首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Species are often grouped according to their biological or functional traits to better understand their contribution to ecosystem functioning. However, it is becoming clear that a single species can perform different roles in different habitats. Austrohelice crassa, a burrow-building mud crab shifts its primary bioturbational role to that of a vertical mixer in non-cohesive sediments as frequent burrow collapse greatly enhances sediment reworking. We conducted in situ crab density manipulations in two sediment environments (a non-cohesive sand and a cohesive muddy-sand) to examine if the context-specific functional roles were linked to changes in solute fluxes across the sediment–water interface. Across both habitats, we show that A. crassa regulated nutrient cycling, creating strong density driven effects on solute exchanges. Increasing crab density increased sediment O2 demand and the flux of NH4 + from the sediment, indicating much of the response was physiologically driven. Clear interactions between A. crassa and microphytobenthos were also detected in both habitats. Despite lowering microphyte standing stock through deposit feeding, A. crassa increased benthic primary production per unit of chlorophyll a. Our experiment also revealed important context-specific differences, most notably for NH4 + fluxes, which were higher where burrows and their associated microbial communities were most stable (muddy-sand). This study highlights the need to integrate interactions between organism behavior and habitat type into functional group studies to broaden conceptual frameworks and avoid oversimplification of highly complex organism–sediment interactions.  相似文献   

2.
Biodiversity experiments typically vary only species richness and composition, yet the generality of their results relies on consistent effects of these factors even under varying starting conditions of density and evenness. We tested this assumption in a factorial species richness x density x evenness experiment using a pool of 60 common grassland species divided into four functional groups (grasses, legumes, tall herbs and short herbs). Richness varied from 1, 2, 4, 8 to 16 species, total planting density was 1,000 or 2,000 seeds/m2, and species were sown in even or uneven proportions, where one functional group was made dominant. Aboveground plant biomass increased linearly with the logarithm of species richness in all density and evenness treatments during all three years of the experiment. This was due to a convergence of realized density and evenness within species richness levels, although functional groups which were initially made dominant retained their dominance. Between species richness levels, realized density increased, and realized evenness decreased with species richness. Thus, more individuals could coexist if they belonged to different species. Within species richness levels, higher biomass values were correlated with lower density, suggesting an underlying thinning process. However, communities with low realized evenness also had low biomass values; thus high biomass did not result from species dominance. So-called complementarity and selection effects were similar across density and evenness treatments, indicating that the mechanisms underpinning the biodiversity effects were not altered. Species richness was the dominant driver of aboveground biomass, irrespective of variations in total densities and species abundance distributions at the start of the experiment; rejecting the hypothesis that initial differences in species abundance distributions might lead to different “stable states” in community structure or biomass. Thus, results from previous biodiversity experiments that only manipulated species richness and composition should be quite robust and broadly generalizable.  相似文献   

3.
4.
5.
Increased demand for food due to the rapidly growing human population has led to extensive conversion of native steppes at the margins of oases in arid lands of northwest China into intensively managed farmlands. However, the consequences of this land-use change for soil microarthropod biodiversity and ecosystem functioning remain unknown. Here we assessed how conversion of a native steppe to irrigated farmlands of different ages affects the abundance and composition of soil microarthropods and how changes in soil microarthropod biodiversity could scale up to influence soil carbon and nitrogen stocks. We sampled microarthropod communities over two growing seasons from native steppes and cultivated soils of a 27-year-old irrigated farmland and a 90-year-old irrigated farmland, both of which were converted from the native steppe. Topsoil properties and bulk and labile pools of carbon and nitrogen, including soil organic carbon, dissolved organic carbon (DOC), microbial biomass carbon (MBC), total nitrogen (TN), inorganic nitrogen (IN), and microbial biomass nitrogen (MBN), were also measured. The conversion of native steppe to either of the two farmlands significantly increased the abundance and taxa richness of three taxonomic groups (mites, collembolans, and others) and four trophic groups (herbivores, predators, detritivores, and fungivores); this effect was greater in the 90-year-old farmland for the abundance of all taxonomic and trophic groups except for herbivores and was similar between the two farmlands for the richness of all taxonomic and trophic groups. Taxonomic and trophic composition of the microarthropod community showed strong shifts in response to conversion of native steppe to either of the two farmlands. Compositional changes were largely mediated by changes in soil environments. Changes in soil carbon and nitrogen stocks due to conversion of native steppe to farmlands followed similar patterns to soil microarthropod biodiversity, but the greater storage of DOC, MBC, TN, IN, and MBN occurred in the 90-year-old farmland. Our results suggest that soil microarthropod communities are affected positively by native steppe conversion to farmland and farmland age, and that increased microarthropod biodiversity significantly improved the ability of soils to retain carbon and nitrogen.  相似文献   

