A strain to sensitize target cells for lysis by pulmonary or splenic CTLs obtained from mice infected with RSV or vac-M2. The following observations were made. First, two of the four peptides sensitized target cells for lysis by pulmonary or splenic CTLs induced by infection with either vac-M2 or RSV. Second, one of the two peptides, namely the 82-90 (M2) peptide, sensitized targets at a very low peptide concentration (10(-10) to 10(-12) M). Third, cold-target competition experiments revealed that the predominant CTL population induced by infection with vac-M2 or RSV recognized the 82-90 (M2) peptide, and this CTL population appeared to recognize the 71-79 (M2) peptide in a cross-reactive manner. Fourth, CTL recognition of targets sensitized with either the 71-79 (M2) or the 82-90 (M2) peptide was Kd restricted. Fifth, CTLs induced by infection with RSV subgroup A or B strains recognized the two M2 peptides. The findings suggest that the M2 protein of RSV contains an immunodominant Kd-restricted CTL epitope consisting of amino acid residues 82 to 90 (SYIGSINNI), which are shared by subgroup A and B RSVs.  相似文献   

10.
Recent studies have demonstrated the importance of CD40/CD154 (CD40L) interactions for the generation of cell-mediated antitumor immune responses. Here we show that signaling via CD40 (through the use of the activating anti-CD40 mAb, 1C10) can actually promote the in vitro generation of CTL activity by CD8+ splenic T cells from mice bearing a large MOPC-315 tumor. Anti-CD40 mAb had to be added at the initiation of the stimulation cultures of tumor-bearing splenic cells in order to realize fully its potentiating activity for cytotoxic T lymphocyte (CTL) generation, suggesting that signaling through CD40 is important at the inductive stage of antitumor cytotoxicity. Moreover, anti-CD40 mAb was found to enhance the expression of the B7-2 (CD86) and, to a lesser extent, the B7-1 (CD80) costimulatory molecules on B220+ cells (i.e., B cells), and B7-2 and, to a lesser extent, B7-1 molecules played an important role in the potentiating effect of anti-CD40 mAb for CTL generation by tumor-bearer splenic cells. Furthermore, B220+ cells were found to be essential for the potentiating effect of anti-CD40 mAb, as depletion of B220+ cells at the inductive stage completely abrogated the ability of anti-CD40 mAb to enhance CTL generation. Thus, signaling through CD40 enhances CTL generation by CD8+ T cells from tumor-bearing mice by a mechanism that involves the up-regulation of B7-2 and, to a lesser extent, B7-1 expression on B220+ cells. Received: 23 December 1998 / Accepted: 22 February 1999  相似文献   

11.
T cell-mediated protection against a recombinant vaccinia virus was evaluated in mice with respect to the relative contributions of CTL vs that of T cell-dependent IL and of CD4+ cells. H-2b mice primed with the wildtype of vesicular stomatitis virus serotype Indiana (VSV-IND wt) mount an in vitro measurable cytotoxic response against the nucleoprotein (NP) of VSV-IND and are protected against a challenge infection with a vaccinia-VSV recombinant virus expressing the NP of VSV-IND (vacc-IND-NP). Their protective mechanism was highly susceptible to in vivo depletion of CD8+ T cells, but resistant to CD4+ depletion or treatment with anti-IFN-gamma and anti-TNF-alpha. Surprisingly, also VSV-CTL nonresponder H-2k mice were protected against a challenging infection with vacc-IND-NP when primed with VSV-IND wt. In contrast to the CTL responder H-2b mice, this protection was highly susceptible to CD4+ T cell depletion and to anti-IFN-gamma or anti-TNF-alpha treatment, but resistant to CD8+ T cell depletion. Antibodies were not responsible because they failed to transfer protection; in contrast CD4+ T cells conferred significant protection. VSV-CTL responder H-2b and nonresponder H-2k mice were protected almost equally well against a challenge dose of 10(3) pfu vacc-IND-NP inoculated intracerebrally. However, after intracerebral challenge with 5 x 10(6) pfu vacc-IND-NP, the CTL nonresponder mice died, whereas the CTL responder mice eliminated the virus by day 5. These results collectively show that CD4+ T cell-dependent IL may mediate antiviral protection, but their efficiency is relatively weak compared with CD8-mediated protection correlating with cytotoxic activity in vitro.  相似文献   

