首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We previously found the frequency distribution of the left ventricular (LV) effective afterload elastance (E(a)) of arrhythmic beats to be nonnormal or non-Gaussian in contrast to the normal distribution of the LV end-systolic elastance (E(max)) in canine in situ LVs during electrically induced atrial fibrillation (AF). These two mechanical variables determine the total mechanical energy [systolic pressure-volume area (PVA)] generated by LV contraction when the LV end-diastolic volume is given on a per-beat basis. PVA and E(max) are the two key determinants of the LV O(2) consumption per beat. In the present study, we analyzed the frequency distribution of PVA during AF by its chi(2), significance level, skewness, and kurtosis and compared them with those of other major cardiodynamic variables including E(a) and E(max). We assumed the volume intercept (V(0)) of the end-systolic pressure-volume relation needed for E(max) determination to be stable during arrhythmia. We found that PVA distributed much more normally than E(a) and slightly more so than E(max) during AF. We compared the chi(2), significance level, skewness, and kurtosis of all the complex terms of the PVA formula. We found that the complexity of the PVA formula attenuated the effect of the considerably nonnormal distribution of E(a) on the distribution of PVA along the central limit theorem. We conclude that mean (SD) of PVA can reliably characterize the distribution of PVA of arrhythmic beats during AF, at least in canine hearts.  相似文献   

2.
This review on the global cardiac function covers cardiac mechanics, energetics, and informatics that I have developed with my collaborators over the last 30 years in Japan and USA. We first established E(max) (end-systolic maximum elastance or pressure/volume ratio) as a new index of ventricular contractility using canine hearts. We then expanded the E(max) concept to PVA (systolic pressure-volume area consisting of external mechanical work and mechanical potential energy) as an innovative measure of total mechanical energy of ventricular contraction and discovered it to be a reliable determinant of ventricular energetics or O(2) consumption (V(O(2))). We have discovered that E(max) shifts the V(O(2))-PVA relation and the E(max) dependency (O(2) cost of E(max)) varies among different pathophysiological hearts. We also searched for the basis of E(max) in crossbridge behavior information contained in an X-ray diffraction of papillary muscle. Recently, we established a new integrative analysis to estimate total Ca(2+) recruited for excitation-contraction coupling in a beating heart using the E(max)-PVA-V(O(2)) information. These global, mechano-energetico-informatic approaches seem to facilitate better understanding of cardiac function, as required in the present post-genomic era when more physiomic knowledge is required not only in cardiac function but also in all other physiologic functions.  相似文献   

3.
We hypothesized that there are no differences in left ventricular (LV) mechanoenergetics between after hyperpolarized cardioplegic arrest by nicorandil (nicorandil arrest) and after depolarized one by high potassium chloride (KCl arrest). The aim of the present study was to test this hypothesis using LV curved end-systolic pressure-volume relation (ESPVR) and linear pressure-volume area (PVA)-myocardial oxygen consumption per beat (VO2) relation. All hearts underwent 30 min global ischemia (30 degrees C) after infusion of 5 ml of cardioplegia. Cardioplegia consisted of either 30 mmol/l KCl (7 hearts) or nicorandil (100 micromol/l) in Tyrode solution (6 hearts). After a 30-min blood reperfusion, ESPVR and VO2-PVA relation were assessed again. Mean end-systolic pressure (ESP(mLVV)) and mean PVA at midrange LV volume (PVA(mLVV)) significantly (P < 0.05) decreased to 79.1 +/- 13.4% and 85.4 +/- 17.1% of control after KCl arrest and to 85.3 +/- 14.8% and 86.4 +/- 16.9% of control after nicorandil arrest. There were no significant differences in both decreases of mean ESP(mLVV) and PVA(mLVV) between each arrest. The slopes of VO2-PVA relations were also unchanged after each arrest. There was a significant (P < 0.005) difference in the decreases of mean VO2 intercepts of VO2-PVA relations between post-KCl arrest (73.9 +/- 8.2% of control) and post-nicorandil arrest (99.2 +/- 10.1% of control), however. Proteolysis of alpha-fodrin due to Ca2+ overload was significantly marked after KCl arrest. The present results indicate that the total calcium handling in excitation-contraction coupling is transiently impaired after KCl arrest, whereas it is unchanged after nicorandil arrest. This suggests the possibility that nicorandil is a better cardioplegia than KCl.  相似文献   

