首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Only tail tendon (TT) collagen has a sharp X-ray diffraction pattern, so that packing models for the equatorial arrangement of molecules in collagen fibrils have been developed primarily for TT collagen. A more general structure is developed applicable to all type I collagen tissues. Comparison of water content-equatorial diffraction spacing plots of several collagens shows all have essentially the same dry state diffraction spacing but differ as water content increases. TT collagen has the least spacing and the sharpest pattern. The interplanar spacing of the Hulmes-Miller quasi-hexagonal model for TT collagen was used to calculate the intermolecular spacing, which matched the observed diffraction spacing for bone matrix collagen. It is inferred that wet bone matrix collagen packs in a rectangular pattern because of the interaction between the many intermolecular crosslinks and the water absorbed on the collagen molecules. This argument also indicates that TT collagen packs into a quasi-hexagonal scheme because there are fewer intermolecular crosslinks than in bone matrix collagen.  相似文献   

2.
We assessed the effect of streptozotocin-diabetes on in vivo collagen metabolism in skin, aorta and intestine by injecting [3H]proline into rats, 20 days after administering the diabetogen, streptozotocin. One day after [3H]proline injection, diabetic and control animals were killed, their tissues analyzed for both 3H-labeled and unlabeled hydroxyproline and results expressed per entire tissue. Thereby, the effect of diabetes on net collagen synthesis and tissue collagen mass, respectively, was evaluated.Diabetes resulted in a lower content of [3H]collagen in skin and aorta, suggesting decreased net collagen synthesis. This decrease in net synthesis was accompanied by a decrease of collagen mass in skin, whereas aortic collagen mass was unaffected. Consequently, an acceleration of collagen degradation in skin is postulated to have accompanied the expected depression of collagen synthesis; alterations of the physiochemical properties of skin from diabetic rats support this interpretation. For intestine, both net collagen synthesis and mass increased in diabetic rats, reflecting increased collagen synthesis—possibly associated with polyphagy.In conclusion, with regard to collagen metabolism, representative connective tissues respond differently to experimental diabetes, and we suggest that this insight will be useful in future studies aimed at understanding the pathophysiology of connective tissues affected by diabetes.  相似文献   

3.
The uterosacral ligaments are an important part of the pelvic support system. The objective of this study was to compare the expression of collagen type I and collagen type III in the uterosacral ligament biopsies from women with and without pelvic organ prolapse (POP). The uterosacral ligament biopsies were obtained from women with POP (n = 29) and non-POP subjects (n = 35). Immunohistochemistry for collagen type I and collagen type III was performed on formalin-fixed and paraffin-embedded sections. The two groups were matched for age, body mass index, parity and postmenopausal status. The expression of collagen type I (p < 0.001) and collagen type III (p < 0.0001) differed between women with POP and non-POP subjects. There was decreased expression of collagen type I and increased expression of collagen type III in uterosacral ligaments of women with POP compared with non-POP subjects. This difference indicates a possible relationship between POP and the immunohistochemical expression of collagen type I and collagen type III in uterosacral ligaments.  相似文献   

4.
Despite the fact that type III collagen is the second most abundant collagen type in the body, its contribution to the physiologic maintenance and repair of skeletal tissues remains poorly understood. This study queried the role of type III collagen in the structure and biomechanical functions of two structurally distinctive tissues in the knee joint, type II collagen-rich articular cartilage and type I collagen-dominated meniscus. Integrating outcomes from atomic force microscopy-based nanomechanical tests, collagen fibril nanostructural analysis, collagen cross-link analysis and histology, we elucidated the impact of type III collagen haplodeficiency on the morphology, nanostructure and biomechanical properties of articular cartilage and meniscus in Col3a1+/− mice. Reduction of type III collagen leads to increased heterogeneity and mean thickness of collagen fibril diameter, as well as reduced modulus in both tissues, and these effects became more pronounced with skeletal maturation. These data suggest a crucial role of type III collagen in mediating fibril assembly and biomechanical functions of both articular cartilage and meniscus during post-natal growth. In articular cartilage, type III collagen has a marked contribution to the micromechanics of the pericellular matrix, indicating a potential role in mediating the early stage of type II collagen fibrillogenesis and chondrocyte mechanotransduction. In both tissues, reduction of type III collagen leads to decrease in tissue modulus despite the increase in collagen cross-linking. This suggests that the disruption of matrix structure due to type III collagen deficiency outweighs the stiffening of collagen fibrils by increased cross-linking, leading to a net negative impact on tissue modulus. Collectively, this study is the first to highlight the crucial structural role of type III collagen in both articular cartilage and meniscus extracellular matrices. We expect these results to expand our understanding of type III collagen across various tissue types, and to uncover critical molecular components of the microniche for regenerative strategies targeting articular cartilage and meniscus repair.  相似文献   