6.
Invasive ecosystem engineers can physically and chemically alter the receiving environment, thereby affecting biodiversity and ecosystem functioning. The Pacific oyster, Crassostrea gigas, invasive throughout much of the world, can establish dense populations monopolising shorelines and possibly altering ecosystem processes including decomposition and nutrient cycling. The effects of increasing cover of invasive C. gigas on ecosystem processes and associated microbial assemblages in mud-flats were tested experimentally in the field. Pore-water nutrients (NH4 + and total oxidised nitrogen), sediment chlorophyll content, microbial activity, total carbon and nitrogen, and community respiration (CO2 and CH4) were measured to assess changes in ecosystem functioning. Assemblages of bacteria and functionally important microbes, including methanogens, methylotrophs and ammonia-oxidisers were assessed in the oxic and anoxic layers of sediment using terminal restriction length polymorphism of the bacterial 16S rRNA, mxaF, amoA and archaeal mcrA genes respectively. At higher covers (40 and 80%) of oysters there was significantly greater microbial activity, increased chlorophyll content, CO2 (13 fold greater) and CH4 (6 fold greater) emission from the sediment compared to mud-flats without C. gigas. At 10% cover, C. gigas increased the concentration of total oxidised nitrogen and altered the assemblage structure of ammonia-oxidisers and methanogens. Concentrations of pore-water NH4 + were increased by C. gigas regardless of cover. Invasive species can alter ecosystem functioning not only directly, but also indirectly, by affecting microbial communities vital for the maintenance of ecosystem processes, but the nature and magnitude of these effects can be non-linear, depending on invader abundance.  相似文献   

7.
Biological assemblages are constantly undergoing change, with species being introduced, extirpated and experiencing shifts in their densities. Theory and experimentation suggest that the impacts of such change on ecosystem functioning should be predictable based on the biological traits of the species involved. However, interspecific interactions could alter how species affect functioning, with the strength and sign of interactions potentially depending on environmental context (e.g. homogenous vs. heterogeneous conditions) and the function considered. Here, we assessed how concurrent changes to the densities of two common marine benthic invertebrates, Corophium volutator and Hediste diversicolor, affected the ecological functions of organic matter consumption and benthic-pelagic nutrient flux. Complementary experiments were conducted within homogenous laboratory microcosms and naturally heterogeneous field plots. When the densities of the species were increased within microcosms, interspecific interactions enhanced effects on organic matter consumption and reduced effects on nutrient flux. Trait-based predictions of how each species would affect functioning were only consistently supported when the density of the other species was low. In field plots, increasing the density of either species had a positive effect on organic matter consumption (with no significant interspecific interactions) but no effect on nutrient flux. Our results indicate that species-specific effects on ecosystem functioning can be altered by interspecific interactions, which can be either facilitative (positive) or antagonistic (negative) depending on the function considered. The impacts of biodiversity change may therefore not be predictable based solely on the biological traits of the species involved. Possible explanations for why interactions were detected in microcosms but not in the field are discussed.  相似文献   