4.
Energetic consequences of mechanical loads   总被引:2,自引:2,他引:0  
In this brief review, we have focussed largely on the well-established, but essentially phenomenological, linear relationship between the energy expenditure of the heart (commonly assessed as the oxygen consumed per beat, oxygen consumption (VO2)) and the pressure-volume-area (PVA, the sum of pressure-volume work and a specified 'potential energy' term). We raise concerns regarding the propriety of ignoring work done during 'passive' ventricular enlargement during diastole as well as the work done against series elasticity during systole. We question the common assumption that the rate of basal metabolism is independent of ventricular volume, given the equally well-established Feng- or stretch-effect. Admittedly, each of these issues is more of conceptual than of quantitative import. We point out that the linearity of the enthalpy-PVA relation is now so well established that observed deviations from linearity are often ignored. Given that a one-dimensional equivalent of the linear VO2-PVA relation exists in papillary muscles, it seems clear that the phenomenon arises at the cellular level, rather than being a property of the intact heart. This leads us to discussion of the classes of crossbridge models that can be applied to the study of cardiac energetics. An admittedly superficial examination of the historical role played by Hooke's Law in theories of muscle contraction foreshadows deeper consideration of the thermodynamic constraints that must, in our opinion, guide the development of any mathematical model. We conclude that a satisfying understanding of the origin of the enthalpy-PVA relation awaits the development of such a model.  相似文献   

5.
Heart temperature affects left ventricular (LV) function and myocardial metabolism. However, how and whether increasing heart temperature affects LV mechanoenergetics remain unclear. We designed the present study to investigate effects of increased temperature by 5 degrees C from 36 degrees C on LV contractility and energetics. We analyzed the LV contractility index (E(max)) and the relation between the myocardial oxygen consumption (MVO(2)) and the pressure-volume area (PVA; a measure of LV total mechanical energy) in isovolumically contracting isolated canine hearts during normothermia (NT) and hyperthermia (HT). HT reduced E(max) by 38% (P < 0.01) and shortened time to E(max) by 20% (P < 0.05). HT, however, altered neither the slope nor the unloaded MVO(2) of the MVO(2)-PVA relation. HT increased the oxygen cost of contractility (the incremental ratio of unloaded MVO(2) to E(max)) by 49%. When Ca(2+) infusion restored the reduced LV contractility during HT to the NT baseline level, the unloaded MVO(2) in HT exceeded the NT value by 36%. We conclude that HT-induced negative inotropism accompanies an increase in the oxygen cost of contractility.  相似文献   

6.
7.
A dynamical model of the left ventricle as a thick-walled cylinder contracting radially is used to derive the P-V (pressure-volume) relation in the left ventricular cavity during contraction. It is shown how the mathematical results derived could apply to experimental results.  相似文献   

8.
The new myofilament Ca2+ sensitizer levosimendan (LSM) is a positive inotropic and vasodilatory agent. Its beneficial effects have been demonstrated at rest in congestive heart failure (CHF). However, its effect during exercise (Ex) in CHF is unknown. We assessed the effects of LSM on left ventricular (LV) dynamics at rest and during Ex in eight conscious, instrumented dogs with pacing-induced CHF. After CHF, with dogs at rest, LSM decreased arterial elastance (Ea) and increased LV contractile performance as assessed by the slope of LV pressure-volume (P-V) relation. LSM caused a >60% increase in the peak rate of mitral flow (dV/dtmax) due to decreases in minimal LV pressure and the time constant of LV relaxation (tau). LV arterial coupling, quantified as the ratio of end-systolic elastance (Ees) to Ea, was increased from 0.47 to 0.85%. LV mechanical efficiency, determined as the ratio of stroke work to total P-V area, was improved from 0.54 +/- 0.09 to 0.61 +/- 0.07. These beneficial effects persisted during Ex after CHF. Compared with CHF Ex dogs, treatment with LSM prevented Ex-induced abnormal increases in mean left atrial pressure and end-diastolic pressure and decreased Ees/Ea. With LSM treatment during CHF Ex, the early diastolic portion of the LV P-V loop was shifted downward with decreased minimal LV pressure and tau values and a further augmented dV/dtmax. Ees/Ea improved, and mechanical efficiency further increased from 0.61 +/- 0.07 to 0.67 +/- 0.07, which was close to the value reached during normal Ex. After CHF, LSM produced arterial vasodilatation; improved LV relaxation and diastolic filling; increased contractility, LV arterial coupling, and mechanical efficiency; and normalized the response to Ex.  相似文献   

