首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Noncentrosymmetric π conjugated systems with suitable electron donor acceptor groups play a crucial role in material NLO activity. The influence of an electron donating mono substituent at the para position of the phenylene ring of chalcone was investigated as a resource for second harmonic generation. The geometrical optimization of 11 electron donating group substituted chalcones were performed using density functional theory at the B3LYP/6-311G(d,p) level and compared with experimental geometrical parameters of five reported chalcones. All the derivatives are transparent to visible radiation as shown by the electronic absorption spectra investigated by the TDDFT-CAM B3LYP/6-311G(d,p) method, and the maximum absorption wavelength was due to the πPhB?→?π* transition. The first order hyperpolarizability βtot, calculated using the CAM B3LYP/6-311G(d,p) method, increases with the electron donating ability of the substituent, and the largest βtot was observed for dimethylamino substituent. The Hammett substituent constant (σp) shows good linear correlation with β, λmax, and Egap in the ground state. The Brown constant (σp+) was better correlated indicating the polarization of carbonyl group in the excited state. Frontier molecular orbitals also reveal the valence electron excitation. Correlation of σp with various parameters was analyzed to assess the property interrelationship with electronic reorganization in the molecule. The electronic structures of molecular fragments were described in terms of natural bond orbital analysis, which shows intramolecular interactions.  相似文献   

2.
Potential energy (PE) curves for the intramolecular proton transfer in the ground (GSIPT) and excited (ESIPT) states of 3-hydroxy-flavone (3HF) and 5-hydroxy-flavone (5HF) were studied using DFT/B3LYP (6-31G (d,p)) and TD-DFT/B3LYP (6-31G (d,p)) level of theory respectively. Our calculations suggest the non-viability of ground state intramolecular proton transfer for both the compounds. Calculated PE curves of 3HF for the ground and excited singlet states proton transfer process explain its four state laser diagram. Excited states PE calculations support the ESIPT process to both 5HF and 3HF. The difference in ESIPT emission process of 3HF and 5HF have been explained in terms of HOMO and LUMO electron distribution of the enol and keto tautomer of these two compounds.  相似文献   

3.
Using TD-PBE1PBE/6-31G* and TD-B3LYP/6-31G* approaches, we calculated the absorption and emission spectra of 1,8-naphthalmide derivatives in gas-phase. The geometric structures optimized by HF/6-31G* and B3LYP/6-31G* models and the absorption and emission maxima were in good agreement with existed experimental measurements. It was also found that the lowest singlet states corresponded mainly to the electronic transition from the highest occupied orbital (HOMO) to the lowest unoccupied molecular orbital (LUMO). Intramolecular charge transfer occurred between substituents and naphthalimic rings. Study also showed that most compounds with low absorption excitation energies had low vertical ionization potentials. Finally, the delocalization electronic energies between substituents and naphthalimic rings of isomers were investigated to obtain further sight into their stability.  相似文献   

4.
The electronic and structural properties of pyrrolic ring derivatives were studied using density functional theory (DFT) in terms of their application as organic semiconductor materials in photovoltaic devices. The B3LYP hybrid functional in combination with Pople type 6-31G(d) basis set with a polarization function was used in order to determine the optimized geometries and the electronic properties of the ground state, while transition energies and excited state properties were obtained from time-dependent (TD)-DFT with B3LYP/6-31G(d) calculation. The investigation of pyrrolic derivatives formed by the arrangement of several monomeric units revealed that three-dimensional (3D) conjugated architectures in which the combination of a triphenylamine (TPA) core with π-conjugated rings attached to the core, present the best geometric and electronic characteristics for use as an organic semiconductor material. The highest occupied molecular orbital (HOMO) − lowest unoccupied molecular orbital (LUMO) energy gap was decreased in 3D-structures that extend the absorption spectrum toward longer wavelengths, revealing a feasible intramolecular charge transfer process in these systems. All calculations in this work were performed using the Gaussian 03 W software package.  相似文献   

