首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Yong Y  Ding H  Fan Z  Luo J  Ke ZJ 《Neurochemical research》2011,36(3):367-374
Lithium has been used for the treatment of bipolar mood disorder and is shown to have neuroprotective properties. Since lithium inhibits the activity of glycogen synthase kinase 3 (GSK3) which is implicated in various human diseases, particularly neurodegenerative diseases, the therapeutic potential of lithium receives great attention. Parkinson’s disease (PD) is the second most common neurodegenerative disease, characterized by the pathological loss of dopaminergic neurons in the substantia nigra pars compacta (SNpc). Intranigral injection of the catecholaminergic neurotoxin 6-hydroxydopamine (6-OHDA) causes selective and progressive degeneration of dopaminergic neurons in SNpc, and is a commonly used animal model of PD. The current study was designated to determine whether lithium is effective in alleviating 6-OHDA-induced neurodegeneration in the SNpc of rats. We demonstrated that chronic subcutaneous administration of lithium inhibited GSK3 activity in the SNpc, which was evident by an increase in phosphorylation of GSK3β at serine 9, cyclin D1 expression, and a decrease in tau phosphorylation. 6-OHDA did not affect GSK3 activity in the SNpc. Moreover, lithium was unable to alleviate 6-OHDA-induced degeneration of SNpc dopaminergic neurons. The results suggest that GSK3 is minimally involved in the neurodegeneration in the rat 6-OHDA model of PD.  相似文献   

2.
SH-SY5Y cells, derived from a human neuroblastoma, were submitted to short- or long-term exposures to lithium carbonate concentrations ranging from 0.5 to 8 mM. Short-term exposures (4 days) to concentrations higher than 6 mM were found to reduce cell growth rate while exposure to 8 mM resulted in significant cell mortality. These ranges of concentrations induced an overexpression of (1) the HSP27 stress protein, (2) a 108 kDa protein (P108) recognized by an anti-phospho-HSP27(Ser78) antibody, and probably corresponding to a phosphorylated HSP27 tetramer, (3) a 105 kDa protein (P105), possible glycosylated or phosphorylated form of the GRP94 stress protein and (4) a phosphorylated (inactivated) form of glycogen synthase kinase (GSK3α/β) SH-SY5Y cells, when cultured in the presence of 0.5 mM lithium for 25 weeks, displayed interesting features as compared to controls: (1) higher cell growth rate, (2) increased resistance toward the inhibitory effects of high lithium concentrations on cell proliferation, (3) lower basal level of lipid peroxidation (TBARS) and improved tolerance to oxidative stress induced by high lithium concentrations, (5) reduced expression of monomeric HSP27 versus an increase of corresponding tetrameric protein (P108) and (6) overexpression of a 105 kDa protein (P105). In conclusion, our study suggests that chronic treatment (over several months) by therapeutic relevant lithium concentrations could favour neurogenesis, decrease the vulnerability of neuronal cells to oxidative stress and induce posttranslational changes of molecular chaperones.  相似文献   

3.
Spinal cord injury (SCI) is a type of long-term disability with a high morbidity rate in clinical settings for which there is no effective clinical treatment to date. Usually, lithium is used as a popular mood stabilizer. Recently, growing evidence has shown that lithium has clear neuroprotective effects after SCI, and the administration of lithium can effectively improve locomotor recovery. However, the exact neuroprotective mechanism of lithium is still not understood. Glycogen synthase kinase-3 beta (GSK3β) is a serine/threonine kinase that plays an important role in the neuroprotective effects of lithium both in vivo and in vitro. In this study, we discovered that lithium inhibits GSK3β activity through two different signaling pathways in spinal cord neurons. In the acute phase, lithium inhibited GSK3β activity by stimulating phosphorylation of AKT; in the chronic phase, we first discovered that lithium additionally upregulated the expression of Na+, K+-ATPase α1 (NKA α1), which had an inhibitory effect on GSK3β activity by inducing the expression of glucocorticoid inducible kinase 1 (SGK1). SGK1 is well known as a regulator of the GSK3β/β-catenin signaling pathway. Moreover, the suppressed activity of GSK3β increased the level of β-catenin in the cytoplasm, which gave rise to the translocation of the freely stabilized β-catenin to the nucleus. In addition, the accumulation of β-catenin in the nucleus had the benefits of neuronal survival. Hopefully our findings from this study are beneficial in revealing the neuroprotective mechanism of lithium and in offering novel targets for the development of new SCI therapeutic drugs.  相似文献   