5.
In vivo mammary epithelial cells rest upon a basement membrane composed in part of type IV collagen which is synthesized by these cells. In this study, basement membrane collagen is shown to be selectively recognized by normal mammary ducts and alveoli for attachment and growth when compared to the types of collagen derived from stroma (types I or III) or cartilage (type II). Cell attachment and growth on type I collagen is inhibited by the proline analogue, cis-hydroxyproline, which blocks normal collagen production. These effects of cis-hydroxyproline are not apparent when a basement membrane collagen substratum is provided. Unlike normal mammary epithelium, mammary fibroblasts show little preference for the collagen to which they will attach. A requirement of type IV collagen synthesis for normal mammary epithelial cell attachment and growth on stromal collagen in vitro may have significance in vivo where a basement membrane scaffold may be necessary for normal mammary morphogenesis and growth.  相似文献   

6.
Collagen peptides have been used to identify binding sites for several important collagen receptors, including integrin α2β1, glycoprotein VI, and von Willebrand factor. In parallel, the structures of these collagen receptors have been reported, and their interactions with collagen peptides have been studied. Recently, the three-dimensional structure of the intact type I collagen fiber from rat tail tendon has been resolved by fiber diffraction. It is now possible to map the binding sites of platelet collagen receptors onto the intact collagen fiber in three dimensions. This minireview will discuss these recent findings and their implications for platelet activation by collagen.  相似文献   

7.
Decorin is a small, leucine-rich proteoglycan that binds to collagen and regulates fibrillogenesis. We hypothesized that decorin binding to collagen inhibits phagocytosis of collagen fibrils. To determine the effects of decorin on collagen degradation, we analyzed phagocytosis of collagen and collagen/decorin-coated fluorescent beads by Rat-2 and gingival fibroblasts. Collagen beads bound to gingival cells by alpha2beta1 integrins. Binding and internalization of decorin/collagen-coated beads decreased dose-dependently with increasing decorin concentration (p < 0.001). Inhibition of binding was sustained over 5 h (p < 0.001) and was attributed to interactions between decorin and collagen and not to decorin-collagen receptor interactions. Both the non-glycosylated decorin core protein and the thermally denatured decorin significantly inhibited collagen bead binding (approximately 50 and 89%, respectively; p < 0.05). Mimetic peptides corresponding to leucine-rich repeats 1-3, encompassed by a collagen-binding approximately 11-kDa cyanogen bromide fragment of decorin and leucine-rich repeats 4 and 5, previously shown to bind to collagen, were tested for their ability to inhibit collagen bead binding. Although the synthetic peptide 3 alone exhibited saturable binding to collagen, neither peptides 3 nor 1 and 2 markedly inhibited phagocytosis. Leucine-rich repeat 3 bound to a triple helical peptide containing the alpha2 integrin-binding site of collagen. When collagen beads were co-incubated with peptides 3 and 4, inhibition of collagen phagocytosis (55%) was equivalent to intact native/recombinant core protein. Thus a novel collagen binding domain in decorin acts cooperatively with leucine-rich repeat 4 to mask the alpha2beta1 integrin-binding site on collagen, an important sequence for the phagocytosis of collagen fibrils.  相似文献   

8.
The collagen framework of hyaline cartilages, including articular cartilage, consists largely of type II collagen that matures from a cross-linked heteropolymeric fibril template of types II, IX, and XI collagens. In the articular cartilages of adult joints, type III collagen makes an appearance in varying amounts superimposed on the original collagen fibril network. In a study to understand better the structural role of type III collagen in cartilage, we find that type III collagen molecules with unprocessed N-propeptides are present in the extracellular matrix of adult human and bovine articular cartilages as covalently cross-linked polymers extensively cross-linked to type II collagen. Cross-link analyses revealed that telopeptides from both N and C termini of type III collagen were linked in the tissue to helical cross-linking sites in type II collagen. Reciprocally, telopeptides from type II collagen were recovered cross-linked to helical sites in type III collagen. Cross-linked peptides were also identified in which a trifunctional pyridinoline linked both an α1(II) and an α1(III) telopeptide to the α1(III) helix. This can only have arisen from a cross-link between three different collagen molecules, types II and III in register staggered by 4D from another type III molecule. Type III collagen is known to be prominent at sites of healing and repair in skin and other tissues. The present findings emphasize the role of type III collagen, which is synthesized in mature articular cartilage, as a covalent modifier that may add cohesion to a weakened, existing collagen type II fibril network as part of a chondrocyte healing response to matrix damage.  相似文献   