5.
The effect of substitution by the fluorine atom at different positions of D-glucose was investigated by quantum chemical calculation of the low-energy conformers. These were obtained through the Random conformational search method. The geometries of conformers were optimized at the RHF/6-31(d) level, then reoptimization and vibrational analysis were performed at the B3LYP/6-31+G(d) level. Single-point energies were calculated at the B3LYP/6-311++G(2d,2p) level. The free energies of solvation in water were calculated utilizing the AM1-SM5.4 solvation model. For all substitution positions, the ring conformation does not change much, and the pyranoid 4C1 conformers are dominant, while variations in the substitution site result in different effects in the network of hydrogen bonds, anomeric effect, the solvation free energy, and the ratio of alpha- and beta-anomers.  相似文献   

6.
Density functional calculations of the structure, atomic charges, molecular electrostatic potential and thermodynamic functions have been performed at B3LYP/6-31G(d,p) level of theory for the title compound (E)-2-[(2-hydroxy-5-nitrophenyl)-iminiomethyl]-4-nitrophenolate. The results show that the phenolate oxygen atom and all of the nitro group oxygen atoms have bigger negative charges, and the coordination ability of these atoms differs in different solvents. The energetic behavior of the title compound in solvent media has been examined using B3LYP method with the 6-31G(d,p) basis set by applying the Onsager method and the isodensity polarized continuum model (IPCM). The results obtained with these methods reveal that the IPCM method yielded a more stable structure than Onsager’s method. In addition, natural bond orbital and frontier molecular orbital analysis of the title compound were performed using the B3LYP/6-31G(d,p) method.  相似文献   

7.
This study examined absorption properties of 2-styrylpyridine, trans-2-(m-cyanostyryl)pyridine, trans-2-[3-methyl-(m-cyanostyryl)]pyridine, and trans-4-(m-cyanostyryl)pyridine compounds based on theoretical UV/Vis spectra, with comparisons between time-dependent density functional theory (TD-DFT) using B3LYP, PBE0, and LC-ωPBE functionals. Basis sets 6–31G(d), 6–31G(d,p), 6–31+G(d,p), and 6–311+G(d,p) were tested to compare molecular orbital energy values, gap energies, and maxima absorption wavelengths. UV/Vis spectra were calculated from fully optimized geometry in B3LYP/6–311+G(d,p) in gas phase and using the IEFPCM model. B3LYP/6–311+G(d,p) provided the most stable form, a planar structure with parameters close to 2-styrylpyridine X-ray data. Isomeric structures were evaluated by full geometry optimization using the same theory level. Similar energetic values were found: ~4.5 kJ?mol?1 for 2-styrylpyridine and ~1 kJ?mol?1 for derivative compound isomers. The 2-styrylpyridine isomeric structure differed at the pyridine group N-atom position; structures considered for the other compounds had the cyano group attached to the phenyl ring m-position equivalent. The energy difference was almost negligible between m-cyano-substituted molecules, but high energy barriers existed for cyano-substituted phenyl ring torsion. TD-DFT appeared to be robust and accurate approach. The B3LYP functional with the 6–31G(d) basis set produced the most reliable λmax values, with mean errors of 0.5 and 12 nm respect to experimental values, in gas and solution, respectively. The present data describes effects on the λmax changes in the UV/Vis absorption spectra of the electron acceptor cyano substituent on the phenyl ring, the electron donor methyl substituent, and the N-atom position on the electron acceptor pyridine ring, causing slight changes respect to the 2-styrylpyridine title compound.  相似文献   