4.
5.
Su Y  Ryder J  Li B  Wu X  Fox N  Solenberg P  Brune K  Paul S  Zhou Y  Liu F  Ni B 《Biochemistry》2004,43(22):6899-6908
Lithium is one of the most widely used mood-stabilizing agents for the treatment of bipolar disorder. Although the underlying mechanism(s) of this mood stabilizer remains controversial, recent evidence linking lithium to neurotrophic/neuroprotective effects (Choi and Sung (2000) 1475, 225-230; Davies et al. (2000) 351, 95-105) suggests novel benefits of this drug in addition to mood stabilization. Here, we report that both lithium as well as valproic acid (VPA) inhibit beta-amyloid peptide (Abeta) production in HEK293 cells stably transfected with Swedish amyloid precursor protein (APP)(751) and in the brains of the PDAPP (APP(V717F)) Alzheimer's disease transgenic mouse model at clinically relevant plasma concentrations. Both lithium and VPA are known to be glycogen synthase kinase-3 (GSK3) inhibitors. Our studies reveal that GSK3beta is a potential downstream kinase, which modulates APP processing because inhibition of GSK3 activity by either a dominant negative GSK3beta kinase-deficient construct or GSK3beta antisense oligonucleotide mimics lithium and VPA effects. Moreover, lithium treatment abolished GSK3beta-mediated Abeta increase in the brains of GSK3beta transgenics and reduced plaque burden in the brains of the PDAPP (APP(V717F)) transgenic mice.  相似文献   

6.
Pramipexole (PPX), a dopamine (DA) receptor D3 preferring agonist, has been used as monotherapy or adjunct therapy to treat Parkinson’s disease (PD) for many years. Several in vitro and in vivo studies in neurotoxin-induced DA neuron injury models have reported that PPX may possess neuroprotective properties. The present study is to evaluate the neuroprotection of PPX in a sustained DA neuron degeneration model of PD induced by ubiquitin–proteasome system (UPS) impairment. Adult C57BL/6 mice were treated with PPX (low dose 0.1 mg/kg or high dose 0.5 mg/kg, i.p, twice a day) started 7 days before, and continued after microinjection of proteasome inhibitor lactacystin in the medial forebrain bundle for a total 4 weeks. Animal behavior observation, and pathological and biochemical assays were conducted to determine the neuroprotective effects of PPX. We report here that PPX treatment significantly improves rotarod performance, attenuates DA neuron loss and striatal DA reduction, and alleviates proteasomal inhibition and microglial activation in the substantia nigra of lactacystin-lesioned mice. PPX can increase the levels of brain-derived neurotrophic factor and glial cell line-derived neurotrophic factor and induce an activation of autophagy. Furthermore, pretreatment with D3 receptor antagonist U99194 can significantly block the PPX-mediated neuroprotection. These results suggest that multiple molecular pathways may be attributed to the neuroprotective effects of PPX in the UPS impairment model of PD.  相似文献   

7.
Fragile X syndrome (FXS) is the most common form of inherited mental retardation and is one of the few known genetic causes of autism. FXS results from the loss of Fmr1 gene function; thus, Fmr1 knockout mice provide a model to study impairments associated with FXS and autism and to test potential therapeutic interventions. The inhibitory serine phosphorylation of glycogen synthase kinase-3 (GSK3) is lower in brain regions of Fmr1 knockout mice than wild-type mice and the GSK3 inhibitor lithium rescues several behavioral impairments in Fmr1 knockout mice. Therefore, we examined if the serine phosphorylation of GSK3 in Fmr1 knockout mice also was altered outside the brain and if administration of lithium ameliorated the macroorchidism phenotype. Additionally, since GSK3 regulates numerous functions of the immune system and immune alterations have been associated with autism, we tested if immune function is altered in Fmr1 knockout mice. The inhibitory serine phosphorylation of GSK3 was significantly lower in the testis and liver of Fmr1 knockout mice than wild-type mice, and chronic lithium treatment reduced macroorchidism in Fmr1 knockout mice. No alterations in peripheral immune function were identified in Fmr1 knockout mice. However, examination of glia, the immune cells of the brain, revealed reactive astrocytes in several brain regions of Fmr1 knockout mice and treatment with lithium reduced this in the striatum and cerebellum. These results provide further evidence of the involvement of dysregulated GSK3 in FXS, and demonstrate that lithium administration reduces macroorchidism and reactive astrocytes in Fmr1 knockout mice.  相似文献   

