首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We have recently reported that the anxiolytic-like effect observed in rats severely depleted of brain serotonin (5-HT) by means of 5,7-DHT is indirect and probably involves the GABA(A)/benzodiazepine chloride ionophore receptor complex (GABAA/BDZ-RC). One tentative explanation for this effect considered the involvement of corticosteroids. In the present series of experiments we have therefore investigated the effect of adrenalectomy (ADX) on the 5,7-DHT-induced anxiolytic-like effect displayed by rats in Vogel's conflict test. ADX totally abolished the anticonflict effect of the 5,7-DHT lesion. Replacement treatment with corticosterone, but not with dexamethasone, reinstated the anticonflict effect. These results indicate that an intact adrenocortical function, possibly via brain steroid type I receptors, is required for the expression of the 5,7-DHT-induced anxiolytic-like effect. It is postulated that ADX lowers the concentration of endogenous positive modulators at the GABAA/BDZ-RC to a level no longer sufficient to produce anxiolytic-like effects in 5,7-DHT-lesioned animals. The finding that 5,7-DHT-lesioned animals were more sensitive than sham-lesioned controls to the anticonflict effect of the barbiturate-like corticosteroid THDOC provides further support for the contention that an increased endogenous activity at the GABAA/BDZ-RCes is involved in the anxiolytic-like effect observed in rats with a severe depletion of brain 5-HT.  相似文献   

2.
We have earlier presented data indicating that the anxiolytic-like effect obtained in rats after depletion of brain 5-HT by means of PCPA or 5,7-DHT treatment is indirect and appears to involve the GABAA/benzodiazepine chloride ionophore receptor complex (GABAA/BDZ-RC), and that it is abolished by adrenalectomy. In the present series of experiments we have therefore investigated the 36Cl(-)-uptake in rat synaptoneurosomal preparations of central cortices from 5,7-DHT- and SHAM-lesioned animals. The GABA as well as the 3 alpha,5 alpha-tetrahydrodeoxycorticosterone (THDOC) induced picrotoxin-sensitive increase in 36Cl(-)-uptake was significantly lower than that observed in the SHAM-lesioned animals, indicating that the 5,7-DHT lesion has rendered the GABAA/BDZ-RC subsensitive to two of its tentative endogenous ligands. This effect of the 5,7-DHT lesion on the function on the GABAA/BDZ-RC was reversed by adrenalectomy, indicating that an intact adrenocortical function is required for the development of GABAA/BDZ-RC subsensitivity in 5,7-DHT-lesioned rats. A tentative conclusion of these findings is that the 5,7-DHT lesion induces an increase in release of GABA and/or barbiturate-like steroids and that this increase is reversed by adrenalectomy. The findings from these in vitro studies parallel those from our previous behavioral experiments and provide further support for the notion that a decreased serotonergic influence in the central nervous system may, possibly via the adrenocortical system, enhance the function of the GABAA/BDZ-RC.  相似文献   

3.
Effects of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) and 5,7-dihydroxytryptamine (5,7-DHT) on striatal levels of dopamine (DA), 5-hydroxytryptamine (5-HT), and their metabolites, as well as on locomotor activity were investigated in C57BL/6 mice. The results showed that MPTP significantly increased locomotor activity and decreased striatal DA levels. However, injection of the serotonergic neurotoxin 5,7-DHT in the striatum, either alone or following high doses of MPTP, significantly decreased locomotor activity, and concomitantly decreased striatal levels of 5-HT and 5-HIAA. This study suggests that the increased locomotor activity may be due to increased striatal serotonergic activity which overcompensates for the DA deficiency. The locomotor hypoactivity, induced by 5,7-DHT, might be due to the decreased striatal levels of 5-HT and 5-HIAA.  相似文献   