8.
New research and development efforts using computational chemistry in studying an assessment of the validity of different quantum chemical methods to describe the molecular and electronic structures of some corrosion inhibitors were introduced. The standard and the highly accurate CCSD method with 6-311++G(d,p), ab initio calculations using the HF/6-31G++(d,p) and MP2 with 6-311G(d,p), 6-31++G(d,p), and 6-311++G(2df,p) methods as well as DFT method at the B3LYP, BP86, B3LYP*, M06L, and M062x/6-31G++(d,p) basis set level were performed on some triazole derivatives and sulfur containing compounds used as corrosion inhibitors. Quantum chemical parameters, such as the energy of the highest occupied molecular orbital energy (EHOMO), the energy of the lowest unoccupied molecular orbital energy (ELUMO), energy gap (ΔE), dipole moment (μ), sum of total negative charges (TNC), chemical potential (Pi), electronegativity (χ), hardness (η), softness (σ), local softness (s), Fukui functions (f +,f ?), electrophilicity (ω), the total energy change (?ET) and the solvation energy (S.E), were calculated. Furthermore, the accuracy and the applicability of these methods were estimated relative to the highest accuracy and standard CCSD with 6-311++G(d,p) method. Good correlations between the quantum chemical parameters and the corresponding inhibition efficiency (IE%) were found.  相似文献   

9.
The Schiff base compound, 2-[(4-Fluorophenylimino)methyl]-3,5-dimethoxyphenol, has been synthesized and characterized by IR, electronic spectroscopy, and X-ray single-crystal determination. Molecular geometry from X-ray experiment of the title compound in the ground state have been compared using the Hartree-Fock (HF) and density functional method (B3LYP) with 6–31G(d) basis set. Calculated results show that density functional theory (DFT) and HF can well reproduce the structure of the title compound. The energetic behavior of the title compound in solvent media has been examined using B3LYP method with the 6–31G(d) basis set by applying the polarizable continuum model (PCM). The total energy of the title compound decrease with the increasing polarity of the solvent. By using TD-DFT and TD-HF methods, electronic absorption spectra of the title compound have been predicted and a good agreement with the TD-DFT method and the experimental ones is determined. In addition, DFT calculations of the title compound, molecular electrostatic potential (MEP), natural bond orbital (NBO), and thermodynamic properties were performed at B3LYP/6–31G(d) level of theory.  相似文献   

10.
The Schiff base compound, N-n-Decyl-2-oxo-5-nitro-1-benzylidene-methylamine, has been -synthesized and characterized by IR, electronic spectroscopy, and X-ray single-crystal determination. Molecular geometry from X-ray experiment of the title compound in the ground state have been compared using the Hartree-Fock (HF) and density functional method (B3LYP) with 6-31G(d) basis set. Calculated results show that density functional theory (DFT) at B3LYP/6-31G(d) level can well reproduce the structure of the title compound. To investigate the solvent effect for the atomic charge distributions of the title compound, self-consistent reaction field theory with Onsager reaction field model was used. In addition, DFT calculations of the title compound, molecular electrostatic potential and thermodynamic properties were performed at B3LYP/6-31G(d) level of theory.  相似文献   

11.
This study deals with the identification of glutamic acid by means of quantum chemical approach. FT-IR, FT-Raman and UV–vis spectra were recorded in the region 4000–400, 4000–50 cm? 1 and 200–600 nm, respectively. CAM-B3LYP/6-31G(d,p) and B2PLYP/6-31G(d,p) calculations were performed to obtain the optimised molecular structures, vibrational frequencies and corresponding vibrational assignment, thermodynamic properties and natural bonding orbital (NBO) analysis. The results show that the obtained optimised geometric parameters (bond lengths, bond angles and bond dihedrals) and vibrational frequencies were found to be in good agreement with the experimental results. The calculations of the electronic spectra were compared with the experimental ones. Furthermore, highest occupied molecular orbital and lowest unoccupied molecular orbital analyses and UV–vis spectral analysis were also performed to determine the energy band gaps and transition states. NBO analysis, calculated using density functional theory methods (CAM-B3LYP/6-31G(d,p) and B2PLYP/6-31G(d,p)), was induced to find inter-molecular atoms. 13C and 1H NMR isotropic chemical shifts were calculated and the assignments made were compared with the ChemDraw Ultra values.  相似文献   