8.
Shi C  Zheng DD  Wu FM  Liu J  Xu J 《Neurochemical research》2012,37(2):298-306
Bilobalide (BB), a sesquiterpenoid extract of Ginkgo biloba leaves, has been demonstrated to have neuroprotective effects. The neuroprotective mechanisms were suggested to be associated with modulation of intracellular signaling cascades such as the phosphatidyl inositol 3-kinase (PI3K) pathway. Since some members of intracellular signalling pathways such as PI3K have been demonstrated to be involved in amyloid precursor protein (APP) processing, the present study investigated whether BB has an influence on the β-secretase-mediated APP cleavage via PI3K-dependent pathway. Using HT22 cells and SAMP8 mice (a senescence-accelerated strain of mice), this study showed that BB treatment reduced generation of two β-secretase cleavage products of APP, the amyloid β-peptide (Aβ) and soluble APPβ (sAPPβ), via PI3K-dependent pathway. Additionally, glycogen synthase kinase 3β (GSK3β) signaling might be involved in BB-induced Aβ reduction as a downstream target of the activated PI3K pathway. BB showed no significant effects on β-site APP cleaving enzyme 1 (BACE-1) or γ-secretase but inhibited the β-secretase activity of another protease cathepsin B, suggesting that BB-induced Aβ reduction was probably mediated through modulation of cathepsin B rather than BACE-1. Similarly, inhibition of GSK3β did not affect BACE-1 activity but decreased cathepsin B activity, suggesting that the PI3K-GSK3β pathway was probably involved in BB-induced Aβ reduction. Increasing evidence suggests that decreasing Aβ production in the brain via modulation of APP metabolism should be beneficial for the prevention and treatment of Alzheimer’s disease (AD). BB may offer such an approach to combat AD.  相似文献   

9.
锂是人体内的一种微量元素且以化合物的形式广泛存在于自然界。作为一种古老的治疗精神疾病方面的药物,锂盐被用来治疗双相情感障碍已超过60年,而现在锂盐在临床上表现出来的新应用已经越来越引起医学界的广泛重视。现代研究表明,锂盐是一种强大的糖原合成酶激酶-3(GSK-3β)抑制剂,锂盐除对脑细胞过度活动起抑制作用外,还具有营养神经和保护神经、抗炎、抗氧化、抗癌、免疫调节以及对甲状腺功能亢进的治疗作用。锂盐化学结构相对简单,而且目前人们对锂盐的使用经验及对锂离子的血药浓度监测手段已日趋成熟,所以锂盐具有相当好的临床应用前景,未来更进一步加大对锂盐的临床应用及作用机制的研究力度。现就锂盐新发现的作用机制及临床应用作一综述。  相似文献   

10.
Reminiscent of neural repair, following podocyte depletion, remnant-surviving podocytes exhibit a considerable adaptive capacity to expand and cover the denuded renal glomerular basement membrane. Microtubules, one of the principal cytoskeletal components of podocyte major processes, play a crucial role in podocyte morphogenesis and podocyte process outgrowth, branching, and elongation. Here, we demonstrated that the microtubule-associated proteins Tau and collapsin response mediator protein (CRMP) 2, key regulators of microtubule dynamics, were abundantly expressed by glomerular podocytes in vivo and in vitro, interacted with glycogen synthase kinase (GSK)3β, and served as its putative substrates. GSK3β overactivity induced by adriamycin injury or by a constitutively active mutant of GSK3β augmented phosphorylation of Tau and CRMP2, concomitant with microtubule depolymerization, cell body shrinkage, and shortening of podocyte processes. Conversely, inhibition of GSK3β by a dominant negative mutant or by lithium, a Food and Drug Administration-approved neuroprotective mood stabilizer, diminished Tau and CRMP2 phosphorylation, resulting in microtubule polymerization, podocyte expansion, and lengthening of podocyte processes. In a mouse model of adriamycin-induced podocyte depletion and nephropathy, delayed administration of a single low dose of lithium attenuated proteinuria and ameliorated progressive glomerulosclerosis despite no correction of podocytopenia. Mechanistically, lithium therapy obliterated GSK3β overactivity, mitigated phosphorylation of Tau and CRMP2, and enhanced microtubule polymerization and stabilization in glomeruli in adriamycin-injured kidneys, associated with elongation of podocyte major processes. Collectively, our findings suggest that the GSK3β-dictated podocyte microtubule dynamics might serve as a novel therapeutic target to reinforce the compensatory glomerular adaptation to podocyte loss.  相似文献   