4.
To clarify the therapeutic effects of 6R-L-erythro-5,6,7,8-tetrahydrobiopterin (6R-BH(4)) on the abnormal behaviors induced by neonatal 5,7-dihydroxytryptamine (5,7-DHT, 100 microg; i.c.v.) treatment in immature rats, 6R-BH(4) (10-40 mg/kg) was administered intraperitoneally from 22nd to 28th days or only once on the 28th day. The locomotion activities decreased dramatically in 5,7-DHT-treated rats (p<0.01; as compared to controls) on the 28th day. The reduced locomotion was recovered dose-dependently by repeated administration of 6R-BH(4), whereas it was not altered after a single injection of 6R-BH(4). In addition, repeated administration of 6R-BH(4) significantly facilitated 5-HT turnover ratio (5-HIAA/5-HT) in the striatum, cerebral cortex, and cerebellum. These findings suggest that the behavioral restoration by 6R-BH(4) might be due to the enhancement of 5-HT turnover by accumulated but not a single dose of 6R-BH(4).  相似文献   

5.
Systemic administration of parachlorophenylalanine (PCPA, 100 mg/kg sc on alternate days X two times), a blocker of serotonin (5-HT) synthesis, considerably decreased brain 5-HT and plasma prolactin (PRL) levels in young male rats. Intraventricular (IVT) administration of 5,7-dihydroxytryptamine (5,7-DHT, 200 mug/20 mul), a neurotoxic drug which destroys 5-HT nerve terminals, induced, 3, 12, and 30 days after treatment, a marked depletion of brain 5-HT and 5-hydroxyindoleacetic acid (5-HIAA) and considerably reduced plasma PRL levels at each time interval. Feeding of rat for up to 4 days with a tryptophan (TP)-deficient diet, caused a depletion of brain 5-HT and 5-HIAA contents and did not modify plasma PRL levels. Addition of TP (2 g/kg of diet) to the TP-deficient diet resulted in increased brain 5-HT and 5-HIAA contents and significantly increased PRL levels. These data provide evidence for the role of the 5-HT system in the maintenance of tonic PRL secretion.  相似文献   

6.
To study the early effects of neonatal 5,7-dihydroxytryptamine lesions on 5-hydroxytryptamine1A (5-HT1A) receptors, we measured regional [3H]8-OH-DPAT-labeled 5-HT1A sites in binding assays and compared them to our previous studies of [3H]paroxetine-labeled 5-HT transporter sites during the first month in the same rats. While there were significant time- and dose-dependent effects of 5,7-DHT on 5-HT transporter sites, there were no significant changes in 5-HT1A sites in cortex, hippocampus, diencephalon, brainstem, cerebellum, or spinal cord. 5,7-DHT lesions also did not alter the Ki of Gpp(NH)p at brainstem 5-HT1A sites or the Ki of 5-HT in cortex or brainstem in the presence or absence of GTPS or Gpp(NH)p. There were significant regional differences between the density of 5-HT1A sites and 5-HT transporter sites. The ontogeny of brainstem 5-HT1A sites was a pattern of increases until three weeks postnatal, and 5,7-DHT lesions did not alter the ontogeny of 5-HT1A sites. These data suggest differential plasticity of 5-HT1A and 5-HT transporter binding sites during the first month after neonatal 5,7-DHT lesions.  相似文献   

7.
Dexfenfluramine (dF) and dexnorfenfluramine (dNF), its metabolite, are anorectic agents that release serotonin (5-HT) and may have a direct postsynaptic action. The effects on the anorectic effects of dF and dNF of either acute (p-chlorophenylalanine, PCPA) or chronic (5,7-dihydroxytryptamine, 5,7-DHT) brain 5-HT depletions were studied in rats and compared with the actions of a 5-HT uptake inhibitor (fluoxetine) and 5-HT(1B/2C) receptor agonists [1-(3-trifluoromethyl-phenyl)-piperazine and 1-(3-chlorophenyl) piperazine]. The anorexia caused by these agonists was enhanced in rats with 5,7-DHT lesions, possibly a result of receptor supersensitivity. In contrast, fluoxetine anorexia was somewhat reduced in one study and was unchanged in a second. Both dF and dNF anorexias were enhanced in rats with 5,7-DHT lesions. In contrast, the anorectic effects of either dF or dNF were unchanged in PCPA-treated rats relative to controls. Compared with controls, 5, 7-DHT-lesion rats showed greatly increased dF- and dNF-induced Fos-like immunoreactivity (ir) in the paraventricular (PVN) and supraoptic (SON) hypothalamic nuclei, and in the median preoptic area (MnPO), but were similar to controls in most other areas. PCPA pretreatment increased dF- and dNF-induced Fos-ir in the PVN, SON, and MnPO. In controls, equianorectic doses of dF and dNF induced Fos-ir in similar brain regions, but dNF produced relatively larger effects than dF in SON, PVN, and MnPO. The data are discussed in terms of multiple pathways in the anorectic actions of dF and dNF.  相似文献   