12.
Quantum-chemical computations were used to investigate the structure-antioxidant parameter relationships of α-lipoic acid and its natural metabolites bisnorlipoic acid and tetranorlipoic acid in their oxidized and reduced forms. The enantiomers of lipoic and dihydrolipoic acid were optimized using the B3LYP/6-311+G(3df,2p), B3LYP/aug-cc-pVDZ and MP2(full)/6-31+G(d,p) levels of theory as isolated molecules and in the presence of water. The geometries of the metabolites and the values of their antioxidant parameters (proton affinity, bond dissociation enthalpy, adiabatic ionization potential, spin density, and the highest occupied molecular orbital energy) were calculated at the B3LYP/6-311+G(3df,2p) level of theory. The results obtained reveal similarities between these structures: a pentatomic, nonaromatic ring is present in the oxidized forms, while an unbranched aliphatic chain (as found in saturated fatty acids) is present in both the oxidized and the reduced forms. Analysis of the spin density and the highest occupied molecular orbital energy revealed that the SH groups exhibited the greatest electron-donating activities. The values obtained for the proton affinity, bond dissociation enthalpy and adiabatic ionization potential indicate that the preferred antioxidant mechanisms for α-lipoic acid and its metabolites are sequential proton loss electron transfer in polar media and hydrogen atom transfer in vacuum.  相似文献   

13.
The triazole compound, 5-benzyl-4-(3,4-dimethoxyphenethyl)-2H-1,2,4-triazol-3(4H)-one, has been synthesized and characterized by 1H-NMR, 13C-NMR, IR, and X-ray single-crystal determination. The compound crystallizes in the monoclinic space group P21 with a?=?11.8844(3) Å, b?=?17.5087(4) Å, c?=?17.3648(6) Å, β?=?99.990(2)? and Z?=?8. In addition to the molecular geometry from X-ray experiment, the molecular geometry, vibrational frequencies and gauge including atomic orbital (GIAO) 1H- and 13C-NMR chemical shift values of the title compound in the ground state have been calculated using the density functional method (B3LYP) with 6-31G(d,p) basis set. The calculated results show that the optimized geometries can well reproduce the crystal structure and the theoretical vibrational frequencies and chemical shift values show good agreement with experimental ones. Besides, molecular electrostatic potential (MEP), natural bond orbital (NBO), and frontier molecular orbitals (FMO) analysis of the title compound were performed by the B3LYP/6-31G(d,p) method.  相似文献   

14.
In the present work, the distribution of the electronic charge density of the natural sex pheromone, the (Z)-13-hexadecen-11-ynyl acetate, in the female processionary moth, Thaumetopoea pytiocampa, and its nine analogue derivatives was studied within the framework of the Density Functional Theory and the Atoms in Molecules (AIM) Theory at B3LYP/6-31G *//B3LYP/6-31++G * * level. Additionally, molecular electrostatic potential (MEP) maps of the previously mentioned compounds were computed and compared. Furthermore, the substitution of hydrogen atoms from the methyl group in the acetate group by electron withdrawing substituents (i.e., halogen atoms) as well as the replacement effect of hydrogen by electron donor substituents (+I effect) as methyl group, were explored. The key feature of the topological distribution of the charge density in analogue compounds, such as the variations of the topological properties encountered in the region formed by neighbouring atoms from the substitution site were presented and discussed. Using topological parameters, such as electronic charge density, Laplacian, kinetic energy density, and potential energy density evaluated at bond critical points (BCP), we provide here a detailed analysis of the nature of the chemical bonding of these molecules. In addition, the atomic properties (population, charge, energy, volume, and dipole moment) were determined on selected atoms. These properties were analyzed at the substitution site (with respect to the natural sex pheromone) and related to the biological activity and to the possible binding site with the pheromone binding protein, (PBP). Moreover, the Laplacian function of the electronic density was used to locate electrophilic regions susceptible to be attacked (by deficient electron atoms or donor hydrogen). Our results indicate that the change in the atomic properties, such as electronic population and atomic volume, are sensitive indicators of the loss of the biological activity in the analogues studied here. The crucial interaction between the acetate group of the natural sex pheromone and the PBP is most likely to be a hydrogen bonding and the substitution of hydrogen atoms by electronegative atoms in the pheromone molecule reduces the hydrogen acceptor capacity. This situation is mirrored by the diminish of the electronic population on carbon and oxygen atoms at the carbonylic group in the halo-acetate group. Additionally, the modified acetate group (with electronegative atoms) shows new charge concentration critical points or regions of concentration of charge density in which an electrophilic attack can also occur. Finally, the use of the topological analysis based in the charge density distribution and its Laplacian function, in conjunction with MEP maps provides valuable information about the steric volume and electronic requirement of the sex pheromone for binding to the PBP.  相似文献   