11.
Bipolar disorder is a devastating disease with a lifetime incidence of about 1% in the general population. Suicide is the cause of death in 10 to 15% of patients and in addition to suicide, mood disorders are associated with many other harmful health effects. Mood stabilizers are medications used to treat bipolar disorder. In addition to their therapeutic effects for the treatment of acute manic episodes, mood stabilizers are useful as prophylaxis against future episodes and as adjunctive antidepressant medications. The most established and investigated mood-stabilizing drugs are lithium and valproate but other anticonvulsants (such as carbamazepine and lamotrigine) and antipsychotics are also considered as mood stabilizers. Despite the efficacy of these diverse medications, their mechanisms of action remain, to a great extent, unknown. Lithium’s inhibition of some enzymes, such as inositol monophosphatase and gycogen synthase kinase-3, probably results in its mood-stabilizing effects. Valproate may share its anticonvulsant target with its mood-stabilizing target or may act through other mechanisms. It has been shown that lithium, valproate, and/or carbamazepine regulate numerous factors involved in cell survival pathways, including cyclic adenine monophospate response element-binding protein, brain-derived neurotrophic factor, bcl-2, and mitogen-activated protein kinases. These drugs have been suggested to have neurotrophic and neuroprotective properties that ameliorate impairments of cellular plasticity and resilience underlying the pathophysiology of mood disorders. This article also discusses approaches to develop novel treatments specifically for bipolar disorder.  相似文献   

12.
Alcohol consumption during pregnancy is a significant public health problem and may result in a wide range of adverse outcomes for the child. The developing central nervous system (CNS) is particularly susceptible to ethanol toxicity. Children with fetal alcohol spectrum disorders (FASD) have a variety of cognitive, behavioral, and neurological impairments. FASD currently represents the leading cause of mental retardation in North America ahead of Down syndrome and cerebral palsy. Ethanol exposure during development causes multiple abnormalities in the brain such as permanent loss of neurons, ectopic neurons, and alterations in synaptogenesis and myelinogenesis. These alcohol-induced structural alterations in the developing brain underlie many of the behavioral deficits observed in FASD. The cellular and molecular mechanisms of ethanol neurotoxicity, however, remain unclear. Ethanol elicits cellular stresses, including oxidative stress and endoplasmic reticulum stress. Glycogen synthase kinase 3β (GSK3β), a multifunctional serine/threonine kinase, responds to various cellular stresses. GSK3β is particularly abundant in the developing CNS, and regulates diverse developmental events in the immature brain, such as neurogenesis and neuronal differentiation, migration, and survival. Available evidence indicates that the activity of GSK3β in the CNS is affected by ethanol. GSK3β inhibition provides protection against ethanol neurotoxicity, whereas high GSK3β activity/expression sensitizes neuronal cells to ethanol-induced damages. It appears that GSK3β is a converging signaling point that mediates some of ethanol’s neurotoxic effects.  相似文献   