9.
Frequency potentiation of contractile function is a major mechanism of the increase in myocardial performance during exercise. In heart failure (HF), this positive force-frequency relation is impaired, and the abnormal left ventricular (LV)-arterial coupling is exacerbated by tachycardia. A myofilament Ca(2+) sensitizer, levosimendan, has been shown to improve exercise tolerance in HF. This may be due to its beneficial actions on the force-frequency relation and LV-arterial coupling (end-systolic elastance/arterial elastance, E(ES)/E(A)). We assessed the effects of therapeutic doses of levosimendan on the force-frequency relation and E(ES)/E(A) in nine conscious dogs after pacing-induced HF using pressure-volume analysis. Before HF, pacing tachycardia increased E(ES), shortened τ, and did not impair E(ES)/E(A) and mechanical efficiency (stroke work/pressure-volume area, SW/PVA). In contrast, after HF, pacing at 140, 160, 180, and 200 beat/min (bpm) produced smaller a increase of E(ES) or less shortening of τ, whereas E(ES)/E(A) (from 0.56 at baseline to 0.42 at 200 bpm) and SW/PVA (from 0.52 at baseline to 0.43 at 200 bpm) progressively decreased. With levosimendan, basal E(ES) increased 27% (6.2 mmHg/ml), τ decreased 11% (40.8 ms), E(ES)/E(A) increased 34% (0.75), and SW/PVA improved by 15% (0.60). During tachycardia, E(ES) further increased by 23%, 37%, 68%, and 89%; τ decreased by 9%, 12%, 15%, and 17%; and E(ES)/E(A) was augmented by 11%, 16%, 31%, and 33%, incrementally, with pacing rate. SW/PVA was improved (0.61 to 0.64). In conclusion, in HF, treatment with levosimendan restores the normal positive LV systolic and diastolic force-frequency relation and prevents tachycardia-induced adverse effect on LV-arterial coupling and mechanical efficiency.  相似文献   

10.
We have recently reported that exposure of rat hearts to high Ca(2+) produces a Ca(2+) overload-induced contractile failure in rat hearts, which was associated with proteolysis of alpha-fodrin. We hypothesized that contractile failure after ischemia-reperfusion (I/R) is similar to that after high Ca(2+) infusion. To test this hypothesis, we investigated left ventricular (LV) mechanical work and energetics in the cross-circulated rat hearts, which were subjected to 15 min global ischemia and 60 min reperfusion. Sixty minutes after I/R, mean systolic pressure-volume area (PVA; a total mechanical energy per beat) at midrange LV volume (mLVV) (PVA(mLVV)) was significantly decreased from 5.89 +/- 1.55 to 3.83 +/- 1.16 mmHg.ml.beat(-1).g(-1) (n = 6). Mean myocardial oxygen consumption per beat (Vo(2)) intercept of (Vo(2)-PVA linear relation was significantly decreased from 0.21 +/- 0.05 to 0.15 +/- 0.03 microl O(2).beat(-1).g(-1) without change in its slope. Initial 30-min reperfusion with a Na(+)/Ca(2+) exchanger (NCX) inhibitor KB-R7943 (KBR; 10 micromol/l) significantly reduced the decrease in mean PVA(mLVV) and Vo(2) intercept (n = 6). Although Vo(2) for the Ca(2+) handling was finally decreased, it transiently but significantly increased from the control for 10-15 min after I/R. This increase in Vo(2) for the Ca(2+) handling was completely blocked by KBR, suggesting an inhibition of reverse-mode NCX by KBR. alpha-Fodrin proteolysis, which was significantly increased after I/R, was also significantly reduced by KBR. Our study shows that the contractile failure after I/R is similar to that after high Ca(2+) infusion, although the contribution of reverse-mode NCX to the contractile failure is different. An inhibition of reverse-mode NCX during initial reperfusion protects the heart against reperfusion injury.  相似文献   