9.
Collagen is the most abundant protein in the human body and thereby a structural protein of considerable biotechnological interest. The complex maturation process of collagen, including essential post-translational modifications such as prolyl and lysyl hydroxylation, has precluded large-scale production of recombinant collagen featuring the biophysical properties of endogenous collagen. The characterization of new prolyl and lysyl hydroxylase genes encoded by the giant virus mimivirus reveals a method for production of hydroxylated collagen. The coexpression of a human collagen type III construct together with mimivirus prolyl and lysyl hydroxylases in Escherichia coli yielded up to 90 mg of hydroxylated collagen per liter culture. The respective levels of prolyl and lysyl hydroxylation reaching 25 % and 26 % were similar to the hydroxylation levels of native human collagen type III. The distribution of hydroxyproline and hydroxylysine along recombinant collagen was also similar to that of native collagen as determined by mass spectrometric analysis of tryptic peptides. The triple helix signature of recombinant hydroxylated collagen was confirmed by circular dichroism, which also showed that hydroxylation increased the thermal stability of the recombinant collagen construct. Recombinant hydroxylated collagen produced in E. coli supported the growth of human umbilical endothelial cells, underlining the biocompatibility of the recombinant protein as extracellular matrix. The high yield of recombinant protein expression and the extensive level of prolyl and lysyl hydroxylation achieved indicate that recombinant hydroxylated collagen can be produced at large scale for biomaterials engineering in the context of biomedical applications.  相似文献   

10.
Electrophoretic and Western blot studies were conducted on collagen fractions extracted from Sepia officinalis (cuttlefish) cartilage using a modified salt precipitation method developed for the isolation of vertebrate collagens. The antibodies used had been raised in rabbit against the following types of collagen: Sepia I-like; fish I; human I; chicken I, II, and IX; rat V; and calf IX and XI. The main finding was that various types of collagen are present in Sepia cartilage, as they are in vertebrate hyaline cartilage. However, the main component of Sepia cartilage is a heterochain collagen similar to vertebrate type I, and this is associated with minor forms similar to type V/XI and type IX. The cephalopod type I-like heterochain collagen can be considered a first step toward the evolutionary development of a collagen analogous to the typical collagen of vertebrate cartilage (type II homochain). The type V/XI collagen present in molluscs, and indeed all phyla from the Porifera upwards, may represent an ancestral collagen molecule conserved relatively unchanged throughout evolution. Type IX-like collagen seems to be essential for the formation of cartilaginous tissue.  相似文献   

11.
12.
Experimental evidence demonstrates that collagen cross-linking in bone tissue significantly influences its deformation and failure behavior yet difficulties exist in determining the independent biomechanical effects of collagen cross-linking using in vitro and in vivo experiments. The aim of this study is to use a nano-scale composite material model of mineral and collagen to determine the independent roles of enzymatic and non-enzymatic cross-linking on the mechanical behavior of a mineralized collagen fibril. Stress–strain curves were obtained under tensile loading conditions without any collagen cross-links, with only enzymatic cross-links (modeled by cross-linking the end terminal position of each collagen domain), or with only non-enzymatic cross-links (modeled by random placement of cross-links within the collagen–collagen interfaces). Our results show enzymatic collagen cross-links have minimal effect on the predicted stress–strain curve and produce a ductile material that fails through debonding of the mineral–collagen interface. Conversely, non-enzymatic cross-links significantly alter the predicted stress–strain response by inhibiting collagen sliding. This inhibition leads to greater load transfer to the mineral, which minimally affects the predicted stress, increases modulus and decreases post-yield strain and toughness. As a consequence the toughness of bone that has more non-enzymatically mediated collagen cross-links will be drastically reduced.  相似文献   