8.
Rats received intraventricular (i.v.t.) injections of 5,7-dihydroxytryptamine (5,7-DHT) (100-600 micrograms). Some animals also received intraperitoneal injections of the 5-hydroxytryptamine uptake blocker fluoxetine (FX) (20 mg/kg) or the norepinephrine uptake blocker desmethylimipramine (DMI) (48 mg/kg) 30-90 min prior to i.v.t. 5,7-DHT. Rats were killed between 2 and 35 days following i.v.t. 5,7-DHT, brains were dissected, and regions were assayed for thyrotropin-releasing hormone (TRH) by radioimmunoassay. Dose-dependent increases in TRH content following i.v.t. 5,7-DHT were noted in the brainstem and hippocampus. DMI pretreatment blocked the increase in hippocampal TRH, but not in brainstem TRH. FX pretreatment was ineffective in blocking any increases in TRH content. These results suggest differential regulation of regional TRH content by interactions with specific neurotransmitter systems.  相似文献   

9.
Extracellular levels of endogenous serotonin (5-HT) and its major metabolite, 5-hydroxyindoleacetic acid (5-HIAA), were measured in the caudate-putamen of anesthetized and awake rats using intracerebral microdialysis coupled to HPLC with fluorimetric detection. A dialysis probe (of the loop type) was perfused with Ringer solution at 2 microliters/min, and samples collected every 30 or 60 min. Basal indole levels were followed for up to 4 days in both intact and 5,7-dihydroxytryptamine (5,7-DHT) lesioned animals. Immediately after the probe implantation, the striatal 5-HT levels were about 10 times higher than the steady-state levels that were reached after 7-8 h of perfusion. The steady-state baseline levels, which amounted to 22.5 fmol/30 min sampling time, remained stable for 4 days. In 5,7-DHT-denervated animals, the steady-state levels of 5-HT, measured during the second day after probe implantation, were below the limit of detection (less than 10 fmol/60 min). However, during the first 6 h post-implantation, the 5-HT output was as high as in intact animals, which suggests that the high 5-HT levels recovered in association with probe implantation were blood-derived. As a consequence, all other experiments were started after a delay of at least 12 h after implantation of the dialysis probe. In awake, freely moving animals, the steady-state 5-HT levels were about 60% higher than in halothane-anesthetized animals, whereas 5-HIAA was unaffected by anesthesia. KCl (60 and 100 mM) added to the perfusion fluid produced a sharp increase in 5-HT output that was eight-fold at the 60 mM concentration and 21-fold at the 100 mM concentration. In contrast, 5-HIAA output dropped by 43 and 54%, respectively. In 5,7-DHT-lesioned animals, the KCl-evoked (100 mM) release represented less than 5% of the peak values obtained for the intact striata. Omission of Ca2+ from the perfusion fluid resulted in a 70% reduction in baseline 5-HT output, whereas the 5-HIAA levels remained unchanged. High concentrations of tetrodotoxin (TTX) added to the perfusion medium (5-50 microM) resulted in quite variable results. At a lower concentration (1 microM), however, TTX produced a 50% reduction in baseline 5-HT release, whereas the 5-HIAA output remained unchanged. The 5-HT reuptake blocker, indalpine, increased the extracellular levels of 5-HT sixfold when added to the perfusion medium (1 microM), and threefold when given intraperitoneally (5 mg/kg). By contrast, the 5-HIAA level remained unaffected during indalpine infusion.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