12.
BACKGROUND: Although previous studies have reported important roles of CD4(+) type 1-helper T cells and regulatory T cells in Helicobacter-associated gastritis, the significance of CD8(+) cytotoxic T cells remains unknown. To study the roles of CD8(+) T cells, we examined the immune response in the gastric mucosa of Helicobacter felis-infected major histocompatibility complex (MHC) class II-deficient (II(-/-)) mice, which lack CD4(+) T cells. MATERIALS AND METHODS: Stomachs from H. felis-infected wild-type and infected MHC II(-/-) mice were examined histologically and immunohistochemically. Gastric acidity and serum levels of anti-H. felis antibodies were measured. The expression of pro-inflammatory and anti-inflammatory cytokine, Fas-ligand, perforin, and Foxp3 genes in the gastric mucosa was investigated. RESULTS: H. felis-infected MHC II(-/-) mice developed severe gastritis, accompanied by marked infiltration of CD8(+) cells. At 1 and 2 months after inoculation, mucosal inflammation and atrophy were more severe in MHC II(-/-) mice, although gastritis had reached similar advanced stages at 3 months after inoculation. There was little infiltration of CD4(+) cells, and no Foxp3-positive cells were detected in the gastric mucosa of the infected MHC II(-/-) mice. The expression of the interleukin-1beta and Fas-ligand genes was up regulated, but that of Foxp3 was down regulated in the infected MHC II(-/-) mice. Serum levels of anti-H. felis antibodies were lower in the infected MHC II(-/-) mice, despite severe gastritis. CONCLUSIONS: The present study suggests that cross-primed CD8(+) cytotoxic T cells can induce severe H.-associated gastritis in the absence of CD4(+) helper T cells and that Foxp3-positive cells may have an important role in the control of gastric inflammation.  相似文献   

13.
Adoptive immunotherapy with EBV-specific CTL (EBV-CTL) effectively prevents and treats EBV-driven lymphoproliferation in immunocompromised hosts. EBV-seronegative solid organ transplant recipients are at high risk of EBV-driven lymphoproliferation because they lack EBV-specific memory T cells. For the same reason, standard techniques for generating EBV-CTL in vitro from EBV-naive individuals are unsuccessful. To overcome this problem, we compared several methods of expanding EBV-CTL from seronegative adults and children. First, the standard protocol, using EBV-transformed lymphoblastoid B cell lines (LCL) as the source of APC, was compared with protocols using EBV-Ag-loaded dendritic cells as APC. Surprisingly, the standard protocol effectively generated CTL from all seronegative adults. The additional finding of EBV-DNA in the peripheral blood of three of these four adults suggested that some individuals may develop cellular, but not humoral, immune responses to EBV. By contrast, LCL failed to reactivate EBV-CTL from any of the six EBV-seronegative children. EBV-Ag-loaded dendritic cells could expand EBV-CTL, but only in a minority of children. However, the selective expansion of CD25-expressing T cells, 9-11 days after activation with LCL alone, proved to be a simple and reliable method for generating EBV-CTL from all seronegative children. The majority of these CTL were CD4(+) (71 +/- 26%) and demonstrated HLA class II-restricted, EBV-specific killing. Our results suggest that a negative EBV serology does not accurately identify EBV-negative individuals. In addition, our method for selecting EBV-specific CTL from naive individuals by precursor cell enrichment may be applicable to the immunotherapy of cancer patients with a low frequency of tumor- or virus-specific CTL.  相似文献   