15.
Hybrid quantum mechanical/molecular mechanical (QM/MM) calculations using restricted and unrestricted Hartree-Fock and B3LYP ab initio (QM) and Amber force field (MM), respectively, have been applied to study the catalytic site of papain in both free and substrate bonded forms. Ab initio geometry optimizations have been performed for the active site of papain and the N-methyl-acetamide (NMA)-papain complex within the molecular mechanical treatment of the protein environment. A covalent tetrahedral intermediate structure could be obtained only when the amide N atom of the substrate molecule was protonated through a proton transfer from the His-159 in the catalytic site. Our results support the previous assumption that a proton transfer from His-159 to the amide N atom of the substrate occurs prior to or concerted with the nucleophilic attack of the Cys-25 sulfur atom to the carbonyl group of the substrate. The electron correlation effect will reduce the proton transfer barrier. Therefore, this proton transfer can be easily observed in the B3LYP/6-31G* calculations. The HF/6-31G* method overestimates the reaction barrier against this proton transfer. The sulfur atom of Cys-25 and the imidazole ring of His-159 are found to be coplanar in the free form of the enzyme. However, the rotation of the imidazole ring of His-159 was observed during the formation of the tetrahedral intermediate. Without the papain environment, the coplanar thiolate-imidazolium ion pair RS-...ImH+ is much less stable than the neutral form of RSH....Im. Within the protein environment, however, the thiolate-imidazolium ion pair becomes more stable than its neutral form by 4.1 and 0.4 kcal/mol in HF/6-31G* and B3LYP/6-31G* calculations, respectively. The barrier of proton transfer from S-H group of Cys-25 to the imidazole ring of His-159 was reduced from 22.0 kcal/mol to 15.2 kcal/mol by the protein environment in HF/6-31G* calculations. This barrier is found to be much smaller (2.5 kcal/mol) in B3LYP/6-31G* calculations.  相似文献   

16.
The structural and electronic properties of a three-state molecular switch—an active device in a nano-electronic circuit—were studied using the B3LYP/6-31G* method. Due to its chemical stability, high conductivity upon doping, and non-linear optical properties, polythiophene is among the most widely studied conjugated organic polymers, both experimentally and theoretically. The aim of the present work was to theoretically study a very complex case: a three-state switch synthesized and experimentally investigated by Nishida et al. (Org Lett 6:2523–2526, 2004). An initial set of test calculations showed B3LYP level of theory and 6-31G* basis set to be the most appropriate for our purpose, i.e., the study of the structure, charge and spin distributions, as well as electrical characteristics such as electric polarizability, HOMO-LUMO gap (HLG) and electric dipole moment, for one of the 1,2-dithienylcyclopentene derivatives. Also, natural bond orbital analyses were performed to calculate local charges and charge transfers in order to study the capability of the molecule as a molecular switch. The results reported here are of general significance, and demonstrate that it is possible to use certain structural and electrical properties to understand and design electro-photochromic compounds showing a switching function in cases where stable forms can be exchanged by light or electron transfer. Figure Model of a thiophene wire incorporating a redox active unit  相似文献   