13.
Schizophyllan is a natural polysaccharide, produced by fungi of the genus Schizophyllum. Periodate oxidation specifically cleaves the vicinal glycols in schizophyllan to form their dialdehyde derivatives. The present study investigates the interaction of scleraldehyde with Type I collagen membrane. The formation of the inter and intra interaction between scleraldehyde and the collagen fibres results in significant increase in viscosity of collagen. Crosslinking efficiency of scleraldehyde was found to increase with concentration of scleraldehyde. Scleraldehyde interacted collagen membrane exhibited an increase in thermal stability by 29 °C at pH 8. The gelling time of collagen fibrils was found to decrease with increase in concentration of scleraldehyde due to shift in nucleation centre. Swelling degree of collagen membrane was also found to decrease with increase in concentration of scleraldehyde. Scleraldehyde treated collagen membrane exhibited 93% resistance to collagenase. The modified collagen membrane exhibited non-toxicity towards the fibroblasts cells. The modified collagen membrane by scleraldehyde finds application as a stabilizing agent in scaffold preparation.  相似文献   

14.
Studies were performed to determine whether cultured odontogenic cells from rabbit tooth germ (RP cell) could synthesize dentine-like collagen. When cells were cultured with [14C]proline, 33% of the total incorporated proteins present were collagenous. Cultured RP cells were labelled with [14C]proline in the presence of β-aminopropionitrile. The resulting fractions, on analysis by CM-cellulose chromatography, contained three radioactive protein peaks, α1(I), [α1(III)]3, α2. From the radioactive measurements, RP cells synthesized a significant amount of type III collagen, comparable to type I collagen.DEAE-cellulose chromatography was used to separate collagen molecules from collagen precursors. The results showed that 60% of total collagen precursor was type III precursor and the remainder was type I precursor.CM-cellulose chromatography of CNBr peptides of collagen from culture medium and cell extract revealed the presence of type I and type III collagen. Thus, the RP cell, which is a diploid cell, is unique in the predominance of type III collagen in culture, differing thereby from the character of collagen in vivo.  相似文献   

15.
Destruction of articular cartilage is a characteristic feature of osteoarthritis (OA). Collagen hydrolysates are mixtures of collagen peptides and have gained huge public attention as nutriceuticals used for prophylaxis of OA. Here, we evaluated for the first time whether different bovine collagen hydrolysate preparations indeed modulate the metabolism of collagen and proteoglycans from human OA cartilage explants and determined the chemical composition of oligopeptides representing collagen fragments. Using biophysical techniques, like MALDI-TOF-MS, AFM, and NMR, the molecular weight distribution and aggregation behavior of collagen hydrolysates from bovine origin (CH-Alpha®, Peptan™ B 5000, Peptan™ B 2000) were determined. To investigate the metabolism of human femoral OA cartilage, explants were obtained during knee replacement surgery. Collagen synthesis of explants as modulated by 0–10 mg/ml collagen hydrolysates was determined using a novel dual radiolabeling procedure. Proteoglycans, NO, PGE2, MMP-1, -3, -13, TIMP-1, collagen type II, and cell viability were determined in explant cultures. Groups of data were analyzed using ANOVA and the Friedman test (n = 5–12). The significance was set to p≤0.05. We found that collagen hydrolysates obtained from different sources varied with respect to the width of molecular weight distribution, average molecular weight, and aggregation behavior. None of the collagen hydrolysates tested stimulated the biosynthesis of collagen. Peptan™ B 5000 elevated NO and PGE2 levels significantly but had no effect on collagen or proteoglycan loss. All collagen hydrolysates tested proved not to be cytotoxic. Together, our data demonstrate for the first time that various collagen hydrolysates differ with respect to their chemical composition of collagen fragments as well as by their pharmacological efficacy on human chondrocytes. Our study underscores the importance that each collagen hydrolysate preparation should first demonstrate its pharmacological potential both in vitro and in vivo before being used for both regenerative medicine and prophylaxis of OA.  相似文献   