14.
Four different subpopulations (Ly6Cneg, Ly6Clow, Ly6Cint, and Ly6Chi) of CD8+ T cells were arbitrarily defined on the basis of differential expression of Ly6C Ag. By combining the processes of electronic cell sorting and automated cell deposition, small numbers of respective CD8+ T cell subpopulations were directly deposited into tissue culture wells in which mitogen-stimulated responses were studied. Anti-CD3-stimulated proliferation and IL-2 production were the strongest by Ly6Cneg/Ly6Clow T cells, moderate for Ly6Cint T cells, and highly deficient for Ly6Chi T cells. The level of IL-2 production for Ly6Cneg CD8+ T cells was comparable to that of conventional CD4+ Th cells. Allogeneic stimulator cells elicited a strong cytotoxic response by Ly6Cneg + low but not Ly6Chi CD8+ T cells in the absence of added lymphokines. When IL-2 was supplied in excess, anti-CD3 induced comparable levels of cell proliferation and cytotoxic activity in Ly6Cneg, Ly6Clow, Ly6Cint, and Ly6Chi CD8+ T cells whereas alloantigen stimulated an approximate fivefold higher cytotoxic response by Ly6Chi than Ly6Cneg + low CD8+ T cells. Stimulation of co-cultures of B10 (CD8b) Ly6Cneg + low and congenic B10.CD8a Ly6Chi CD8+ T cells in the absence of added lymphokines, followed by selective elimination of activated CD8.1+ (CD8.2+) T cells by anti-CD8.1 (anti-CD8.2) + C treatment, allowed the demonstration that help provided by Ly6Cneg + low T cells can be effectively used by both Ly6Cneg + low and Ly6Chi T cells in anti-CD3 and alloantigen induced proliferative and cytotoxic responses, respectively.  相似文献   

15.
MHC-restricted, viral Ag-specific "memory" CTL are thought to play a decisive role in the defense against pathogenic viruses. However, the requirements for activating such CTL remain controversial. In particular, the role of CD4+ helper cells and their soluble products (e.g., IL-2) are uncertain. To approach these questions as they relate to EBV-specific CTL, highly purified CD8+ T cells from healthy EBV-seropositive individuals were cultured with autologous irradiated EBV-transformed B lymphoblastoid cell lines (LCL), in the presence or absence of autologous CD4+ cells or 1 to 10 U/ml purified rIL-2. The results indicate that the induction of CTL requires neither Th cells nor exogenous IL-2. The CTL generated from isolated CD8+ cells were HLA class I restricted as demonstrated by their ability to lyse targets sharing at least one HLA-A or -B Ag with the stimulating autologous LCL. Furthermore, a mAb (W6/32) to a common determinant on HLA class I Ag blocked both the generation and effector phases of killing, whereas an HLA class II directed mAb had no effect. Addition of an IL-2R-specific antibody (anti-Tac) to the culture medium blocked induction of CTL, suggesting that endogenously produced IL-2 plays an obligatory role in this system. Paraformaldehyde fixation of LCL abrogated their ability to function as stimulator cells; however, addition of 2 U/ml exogenous IL-2 to fixed LCL cultured with CD8+ cells allowed for the induction of highly specific CTL. These results indicate that EBV-specific memory CTL can be activated in the absence of CD4+ helper cells or their soluble products, but nonetheless require Ag and IL-2.  相似文献   

16.
We previously demonstrated that cultures of rat uveitogenic T cells rapidly become dominated by CD4+ cells, but activation of CD8+ autoreactive T cells also occurred during the in vitro culture of in vivo-primed T cells. In the present study, we show that the commonly used uveitogenic peptide, interphotoreceptor retinoid-binding protein (IRBP) 1-20, generated both CD4+ and CD8+ autoreactive T cells in the C57BL/6 (B6) mouse and that this 20-mer contains at least two distinct antigenic epitopes. To determine whether the CD8 response was Ag-specific and whether CD4+ and CD8+ IRBP1-20-specific T cells recognize distinct antigenic epitopes, we prepared highly purified CD4+ and CD8+ T cells from IRBP1-20-primed mice and tested their proliferative response to a large panel of truncated peptides derived from IRBP1-20. The results showed that both CD4+ and CD8+ T cells recognized the same spectrum of peptides. In addition, peptides P10-18 were found to bind effectively to CD8+ IRBP1-20-specific T cells when complexed with recombinant H-2K(b) and also stimulate the proliferation and cytokine production of CD4+ IRBP1-20-specific T cells. Our results document for the first time that CD8+ and CD4+ autoreactive T cells display characteristic epitope recognition and they both recognize the same core epitope.  相似文献   