17.
The spectroscopic characterisation of a series of [Ru(LL)(CN)(4)](2-) complexes, where LL = 1,10-phenanthroline (phen) and its methyl- and phenyl-substituted derivatives and several deuteriated isotopologues are reported. The optical and vibrational properties of these complexes are compared with that of the series of 2,2'-bipyridine (bipy) derivatives and analogous [Ru(LL)(3)](2+) complexes. It has been demonstrated that substitution at the 4,4' positions of bipy and 4,7-positions of phen by electron donating (CH(3)) and withdrawing (C(6)H(5), COO(-)) groups induces a pronounced blue and red shift, respectively, in the lowest energy (1)MLCT absorption band of [Ru(LL)(CN)(4)](2-). The energy of the emission originating from the (3)MLCT excited state is found to be dependant on the nature of the vibrational modes of the aromatic rings and the electron donating and/or withdrawing properties of the substituents. Single-mode Franck-Condon analysis indicates that methyl substitution leads to a significant increase in the Huang-Rhys factor (S(M)), while phenyl substitution results in a decrease in S(M) for both series (bipy and phen) of complexes. The rate of non-radiative (k(nr)) and radiative decay (k(ph)) to the ground state and the parameters of thermally activated deactivation pathways (A(4th), DeltaE(4th) and A(dd), DeltaE(dd)) were estimated from the temperature dependence of luminescence quantum yields and lifetimes. It has been demonstrated that the non-radiative decay rate and the temperature dependent decay processes are more efficient for bipy complexes than for phen derivatives due to the rigidity of the latter ligand.  相似文献   

18.
The molecular geometry, vibrational frequencies, gauge including atomic orbital (GIAO) 1H and 13C chemical shift values and several thermodynamic parameters of 5-(2-Hydroxyphenyl)-4-(p-tolyl)-2,4-dihydro-1,2,4-triazole-3-thione in the ground state have been calculated by using the Hartree-Fock (HF) and density functional method (DFT/B3LYP) with 6–31G(d), 6–31 + G(d,p) and LANL2DZ basis sets. The results of the optimized molecular structure are presented and compared with the experimental X-ray diffraction. The computed vibrational frequencies are used to determine the types of molecular motions associated with each of the experimental bands observed. Also, calculated 1H chemical shift values compared with the experimental ones. The data of the title compound display significant molecular structure and IR, NMR analysis provide the basis for future design of efficient materials having the of 1,2,4-triazole core.  相似文献   

19.
Several economical methods for geometry optimisation, applicable to larger molecules, have been evaluated for phosphorus acid derivatives. MP2/cc-pVDZ and B3LYP/6-31+G(d) geometry optimizations are used as reference points, results from geometry optimizations for other methods and their subsequent single point energy calculations are compared to these references. The geometries from HF/MIDI! optimizations were close to those of the references and subsequent single point energies with B3LYP/6-31+G(d,p) or EDF1/6-31+G(d) gave a mean average deviation (MAD) of less than 0.5 kcal mol-1 from those obtained with the reference geometries.  相似文献   

20.
采用量子化学方法,在DFT/B3LYP/6-31G*基组水平上对肼基单胺氧化酶抑制剂进行了几何构型优化和电子结构计算.根据计算结果,分析了肼基单胺氧化酶抑制剂的抑制活性与电子结构的构效关系,结果表明,肼基单胺氧化酶抑制剂衍生物的活性与最低空轨道的能量ELUMO与最高占据轨道的能量EHOMO的差值、分子偶极矩和苯环上5位碳原子电荷密度有显著相关性.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号