13.
There are many studies about iron-induced neuronal hyperactivity and oxidative stress. Some reports also showed that iron levels rise in the brain in some neurodegenerative diseases such as Parkinson’s (PD) and Alzheimer’s disease (AD). It has been suggested that excessive iron level increases oxidative stress and causes neuronal death. Tocopherols act as a free radical scavenger when phenoxylic head group encounters a free radical. We have aimed to identify the effect of α-tocopherol (Vitamin E) on iron-induced neurotoxicity. For this reason, rats were divided into three groups as control, iron, and iron + α-tocopherol groups. Iron chloride (200 mM in 2.5 μl volume) was injected into brain ventricle of iron and iron + α-tocopherol group rats. Same volume of saline (2.5 μl) was given to the rats belonging to control group. Rats of iron + α-tocopherol group received intraperitoneally (i.p.) α-tocopherol (100 mg/kg/day) for 10 days. After 10 days, rats were perfused intracardially under deep urethane anesthesia. Removed brains were processed using standard histological techniques. The numbers of neurons in hippocampus and substantia nigra of all rats were estimated by stereological techniques. Results of present study show that α-tocopherol decreased hippocampal and nigral neuron loss from 51.7 to 12.1% and 41.6 to 17.8%, respectively. Findings of the present study suggest that α-tocopherol may have neuroprotective effects against iron-induced hippocampal and nigral neurotoxicity and it may have a therapeutic significance for neurodegenerative diseases involved iron.  相似文献   

14.
15.

Background  

A derived peptide from activity-dependent neurotrophic factor (ADNF-9) has been shown to be neuroprotective in the fetal alcohol exposure model. We investigated the neuroprotective effects of ADNF-9 against alcohol-induced apoptosis using TUNEL staining. We further characterize in this study the proteomic architecture underlying the role of ADNF-9 against ethanol teratogenesis during early fetal brain development using liquid chromatography in conjunction with tandem mass spectrometry (LC-MS/MS).  相似文献   

16.
Human neurodegenerative disorders such as Alzheimer’s disease, Parkinson’s disease, and amyotrophic lateral sclerosis have been termed “protein misfolding disorders.” Upregulation of heat shock proteins that target misfolded aggregation-prone proteins has been proposed as a potential therapeutic strategy to counter neurodegenerative disorders. The heat shock protein 70 (HSP70) family is well characterized for its cytoprotective effects against cell death and has been implicated in neuroprotection by overexpression studies. HSP70 family members exhibit sequence and structural conservation. The significance of the multiplicity of HSP70 proteins is unknown. In this study, coimmunoprecipitation was employed to determine if association of HSP70 family members occurs, including Hsp70B′ which is present in the human genome but not in mouse and rat. Heteromeric complexes of Hsp70B′, Hsp70, and Hsc70 were detected in differentiated human SH-SY5Y neuronal cells. Hsp70B′ also formed complexes with Hsp40 suggesting a common co-chaperone for HSP70 family members.  相似文献   

17.
Neurological and cognitive impairment persist in more than 20% of cerebral malaria (CM) patients long after successful anti-parasitic treatment. We recently reported that long term memory and motor coordination deficits are also present in our experimental cerebral malaria model (ECM). We also documented, in a murine model, a lack of obvious pathology or inflammation after parasite elimination, suggesting that the long-term negative neurological outcomes result from potentially reversible biochemical and physiological changes in brains of ECM mice, subsequent to acute ischemic and inflammatory processes. Here, we demonstrate for the first time that acute ECM results in significantly reduced activation of protein kinase B (PKB or Akt) leading to decreased Akt phosphorylation and inhibition of the glycogen kinase synthase (GSK3β) in the brains of mice infected with Plasmodium berghei ANKA (PbA) compared to uninfected controls and to mice infected with the non-neurotrophic P. berghei NK65 (PbN). Though Akt activation improved to control levels after chloroquine treatment in PbA-infected mice, the addition of lithium chloride, a compound which inhibits GSK3β activity and stimulates Akt activation, induced a modest, but significant activation of Akt in the brains of infected mice when compared to uninfected controls treated with chloroquine with and without lithium. In addition, lithium significantly reversed the long-term spatial and visual memory impairment as well as the motor coordination deficits which persisted after successful anti-parasitic treatment. GSK3β inhibition was significantly increased after chloroquine treatment, both in lithium and non-lithium treated PbA-infected mice. These data indicate that acute ECM is associated with abnormalities in cell survival pathways that result in neuronal damage. Regulation of Akt/GSK3β with lithium reduces neuronal degeneration and may have neuroprotective effects in ECM. Aberrant regulation of Akt/GSK3β signaling likely underlies long-term neurological sequelae observed in ECM and may yield adjunctive therapeutic targets for the management of CM.  相似文献   