11.
The aim of the present study was to evaluate specifically left ventricular (LV) function in rat hearts as they transition from the normal to hypertrophic state and back to normal. Either isoproterenol (1.2 and 2.4 mg.kg(-1).day(-1) for 3 days; Iso group) or vehicle (saline 24 microl.day(-1) for 3 days; Sa group) was infused by subcutaneous implantation of an osmotic minipump. After verifying the development of cardiac hypertrophy, we recorded continuous LV pressure-volume (P-V) loops of in situ ejecting hypertrophied rat hearts. The curved LV end-systolic P-V relation (ESPVR) and systolic P-V area (PVA) were obtained from a series of LV P-V loops in the Sa and Iso groups 1 h or 2 days after the removal of the osmotic minipump. PVA at midrange LV volume (PVA(mLVV)) was taken as a good index for LV work capability (13, 15, 20, 21). However, in rat hearts during remodeling, whether PVA(mLVV) is a good index for LV work capability has not been determined yet. In the present study, in contrast to unchanged end-systolic pressure at midrange LV volume, PVA(mLVV) was significantly decreased by isoproterenol treatment relative to saline; however, these measurements were the same 2 days after pump removal. Simultaneous treatment with a beta(1)-blocker, metoprolol (24 mg.kg(-1).day(-1)), blocked the formation of cardiac hypertrophy and thus PVA(mLVV) did not decrease. The reversible changes in PVA(mLVV) reflect precisely the changes in LV work capability in isoproterenol-induced hypertrophied rat hearts mediated by beta(1)-receptors. These results indicate that the present approach may be an appropriate strategy for evaluating the effects of antihypertrophic and antifibrotic modalities.  相似文献   

12.
A model for the contraction of the left ventricle (LV) is developed for a spheroidal geometry. The classical force-length-velocity relationship for a single muscle fiber is assumed. The linear maximum pressure volume relationship (maximum elastance), a measure of muscle contractility, is further extended into a time-varying function. This is achieved by utilizing a mechanical activation function, assumed as half a sinusoidal wave, to describe the time-dependent isometric stress for the activated cardiac muscle. This, in turn, results in the time-varying elastance function and represents the instantaneous activity of the muscle contractile proteins. The model is tested for a set of boundary conditions that determine preload, afterload, and the inherent properties of the muscle, i.e., the contractility. The computed results of the isovolumic contraction, auxotonic contraction, and isovolumic relaxation are in agreement with the expected behavior of the LV. The relations between the simulated variations on preload, afterload, and contractility, and the set of performance indexes of the LV, are presented and discussed.  相似文献   

13.
Our laboratory has previously shown that it is possible to elucidate novel physiological relationships by analyzing the left ventricular pressure (P) contour in the phase [time derivative of P (dP/dt) vs. P] plane (Eucker SA, Lisauskas JB, Singh J, and Kovács SJ, J Appl Physiol 90: 2238-2244, 2001). To further characterize cardiac physiology, we introduce a method that combines P-volume (V) and phase plane-derived information in physiological hyperspace. From four-dimensional (P, V, dP/dt, time derivative of V) hyperspace, we consider three-dimensional embedding diagrams having dP/dt, P, and V as coordinate axes. Our method facilitates analysis of physiological function independent of inotropic state and permits assessment of P-V-based relationships in the phase plane and vice versa. To test feasibility, the method was applied to murine hemodynamic data. As predicted from first principles, the area of the P-V loop (ventricular external work) correlated closely (r = 0.97) with phase plane limit cycle area (external power). The P-V plane-derived linear (r = 0.99) end-systolic P-V relationship (maximum elastance) appeared linear in the phase plane (r = 0.85). We conclude that analysis of data in physiological hyperspace is generalizable: it facilitates quantitative characterization of ventricular systolic and diastolic function and can guide discovery of novel physiological relationships.  相似文献   