8.
Non-native species can alter ecosystem functions performed by native species often by displacing influential native species. However, little is known about how ecosystem functions may be modified by trait-mediated indirect effects of non-native species. Oysters and other reef-associated filter feeders enhance water quality by controlling nutrients and contaminants in many estuarine environments. However, this ecosystem service may be mitigated by predation, competition, or other species interactions, especially when such interactions involve non-native species that share little evolutionary history. We assessed trophic and other interference effects on the critical ecosystem service of water filtration in mesocosm experiments. In single-species trials, typical field densities of oysters (Crassostrea virginica) reduced water-column chlorophyll a more strongly than clams (Mercenaria mercenaria). The non-native filter-feeding reef crab Petrolisthes armatus did not draw down chlorophyll a. In multi-species treatments, oysters and clams combined additively to influence chlorophyll a drawdown. Petrolisthes did not affect net filtration when added to the bivalve-only treatments. Addition of the predatory mud crab Panopeus herbstii did not influence oyster feeding rates, but it did stop chlorophyll a drawdown by clams. However, when Petrolisthes was also added in with the clams, the clams filtered at their previously unadulterated rates, possibly because Petrolisthes drew the focus of predators or habituated the clams to crab stimuli. In sum, oysters were the most influential filter feeder, and neither predators nor competitors interfered with their net effect on water-column chlorophyll. In contrast, clams filtered less, but were more sensitive to predators as well as a facilitative buffering effect of Petrolisthes, illustrating that non-native species can indirectly affect an ecosystem service by aiding the performance of a native species.  相似文献   

9.
本文从以下几个方面综述了生物多样性对生态系统功能和作用的影响:第一,几个关于物种在生态系统中的不同地位和生物多样性如何影响生态系统功能的假说;第二,生物多样性与生态系统的稳定性;第三,生物多样性如何影响生态系统的生产力;第四,生物多样性对生态系统可持续性的影响。此外还提出了几个需要继续探讨和关注的问题。  相似文献   

10.
生物多样性的生态系统功能   总被引:10,自引:0,他引:10  
本文从以下几个方面综述了生物多样性对生态系统功能和作用的影响 :第一 ,几个关于物种在生态系统中的不同地位和生物多样性如何影响生态系统功能的假说 ;第二 ,生物多样性与生态系统的稳定性 ;第三 ,生物多样性如何影响生态系统的生产力 ;第四 ,生物多样性对生态系统可持续性的影响。此外还提出了几个需要继续探讨和关注的问题  相似文献   

11.
Biodiversity loss and anthropogenic environmental changes are known to impact ecosystem functions and services. However, there are still some uncertainties such as confounding environmental factors other than community attributes that affect ecosystem functioning. Our goal was to understand what factors influence the performance of Scarabaeinae dung beetle functions, testing the hypothesis that both community attributes and environmental variables influence the performance. Toward this aim, we collected dung beetles along an elevational gradient (800–1400 m a.s.l.) in the Espinhaço mountain range (Brazil) and quantified dung beetle functions, that is, dung removal, soil excavation and secondary seed dispersal. We recorded data on environmental factors related to climate, soil and vegetation and evaluated their effects on dung beetle functions. Dung beetle ecological functions declined with elevation and the decrease was more pronounced than richness, indicating that there are other factors involved in functions performance besides diversity of beetles. Indeed, we found that the ecological functions measured were dependent on both dung beetle community attributes and environmental factors. Climate, soil and vegetation influenced dung beetle function performance as much as richness, abundance and body size. Dung beetle functional diversity did not explain any of the functions measured. Our study demonstrates that ecological functions are directly influenced by both community attributes and environmental variables and confirms the link between biodiversity, environment and ecosystem functioning.  相似文献   

12.
Abstract Urban ecosystems are profoundly modified by human activities and thereby provide a unique “natural laboratory” to study potential ecosystem responses to anthropogenic environmental changes. Because urban environments are now affected by urban heat islands, carbon dioxide domes, and high-level nitrogen deposition, to some extent they portend the future of the global ecosystem. Urbanization in the metropolitan region of Phoenix, Arizona (USA) has resulted in pronounced changes in air temperature (T air), atmospheric CO2 concentration, and nitrogen deposition (Ndep). In this study, we used a process-based ecosystem model to explore how the Larrea tridentata dominated Sonoran Desert ecosystem may respond to these urbanization-induced environmental changes. We found that water availability controls the magnitude and pattern of responses of the desert ecosystem to elevated CO2, air temperature, N deposition and their combinations. Urbanization effects were much stronger in wet years than normal and dry years. At the ecosystem level, aboveground net primary productivity (ANPP) and soil organic matter (SOM) both increased with increasing CO2 and Ndep individually and in combinations with changes in T air. Soil N (Nsoil) responded positively to increased N deposition and air temperature, but negatively to elevated CO2. Correspondingly, ANPP and SOM of the Larrea ecosystem decreased along the urban–suburban–wildland gradient, whereas Nsoil peaked in the suburban area. At the plant functional type (FT) level, ANPP generally responded positively to elevated CO2 and Ndep, but negatively to increased T air. C3 winter annuals showed a greater ANPP response to higher CO2 levels (>420 ppm) than shrubs, which could lead over the long term to changes in species composition, because competition among functional groups is strong for resources such as soil water and nutrients. Overall, the combined effects of the three environmental factors depended on rainfall variability and nonlinear interactions within and between plant functional types and environmental factors. We intend to use these simulation results as working hypotheses to guide our field experiments and observations. Experimental testing of these hypotheses through this process should improve our understanding of urban ecosystems under increasing environmental stresses.  相似文献   