10.
Using the conflict drinking Vogel test in rats as a model we examined the anxiolytic-like activity of (S)-4-carboxyphenylglycine (S-4CPG), an antagonist of group I metabotropic glutamate receptors (mGlu receptors), of (RS)-a-methylserine-O-phosphate-monophenyl ester (MSOPPE), an antagonist of group II mGlu receptors, and of (2S,1'S,2'S)-2-(carboxycyclopropyl)glycine (L-CCG-I), an agonist of group II mGlu receptors. The obtained results indicate that intrahippocampal administration of S-4CPG and L-CCG-I, but not MSOPPE to rats produces a dose-dependent anticonflict effect, which is unrelated to the reduced perception of the stimulus or to an increased thirst drive. The hippocampus may be one of the neuroanatomical sites of the anxiolytic-like effects of either agent.  相似文献   

11.
The present study was undertaken to determine cerebrospinal fluid (CSF) and brain levels of norepinephrine (NE), serotonin (5-HT) and their metabolites--3,4-dihydroxyphenylacetic acid (DOPAC), 4-hydroxy-3-methoxyphenylacetic acid (HVA) and 5-hydroxyindole-3-acetic acid (5-HIAA)--in rats pretreated with 6-hydroxydopamine (6-OHDA) or 5,7-dihydroxytryptamine (5,7-DHT). In the 6-OHDA pretreated rats, both CSF and brain concentrations of NE, DOPAC and HVA sustained significant decreases as compared with those in non-treated rats. Positive and significant correlations between CSF and brain levels were observed in respect to NE, DOPAC and HVA. In 5,7-DHT pretreated rats, both CSF and brain concentrations of 5-HT and 5-HIAA were significantly decreased. A positive and significant correlation between CSF and brain levels in respect to 5-HT and 5-HIAA was observed. Further studies were carried out to determine ACh levels of both the CSF and the brain in microspheres (MS)-treated rats, which are used as a model of microembolization. The CSF ACh concentrations in MS-treated groups were significantly decreased as compared with those in non-treated rats. The brain ACh contents also tended to decrease in this group. A positive and significant correlation was observed between CSF and brain levels of ACh. These findings suggest that NE, 5-HT and ACh concentrations in the CSF are direct indications of central noradrenergic, serotonergic and cholinergic nerve activity, respectively.  相似文献   

12.
In humans and other primates low cerebrospinal fluid (CSF) levels of the major serotonin (5-HT) metabolite 5-hydroxyindoleacetic acid (5-HIAA) have been correlated to high aggressiveness. This finding forms the basis of the 5-HT deficiency hypothesis of aggression. Surprisingly, this correlation has not been confirmed in rodents so far, while manipulation studies aimed to investigate the link between 5-HT and aggressive behaviour are mostly carried out in rodents. In this study the relation between aggression and CSF monoamine and metabolite concentrations was investigated in male Wildtype Groningen rats. In sharp contrast to the hypothesis and our expectation, a clear positive correlation was found between the individual level of trait-like aggressiveness and CSF concentrations of 5-HT, 5-HIAA, norepinephrine (NE), dopamine (DA), and 3,4-dihydroxyphenylacetic acid (DOPAC). Shortly after the acute display of aggressive behaviour (as a state-like phenomenon), decreased 5-HT levels and an increase in 5-HIAA/5-HT ratio and NE concentrations were found. Surprisingly, pharmacological challenges known to influence 5-HT transmission and aggressive behaviour did not affect CSF 5-HT and 5-HIAA concentrations, only the NE level was increased. Lesioning 5-HT terminals by 5,7-dihydroxytryptamine (5,7-DHT) administration caused a decrease in CSF 5-HT and 5-HIAA, but without affecting aggressive behaviour. The observed positive correlation between CSF 5-HIAA and trait aggressiveness makes it questionable whether a direct extrapolation of neurobiological mechanisms of aggression between species is justified. Interpretation of CSF metabolite levels in terms of activity of neural substrates requires a far more detailed knowledge of the dynamics and kinetics of a neurotransmitter after its release.  相似文献   