14.
15.
Transgenic animal models have provided a vital insight into the pathogenesis of cardiovascular disease, but functional cardiac assessment is often limited by high heart rates and small heart size. We hypothesized that in the presence of concentric left ventricular (LV) hypertrophy (LVH), load-sensitive measures of contractility may be misinterpreted as overestimating global cardiac function, because the normal function of excess sarcomeres may displace a greater volume of blood during contraction. Conductance catheter technology was used to evaluate pressure-volume (P-V) relationships as a load-insensitive method of assessing cardiac function in vivo in 18-wk-old heterozygous (mRen-2)27 transgenic rats (a model of LVH), compared with age-matched Sprague-Dawley (SD) controls. Anesthetized animals underwent echocardiography followed by P-V loop analysis. Blood pressure, body weight, and heart rate were higher in the Ren-2 rats (P < 0.05). Load-sensitive measures of systolic function, including fractional area change, fractional shortening, ejection fraction, and positive peak rate of LV pressure development, were greater in the Ren-2 than control animals (P < 0.05). Load-insensitive measures of systolic function, including the preload recruitable stroke work relationship and the end-systolic P-V relationship, were not different between Ren-2 and SD rats. Regional wall motion assessed by circumferential shortening velocity suggested enhanced circumferential fiber contractility in the Ren-2 rats (P = 0.02), but tissue Doppler imaging, used to assess longitudinal function, was not different between groups. Although conventional measures suggested enhanced systolic function in the Ren-2 rat, load-insensitive measures of contractility were not different between Ren-2 and SD animals. These findings suggest that the normal range of values for load-sensitive indexes of contractility needs to be altered according to the degree of LVH. To accurately identify changes in systolic function, we suggest that a combination of echocardiography with assessment of load-insensitive measures be used routinely.  相似文献   

16.
We hypothesized that calpain inhibitor-1 protected left ventricular (LV) function from ischemia-reperfusion injury by inhibiting the proteolysis of alpha-fodrin. To test this hypothesis, we investigated the effect of calpain inhibitor-1 on LV mechanical work and energetics in the cross-circulated rat hearts that underwent 15-min global ischemia and 60-min reperfusion (n = 9). After ischemia-reperfusion with calpain inhibitor-1, mean end-systolic pressure at midrange LV volume and systolic pressure-volume area (PVA) at midrange LV volume (total mechanical energy per beat) were hardly changed, although they were significantly (P < 0.01) decreased after ischemia-reperfusion without calpain inhibitor-1. Mean myocardial oxygen consumption per beat (Vo(2)) intercepts (PVA-independent Vo(2); Vo(2) for the total Ca(2+) handling in excitation-contraction coupling and basal metabolism) of Vo(2)-PVA linear relations were also unchanged after ischemia-reperfusion with calpain inhibitor-1, although they were significantly (P < 0.01) decreased after ischemia-reperfusion without calpain inhibitor-1. There were no significant differences in O(2) costs of LV PVA and contractility among the hearts in control (or normal) postischemia-reperfusion and postischemia-reperfusion with calpain inhibitor-1. Western blot analysis of alpha-fodrin and the immunostaining of 150-kDa products of alpha-fodrin confirmed that calpain inhibitor-1 almost completely protected the proteolysis of alpha-fodrin. Our results indicate that calpain inhibitor-1 prevents the heart from ischemia-reperfusion injury associated with the impairment of total Ca(2+) handling by directly inhibiting the proteolysis of alpha-fodrin.  相似文献   

17.

Background  

Ventricular function has conventionally been characterized using indexes of systolic (contractile) or diastolic (relaxation/stiffness) function. Systolic indexes include maximum elastance or equivalently the end-systolic pressure volume relation and left ventricular ejection fraction. Diastolic indexes include the time constant of isovolumic relaxation - and the end-diastolic pressure-volume relation. Conceptualization of ventricular contraction/relaxation coupling presents a challenge when mechanical events of the cardiac cycle are depicted in conventional pressure, P, or volume, V, terms. Additional conceptual difficulty arises when ventricular/vascular coupling is considered using P, V variables.  相似文献   