13.
14.
Selected nitrogen and phosphorus pools in two freshwater tidal marsh ecosystems on the lower Connecticut River were measured relative to Phragmites, Typha and mixed native wetland plant cover types. For both the Chapman Pond Preserve and Chester Creek Marsh, significant differences were found between plant cover types in porewater ammonium and phosphate for some months during the 1998 growing season; porewater nitrate was always below the detection limit. At Chapman Pond, no significant differences were detected between Phragmites and Typha for plant tissue N concentrations. The standing stock of nitrogen was higher in Phragmites stands, however, owing to its greater aboveground biomass. No significant difference was found between plant cover types for total soil N at Chapman Pond, but KCl extractable ammonium was higher in the mixed cover type than Phragmites or Typha. The results of this study suggest that Phragmites is affecting nutrient pools in freshwater tidal marshes, a result that should be considered in future management design.  相似文献   

15.
Duringthepastfiveyears,aresearchgroupfromtheHawai'iDivisionofAquaticRe-sourcesandtheLouisianaStaeUniversityMuseumofNaturalSciencehascollaboratedonaseriesofstudiesconcerningthebiologyandconservaionofstreamanimalsintheHawaiianIs-lands.Fromtheviewpointsofbothgeologyandbiology,theseislandsrepresentthenorth-ernmostextensonofPolynesia.StreamanimalsinHawai'ihaverelativesattheleveloffami-ly,genus,andoccasionallyevenspeciesnotonlyinPolynesiabutthroughoutMelanesiaandMicronesiaaswell.Forthisreason…  相似文献   

16.
Restoration of Biodiversity and Ecosystem Services on Agricultural Land   总被引:3,自引:0,他引:3  
Cultivation and cropping are major causes of destruction and degradation of natural ecosystems throughout the world. We face the challenge of maintaining provisioning services while conserving or enhancing other ecosystem services and biodiversity in agricultural landscapes. There is a range of possibilities within two types of intervention, namely “land sharing” and “land separation”; the former advocates the enhancement of the farmed environment, but the latter a separation between land designated for farming versus conservation. Land sharing may involve biodiversity-based agricultural practices, learning from traditional farming, changing from conventional to organic agriculture and from “simple” crops and pastures to agro-forestry systems, and restoring or creating specific elements to benefit wildlife and particular services without decreasing agricultural production. Land separation in the farmland context involves restoring or creating non-farmland habitat at the expense of field-level agricultural production—for example, woodland on arable land. Restoration by land sharing has the potential to enhance agricultural production, other ecosystem services and biodiversity at both the field and landscape scale; however, restoration by land separation would provide these benefits only at the landscape scale. Although recent debate has contrasted these approaches, we suggest they should be used in combination to maximize benefits. Furthermore, we suggest “woodland islets”, an intermediate approach between land abandonment and farmland afforestation, for ecological restoration in extensive agricultural landscapes. This approach allows reconciliation of farmland production, conservation of values linked to cultural landscapes, enhancement of biodiversity, and provision of a range of ecosystem services. Beyond academic research, restoration projects within agricultural landscapes are essential if we want to halt environmental degradation and biodiversity loss.  相似文献   