13.
Rats received a unilateral lesion of the nucleus basalis magnocellularis (NBM) by infusion of ibotenic acid. In addition, the dorsal raphe nucleus was lesioned by infusion of 5,7-dihydroxytryptamine (5,7-DHT). The release of acetylcholine (ACh), choline, serotonin (5-HT) and 5-hydroxyindoleacetic acid (5-HIAA) was measured in the frontal neocortex by means of microdialysis. Lesions of the NBM, but not the raphe nucleus, reduced the release of ACh significantly (–47%). The release of 5-HT and 5-HIAA was reduced by raphe lesions (–44% and –79%), but not by NBM lesions. In no case did the combined lesion affect neurotransmitter release more than a single lesion. These results suggest that serotonergic projections from the dorsal raphe nucleus are not involved in tonic inhibition of ACh release in the neocortex.  相似文献   

14.
5-Hydroxytryptamine (5-HT; 3 x 10(-8)-1 x 10(-5)M) produced a dose-dependent increase in phosphatidylinositol/polyphosphoinositide (PI) turnover in mouse cortical slices, as measured by following production of 3H-labelled inositol phosphates (IPs) in the presence of 10 mM LiCl. Analysis of individual IPs, in slices stimulated for 45 min, indicated substantial increases in inositol monophosphate (IP1; 140%) and inositol bisphosphate (IP2; 95%) contents with smaller increases in inositol trisphosphate (IP3; 51%) and inositol tetrakisphosphate (IP4; 48%) contents. The increase in IP3 level was solely in the 1,3,4-isomer. This response was inhibited by the nonselective 5-HT antagonists methysergide, metergoline, and spiperone. It was also inhibited by the selective 5-HT2 antagonists ketanserin and ritanserin but not by the 5-HT1 antagonists isapirone, (-)-propranolol, or pindolol. 5-HT-stimulated IP formation was also unaltered by atropine, prazosin, and mepyramine. Lesioning brain 5-HT neurones using 5,7-dihydroxytryptamine (5,7-DHT; 50 micrograms i.c.v.) produced a 210% (p less than 0.01) increase in the number of 5-HT2-mediated head-twitches induced by 5-methoxy-N,N-dimethyltryptamine (2 mg/kg). However, 5,7-DHT lesioning had no effect on 5-HT-stimulated PI turnover in these mice. Similarly, an electroconvulsive shock (90 V, 1 s) given five times over a 10-day period caused an 85% (p less than 0.01) increase in head-twitch responses but no change in 5-HT-stimulated PI turnover. Decreasing 5-HT2 function by twice-a-day injection of 5 mg/kg of zimeldine or desipramine (DMI) produced 50% (p less than 0.01) and 56% (p less than 0.01), respectively, reductions in head-twitch behaviour.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
On Wistar rats characteristics were studied of investigating behaviour in the open field, of learning of conditioned food-reinforced reaction and also of BA and their metabolites content in various brain structures under local intracerebral injections of specific neurotoxins; 6-hydroxydopamine (6-OHDA) and 5,7-dihydroxytryptamine (5,7-DHT), abolishing correspondingly catecholaminergic and serotoninergic terminals. Bilateral injection of 6-OHDA in the neocortex led to a weakening of rats investigating activity in the open field and to an increase of the time of fulfillment of the forming of conditioned food-reinforced reaction. Administration of 5,7-DHT was accompanied by an increase of the investigating behaviour in the open field and a reduction of the duration of the forming of conditioned reaction. Administration of 6-OHDA to the neocortex caused a lowering of catecholamines level in the frontal area of the neocortex and the hippocampus. Analogous administration of 5,7-DHT elicited simultaneously with a deep level lowering of 5-HT and its metabolite in these structures, a change of catecholamines content which testifies to a lesser specificity of the neurotoxin 5,7-DHT in comparison with 6-OHDA. Structures lesion of serotoninergic and catecholaminergic systems of the frontal cortex and the hippocampus brought about by a local administration of 6-OHDA and 5,7-DHT in the neocortex was accompanied by differently directed changes in animals behaviour.  相似文献   