18.
To test the hypothesis that alterations in left ventricular (LV) mechanoenergetics and the LV inotropic response to afterload manifest early in the evolution of heart failure, we examined six anesthetized dogs instrumented with LV micromanometers, piezoelectric crystals, and coronary sinus catheters before and after 24 h of rapid ventricular pacing (RVP). After autonomic blockade, the end-systolic pressure-volume relation (ESPVR), myocardial O(2) consumption (MVO(2)), and LV pressure-volume area (PVA) were defined at several different afterloads produced by graded infusions of phenylephrine. Short-term RVP resulted in reduced preload with proportionate reductions in stroke work and the maximum first derivative of LV pressure but with no significant reduction in baseline LV contractile state. In response to increased afterload, the baseline ESPVR shifted to the left with maintained end-systolic elastance (E(es)). In contrast, after short-term RVP, in response to comparable increases in afterload, the ESPVR displayed reduced E(es) (P < 0.05) and significantly less leftward shift compared with control (P < 0.05). Compared with the control MVO(2)-PVA relation, short-term RVP significantly increased the MVO(2) intercept (P < 0.05) with no change in slope. These results indicate that short-term RVP produces attenuation of afterload-induced enhancement of LV performance and increases energy consumption for nonmechanical processes with maintenance of contractile efficiency, suggesting that early in the development of tachycardia heart failure, there is blunting of length-dependent activation and increased O(2) requirements for excitation-contraction coupling, basal metabolism, or both. Rather than being adaptive mechanisms, these abnormalities may be primary defects involved in the progression of the heart failure phenotype.  相似文献   

19.
The myocardial oxygen consumption (MVO(2)) to left ventricular pressure-volume area (PVA) relationship is assumed unaltered by substrates, despite varying phosphate-to-oxygen ratios and possible excess MVO(2) associated with fatty acid consumption. The validity of this assumption was tested in vivo. Left ventricular volumes and pressures were assessed with a combined conductance-pressure catheter in eight anesthetized pigs. MVO(2) was calculated from coronary flow and arterial-coronary sinus O(2) differences. Metabolism was altered by glucose-insulin-potassium (GIK) or Intralipid-heparin (IH) infusions in random order and monitored with [(14)C]glucose and [(3)H]oleate tracers. Profound shifts in glucose and fatty acid oxidation were observed. Contractility, coronary flow, and slope of the MVO(2)-PVA relationship were unchanged during GIK and IH infusions. MVO(2) at zero PVA (unloaded MVO(2)) was 0.16 +/- 0.13 J x beat(-1) x 100 g(-1) higher during IH compared with GIK infusion (P = 0.001), a 48% increase. The study demonstrates a marked energetic advantage of glucose oxidation in the myocardium, profoundly affecting the MVO(2)-PVA relationship. This may in part explain the "oxygen-wasting" effect of lipid-enhancing interventions such as adrenergic drugs and ischemia.  相似文献   

20.
Aging is associated with profound changes in the structure and function of the heart. A fundamental understanding of these processes, using relevant animal models, is required for effective prevention and treatment of cardiovascular disease in the elderly. Here, we studied cardiac performance in 4- to 5-mo-old (young) and 24- to 26-mo-old (old) Fischer 344 male rats using the Millar pressure-volume (P-V) conductance catheter system. We evaluated systolic and diastolic function in vivo at different preloads, including preload recruitable stroke work (PRSW), maximal slope of the systolic pressure increment (+dP/dt), and its relation to end-diastolic volume (+dP/dt-EDV) as well as the time constant of left ventricular pressure decay, as an index of relaxation. The slope of the end-diastolic P-V relation (EDPVR), an index of left ventricular stiffness, was also calculated. Aging was associated with decrease in left ventricular systolic pressure, +dP/dt, maximal slope of the diastolic pressure decrement, +dP/dt-EDV, PRSW, ejection fraction, stroke volume, cardiac and stroke work indexes, and efficiency. In contrast, total peripheral resistance, left ventricular end-diastolic volume, left ventricular end-diastolic pressure, and EDPVR were greater in aging than in young animals. Taken together, these data suggest that advanced aging is characterized by decreased systolic performance accompanied by delayed relaxation and increased diastolic stiffness of the heart in male Fischer 344 rats. P-V analysis is a sensitive method to determine cardiac function in rats.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号