17.
Biodiversity has reached a critical state. In this context, stakeholders need indicators that both provide a synthetic view of the state of biodiversity and can be used as communication tools. Using river fishes as model, we developed community indicators that aim at integrating various components of biodiversity including interactions between species and ultimately the processes influencing ecosystem functions. We developed indices at the species level based on (i) the concept of specialization directly linked to the niche theory and (ii) the concept of originality measuring the overall degree of differences between a species and all other species in the same clade. Five major types of originality indices, based on phylogeny, habitat-linked and diet-linked morphology, life history traits, and ecological niche were analyzed. In a second step, we tested the relationship between all biodiversity indices and land use as a proxy of human pressures. Fish communities showed no significant temporal trend for most of these indices, but both originality indices based on diet- and habitat- linked morphology showed a significant increase through time. From a spatial point of view, all indices clearly singled out Corsica Island as having higher average originality and specialization. Finally, we observed that the originality index based on niche traits might be used as an informative biodiversity indicator because we showed it is sensitive to different land use classes along a landscape artificialization gradient. Moreover, its response remained unchanged over two other land use classifications at the global scale and also at the regional scale.  相似文献   

18.
Increased Dependence of Humans on Ecosystem Services and Biodiversity   总被引:1,自引:0,他引:1  
Humans have altered ecosystems more rapidly and extensively than ever, largely to meet rapidly growing demands for resources along with economic development. These demands have been considered important drivers of ecosystem degradation and biodiversity loss. Are humans becoming less dependent on ecosystem services and biodiversity following economic development? Here, we used roundwood production, hydroelectricity generation and tourism investment in 92 biodiversity hotspot and 60 non-hotspot countries as cases to seek the answer. In 1980–2005, annual growth rates of roundwood production, hydroelectricity generation and tourism investment were higher in hotspot countries (5.2, 9.1 and 7.5%) than in non-hotspot countries (3.4, 5.9 and 5.6%), when GDP grew more rapidly in hotspot countries than non-hotspot countries. Annual growth rates of per capita hydropower and per capita tourism investment were higher in hotspot countries (5.3% and 6.1%) than in non-hotspot countries (3.5% and 4.3%); however, the annual growth rate of per capita roundwood production in hotspot countries (1%) was lower than in non-hotspot countries (1.4%). The dependence of humans on cultural services has increased more rapidly than on regulating services, while the dependence on provisioning services has reduced. This pattern is projected to continue during 2005–2020. Our preliminary results show that economic growth has actually made humans more dependent upon ecosystem services and biodiversity. As a consequence, the policies and implementations of both economic development and ecosystems/biodiversity conservation should be formulated and carried out in the context of the increased dependence of humans on ecosystem services along with economic development.  相似文献   

19.
Phragmites australis (common reed) has expanded in many wetland habitats. Its ability to exclude other plant species has led to both control and eradication programs. This study examined two control methods—herbicide application or a herbicide‐burning combination—for their efficacy and ability to restore plant biodiversity in non‐tidal wetlands. Two Phragmites‐dominated sites received the herbicide glyphosate. One of these sites was burned following herbicide application. Plant and soil macroinvertebrate abundance and diversity were evaluated pre‐treatment and every year for four years post‐treatment using belt transects. The growth of Phragmites propagules—seeds, rhizomes, and rooted shoots—was examined in the greenhouse and under bare, burned, or vegetated soil conditions. Both control programs greatly reduced Phragmites abundance and increased plant biodiversity. Plant re‐growth was quicker on the herbicide‐burn site, with presumably a more rapid return to wetland function. Re‐growth at both sites depended upon a pre‐existing, diverse soil seed bank. There were no directed changes in soil macroinvertebrate abundance or diversity and they appeared unaffected by changes in the plant community. Phragmites seeds survived only on bare soils, while buried rhizomes survived under all soil conditions. This suggests natural seeding of disturbed soils and inadvertent human planting of rhizomes as likely avenues for Phragmites colonization. Herbicide control, with or without burning, can reduce Phragmites abundance and increase plant biodiversity temporarily. These changes do not necessarily lead to a more diverse animal community. Moreover, unless Phragmites is eradicated and further human disturbance is prohibited, it will likely eventually re‐establish dominance.  相似文献   

20.
Ecosystems - There is substantial evidence that biodiversity underpins ecosystem functioning, but it is unclear how these relationships change with multiple stressors in complex real-world...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号