17.
A panel of seven mouse splenic macrophage cell lines, derived from cloned progenitors, was compared for their ability to present antigen to Th1 or Th2 helper T cell lines and hybridomas, as well as to naive T cells, and to provide accessory cell function for the synthesis of antibody from primed B cells. One of the cell lines expressed MHC class II molecules and was the only line with constitutive antigen-presenting activity for Th1 cells. It may represent a subset of splenic macrophages responsible for the activation of naive Th1 helper cells in situ. The remaining six cell lines responded to INF-gamma by up-regulating their class II expression and acquiring Th1 antigen-presenting activity. They may represent cells which, in situ, lack constitutive antigen-presenting activity but are promoted to presenting status by Th1-derived INF-gamma. Five of the cell lines provided accessory cell function to Th2 cells, as indicated by antibody synthesis in suspensions of spleen cells from primed mice depleted of their antigen-presenting cells. One of the cell lines lacking accessory cell activity had constitutive antigen-presenting activity for Th1 cells. This reciprocal expression of antigen-presenting activity supports the idea that Th1 and Th2 helper cells are activated by different antigen-presenting cells. Finally, the cell lines differed in their ability to constitutively induce an allogeneic response; a response that was limited to CD8+ T cells occurred in a CD4+ helper cell-independent manner and was unaffected by the addition of INF-gamma. The alloantigen-presenting macrophage cell lines also possessed the most efficient accessory cell activity for antibody synthesis. These cell lines, which represent a spectrum of antigen-presenting activities in the spleen afford models for defining the roles of macrophages in the induction of immune responses and for resolving issues concerning their development.  相似文献   

18.
Regulatory T cells (T(R)) play a critical role in the inhibition of self-reactive immune responses and as such have been implicated in the suppression of tumor-reactive effector T cells. In this study, we demonstrate that follicular lymphoma (FL)-infiltrating CD8+ and CD4+ T cells are hyporesponsive to CD3/CD28 costimulation. We further identify a population of FL-infiltrating CD4+CD25+GITR+ T(R) that are significantly overrepresented within FL nodes (FLN) compared with that seen in normal (nonmalignant, nonlymphoid hyperplastic) or reactive (nonmalignant, lymphoid hyperplastic) nodes. These T(R) actively suppress both the proliferation of autologous nodal CD8+CD25- and CD4+CD25- T cells, as well as cytokine production (IFN-gamma, TNF-alpha and IL-2), after CD3/CD28 costimulation. Removal of these cells in vitro by CD25+ magnetic bead depletion restores both the proliferation and cytokine production of the remaining T cells, demonstrating that FLN T cell hyporesponsiveness is reversible. In addition to suppressing autologous nodal T cells, these T(R) are also capable of suppressing the proliferation of allogeneic CD8+CD25- and CD4+CD25- T cells from normal lymph nodes as well as normal donor PBL, regardless of very robust stimulation of the target cells with plate-bound anti-CD3 and anti-CD28 Abs. The allogeneic suppression is not reciprocal, as equivalent numbers of CD25+FOXP3+ cells derived from either normal lymph nodes or PBL are not capable of suppressing allogeneic CD8+CD25- and CD4+CD25- T cells, suggesting that FLN T(R) are more suppressive than those derived from nonmalignant sources. Lastly, we demonstrate that inhibition of TGF-beta signaling partially restores FLN T cell proliferation suggesting a mechanistic role for TGF-beta in FLN T(R)-mediated suppression.  相似文献   