18.
Overactivation of GSK3β (glycogen synthase kinase-3β) and downregulation of PP2A (protein phosphatase-2A) have been proposed to be involved in the abnormal tau phosphorylation and aggregation in Alzheimer’s disease (AD). GSK3β and PP2A signaling pathways were reported to be interconnected. Targeting tau kinases was suggested to represent a therapeutic strategy for AD. Here, tau phosphorylation and neuronal apoptosis were induced in cortical cultured neurons by the inhibition of PP2A by okadaic acid (OKA). In this in vitro model of ‘tau pathology’ and neurodegeneration, we tested whether GSK3β and other tau kinases including DYRK1A and CDK5 were implicated. Our results show that the inhibitors of GSK3β, lithium and 6-BIO (6-bromoindirubin-3′-oxime), prevented OKA-induced tau phosphorylation and neuronal apoptosis. The implication of GSK3β in these OKA-induced effects was confirmed by its silencing by hairpin siRNA. By contrast, inhibition of DYRK1A (dual-specificity tyrosine-phosphorylation regulated kinase-1A) and CDK5 (cyclin-dependent kinase-5) reversed OKA-induced tau phosphorylation at certain sites but failed to prevent neuronal apoptosis. These results indicate that OKA-induced effects, especially neuronal apoptosis, are preferentially mediated by GSK3β. Furthermore, since chronic exposure to lithium and 6-BIO might be deleterious for neurons, we tested the effect of a new 6-BIO derivative, 6-BIBEO (6-bromoindirubin-3′-(2-bromoethyl)-oxime), which is much less cytotoxic and more selectively inhibits GSK3β compared to lithium and 6-BIO. We show that 6-BIBEO efficiently reversed OKA-induced tau phosphorylation and neuronal apoptosis. It will be interesting to test neuroprotection by 6-BIBEO in an in vivo model of tau pathology and neurodegeneration.  相似文献   

19.

Background  

Multipotent stem cells exist within adipose tissue throughout life. An abnormal recruitment of these adipose precursor cells could participate to hyperplasia of adipose tissue observed in severe obesity or to hypoplasia of adipose tissue observed in lipodystrophy. Therefore, pharmacological molecules that control the pool of stem cells in adipose tissue are of great interest. Glycogen Synthase Kinase (GSK) 3 has been previously described as involved in differentiation of preadipose cells and might be a potential therapeutic target to modulate proliferation and differentiation of adipocyte precursors. However, the impact of GSK3 inhibition on human adipose-derived stem cells remained to be investigated. The aim of this study was to investigate GSK3 as a possible target for pharmacological inhibition of stem cell adipogenesis. To reach this goal, we studied the effects of pharmacological inhibitors of GSK3, i.e. lithium chloride (LiCl) and BIO on proliferation and adipocyte differentiation of multipotent stem cells derived from human adipose tissue.  相似文献   

20.
Reduced brain input of serum insulin-like growth factor I (IGF-I), a potent neurotrophic peptide, may be associated with neurodegenerative processes. Thus, analysis of the mechanisms involved in passage of blood-borne IGF-I into the brain may shed light onto pathological mechanisms in neurodegeneration and provide new drug targets. A site of entrance of serum IGF-I into the brain is the choroid plexus. The transport mechanism for IGF-I in this specialized epithelium involves the IGF-I receptor and the membrane multicargo transporter megalin/LRP2. We have now analyzed this process in greater detail and found that the IGF-I receptor interacts with the transmembrane region of megalin, whereas the perimembrane domain of megalin is required for IGF-I internalization. Furthermore, a GSK3 site within the Src homology 3 domain of the C-terminal region of megalin is a key regulator of IGF-I transport. Thus, inhibition of GSK3 markedly increased internalization of IGF-I, whereas mutation of this GSK3 site abrogated this increase. Notably, oral administration of a GSK3 inhibitor to adult wild-type mice or to amyloid precursor protein/presenilin 1 mice modeling Alzheimer amyloidosis significantly increased brain IGF-I content. These results indicate that pharmacological modulation of IGF-I transport by megalin may be used to increase brain availability of serum IGF-I. Interestingly, GSK3 inhibitors such as those under development to treat Alzheimer disease may show therapeutic efficacy in part by increasing brain IGF-I levels, an effect already reported for other neuroprotective compounds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号