16.
Interactions between naloxone and the benzodiazepine, chlordiazepoxide (CDP), were investigated in rats in a Conditioned Suppression of Drinking Test (CSD), which is a model of experimental conflict behavior. Naloxone reversed the anticonflict activity of CDP in this test. Naloxone and picrotoxin were then tested against CDP in rats using the Geller Conflict Test, which is an operant model of conflict behavior. Both naloxone and picrotoxin antagonized the anticonflict effects of CDP. Naloxone and picrotoxin were also tested for their abilities to reverse CDP-induced loss of righting reflexes in mice. Both naloxone and picrotoxin antagonized the loss of righting reflexes induced by CDP. Naloxone had no effect on the loss of righting reflexes induced by barbiturates or meprobamate. These results suggest that naloxone may be useful in the management of benzodiazepine overdoses.  相似文献   

17.
E H Lee 《Life sciences》1987,40(7):635-642
Effects of apomorphine (APO) and clonidine (CLON) on the mesostriatal and mesolimbic serotonergic systems were examined in the present study. Both drugs selectively elevated serotonin (5-HT) concentrations in the dorsal raphe and the striatum without significantly altering 5-HT measures in the median raphe and the hippocampus. Apomorphine also increased tryptophan and 5-hydroxyindoleacetic acid (5-HIAA) levels in the dorsal raphe and 5-HIAA level in the striatum. Clonidine did not markedly alter tryptophan and 5-HIAA measures, while it decreased 5-HT turnover rate in both region, as indicated by the ratio of 5-HIAA/5-HT levels. Co-administration of APO and CLON, at doses of each drug exerted maximum effects on 5-HT alone, produced an additive effect on 5-HT in the dorsal raphe, while their effects on 5-HT and 5-HIAA in the striatum were counteracting each other. Effects of APO on 5-HT and 5-HIAA were attributed to the elevation of 5-HT precursor tryptophan, while effects of CLON on 5-HT and 5-HIAA were due to a decreased rate of 5-HT turnover. Therefore, the present results support the hypothesis that the additive effects of APO and CLON on dorsal raphe 5-HT are mediated through different receptors and neuropharmacological mechanisms.  相似文献   

18.
The cricket, Gryllus bimaculatus, shows a rhythm reversal from diurnal to nocturnal in about a week after the imaginal molt. In the present study, we investigated the role of serotonin (5-HT) in the rhythm reversal. The 5-HT content in the brain measured by HPLC equipped with an electrochemical detector gradually increased after the imaginal molt, and in fully nocturnal adults it was about 2 times of nymphal level. We then examined the effects of 5,7-dihydroxytryptamine (5,7-DHT), a selective neurotoxine to serotonergic neurons, on the locomotor rhythm. In most animals with 5,7-DHT (25 muM or 250 muM, 32.2 nl) injected into the brain, daytime activity significantly increased even after the rhythm reversal, while nighttime activity was not significantly affected, forming rather diurnal pattern. The serotonin content in the brain of animals injected with 250 muM 5,7-DHT was reduced by about 30%. On the basis of these results, possible involvement of 5-HT in the neural mechanism controlling the locomotor rhythm is discussed.  相似文献   

19.
Experiments on isolated strips of the rabbit uterus showed the stimulating effects of small doses of GABA, AOAA and phenibut on uterine contractility, while large doses exerted the reverse (suppressing) effects. Administration of bicuculline and picrotoxin before or after the above-mentioned drugs reduced their suppressing effects on uterine muscle contractility. The data postulate the involvement of GABAA and GABAB receptors in the drugs action on the rabbit uterus.  相似文献   

20.
The effects of the benzodiazepine antagonist CGS 8216 (2-phenylpyrazolo[4,3-c]quinoline-3(5H)-one) were examined in a thirsty rat conflict test in the presence and absence of pentobarbital. CGS 8216 (2.5-10 mg/kg i.p.) did not affect nonpunished responding, but doses of 5 and 10 mg/kg significantly reduced the rate of punished responding (i.e., the number of 3 second drinking episodes in a "shock" contingency). However, a dose of CGS 8216 which did not significantly alter punished responding (2.5 mg/kg) antagonized the anticonflict actions of pentobarbital. These observations suggest that while high doses of CGS 8216 may elicit an "anxiogenic" response in rodents, lower doses of CGS 8216 antagonize the anticonflict actions of a compound which has been shown to enhance benzodiazepine affinity in vitro. These data imply that the anticonflict actions of pentobarbital may be mediated through benzodiazepine receptors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号