19.
In this study, we have examined the relative contributions of CD4+ and CD8+ T cells in controlling an acute or chronic lymphocytic choriomeningitis virus (LCMV) infection. To study acute infection, we used the LCMV Armstrong strain, which is cleared by adult mice in 8 to 10 days, and to analyze chronic infection, we used a panel of lymphocyte-tropic and macrophage-tropic variants of LCMV that persist in adult mice for several months. We show that CD4+ T cells are not necessary for resolving an acute LCMV infection. CD4+ T-cell-depleted mice were capable of generating an LCMV-specific CD8+ cytotoxic T-lymphocyte (CTL) response and eliminated virus with kinetics similar to those for control mice. The CD8+ CTL response was critical for resolving this infection, since beta 2-microglobulin knockout (CD8-deficient) mice were unable to control the LCMV Armstrong infection and became persistently infected. In striking contrast to the acute infection, even a transient depletion of CD4+ T cells profoundly affected the outcome of infection with the macrophage- and lymphocyte-tropic LCMV variants. Adult mice given a single injection of anti-CD4 monoclonal antibody (GK1.5) at the time of virus challenge became lifelong carriers with high levels of virus in most tissues. Unmanipulated adult mice infected with the different LCMV variants contained virus for prolonged periods (> 3 months) but eventually eliminated infection from most tissues, and all of these mice had LCMV-specific CD8+ CTL responses. Although the level of CTL activity was quite low, it was consistently present in all of the chronically infected mice that eventually resolved the infection. These results clearly show that even in the presence of an overwhelming viral infection of the immune system, CD8+ CTL can remain active for long periods and eventually resolve and/or keep the virus infection in check. In contrast, LCMV-specific CTL responses were completely lost in chronically infected CD4-depleted mice. Taken together, these results show that CD4+ T cells are dispensable for short-term acute infection in which CD8+ CTL activity does not need to be sustained for more than 2 weeks. However, under conditions of chronic infection, in which CD8+ CTLs take several months or longer to clear the infection, CD4+ T-cell function is critical. Thus, CD4+ T cells play an important role in sustaining virus-specific CD8+ CTL during chronic LCMV infection. These findings have implications for chronic viral infections in general and may provide a possible explanation for the loss of human immunodeficiency virus-specific CD8+ CTL activity that is seen during the late stages of AIDS, when CD4+ T cells become limiting.  相似文献   

20.
Activated T cells can acquire membrane molecules from APCs through a process termed trogocytosis. The functional consequence of this event has been a subject of debate. Focusing on transfer of peptide-MHC class II (MHC-II) complexes from APCs to CD4(+) T cells after activation, in this study we investigated the molecule acquisition potential of naturally occurring regulatory T cells (Tregs) and CD4(+) Th cells. We show that acquisition of membrane molecules from APCs is an inherent feature of CD4(+) T cell activation. Triggering of the TCR enables CD4(+) T cells to acquire their agonist ligands as well as other irrelevant membrane molecules from the interacting APCs or bystander cells in a contact-dependent manner. Notably, trogocytosis is a continuous process during cell cycle progression, and Th cells and Tregs have comparable capacity for trogocytosis both in vitro and in vivo. The captured peptide-MHC-II molecules, residing in sequestered foci on the host cell surface, endow the host cells with Ag-presenting capability. Presentation of acquired peptide-MHC-II ligands by Th cells or Tregs has either stimulatory or regulatory effect on naive CD4(+) T cells, respectively. Furthermore, Th cells with captured peptide-MHC-II molecules become effector cells that manifest better recall responses, and Tregs with captured ligands exhibit enhanced suppression activity. These findings implicate trogocytosis in different subsets of CD4(+) T cells as an intrinsic mechanism for the fine tuning of Ag-specific CD4(+) T cell response.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号