16.
Electrophoretic and Western blot studies were conducted on collagen fractions extracted from Sepia officinalis (cuttlefish) cartilage using a modified salt precipitation method developed for the isolation of vertebrate collagens. The antibodies used had been raised in rabbit against the following types of collagen: Sepia I-like; fish I; human I; chicken I, II, and IX; rat V; and calf IX and XI. The main finding was that various types of collagen are present in Sepia cartilage, as they are in vertebrate hyaline cartilage. However, the main component of Sepia cartilage is a heterochain collagen similar to vertebrate type I, and this is associated with minor forms similar to type V/XI and type IX. The cephalopod type I-like heterochain collagen can be considered a first step toward the evolutionary development of a collagen analogous to the typical collagen of vertebrate cartilage (type II homochain). The type V/XI collagen present in molluscs, and indeed all phyla from the Porifera upwards, may represent an ancestral collagen molecule conserved relatively unchanged throughout evolution. Type IX-like collagen seems to be essential for the formation of cartilaginous tissue.  相似文献   

17.
Summary Trunk-level neural anlagen bearing neural crest cells at the stage of initiation of migration were isolated from chick embryos and explanted in serum-free medium onto glass substrates which had previously been treated with extracellular materials. After 0.5–2 h incubation, the expiants were dislodged with a stream of culture medium and the substrate examined for adherent crest cells. Crest cells adhered to collagen gels, and adhered to and spread on adsorbed fibronectin; antiserum to fibronectin prevented adhesion to fibronectin but not to collagen gels. Air-dried collagen gels and collagen solutions were less adhesive, the adhesivity declining with longer drying time and lower collagen concentration. Crest cells adhered poorly to dried gelatin and not at all to adsorbed collagen. Fibronectin increased the adhesion to dried collagen and gelatin. Pretreatment of collagen gels with hyaluronate retarded adhesion. Hyaluronate pretreatment also retarded adhesion to adsorbed fibronectin but only when adsorbed collagen was also present. Pretreatment of collagen gels with the proteoglycan monomer from bovine nasal cartilage had no effect of the adhesion of crest cells, but the proteoglycan almost completely inhibited adhesion to adsorbed fibronectin, but only when absorbed collagen was also present. The results are discussed in terms of the control of migration of neural crest cells by extracellular materials.  相似文献   

18.
Force constant values for thermal vibrational motion of a collagen molecule along the helix axis in tendon, completely demineralized bone (CDB), and partially demineralized bone (PDB) were estimated by determining the Debye–Waller factor (DW factor) for the diffracted X-ray intensity from these specimens. The DW factor for nominal value of 0.286 nm meridional diffraction representing a period along the helical axis of a collagen molecule was measured. As the atomic scattering factor of mineral constituents is much larger than that of collagen, it is difficult to detect the diffraction from collagen in bone specimen. Therefore, PDB was used in this study. In order to compare obtained force constant value for CDB with mechanical properties of collagen in the literature, the value was translated into Young's modulus value using the cross-sectional area of a collagen molecule. In the case of collagen in PDB, i.e., collagen with the close presence of HAp mineral particles, as the DW factor of the diffracted intensity by hydroxyapatite (HAp) was considered to be negligible compared with that of collagen, the DW factor determined was interpreted as that of collagen molecule in PDB specimen. The force constant value obtained for collagen in PDB was significantly larger than that of collagen in CDB. This result was thought to be a manifestation of the hardening of collagen matrix in bone by HAp mineral particles and the first straightforward evidence for a difference in collagen properties depending on the presence of HAp mineral particles. The method employed in this study can be utilized for detecting mechanical properties of the individual constituents of composite materials.  相似文献   

19.
To examine mechanisms by which reduced type V collagen causes weakened connective tissues in the Ehlers-Danlos syndrome (EDS), we examined matrix deposition and collagen fibril morphology in long-term dermal fibroblast cultures. EDS cells with COL5A1 haplo-insufficiency deposited less than one-half of hydroxyproline as collagen compared to control fibroblasts, though total collagen synthesis rates are near-normal because type V collagen represents a small fraction of collagen synthesized. Cells from patients with osteogenesis imperfecta (OI) and haplo-insufficiency for proalpha1(I) chains of type I collagen also incorporated about one-half the collagen as controls, but this amount was proportional to their reduced rates of total collagen synthesis. Collagen fibril diameter was inversely proportional to type V/type I collagen ratios (EDS > control > OI). However, a reduction of type V collagen, in the EDS derived cells, was associated with the assembly of significantly fewer fibrils compared to control and OI cells. These data indicate that in cell culture, the quantity of collagen fibrils deposited in matrix is highly sensitive to reduction in type V collagen, far out of proportion to type V collagen's contribution to collagen mass.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号