首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
王吉鹏  吴艳宏 《生态学报》2016,36(5):1204-1214
磷(P)的生物有效性对山地生态系统的发育和稳定至关重要。由于大气CO_2浓度升高和N沉降增加,生态系统C、N和P的化学计量比失衡,P的生物有效性受到更多关注。近年来山地系统中P的研究不断深入,2004—2013年间ISI Web of Knowledge中相关研究论文几乎是此前近百年的3倍。总结了山地生态系统中P的生物有效性的特点及其对植物物种多样性和初级生产力的影响。山地生态系统P的生物有效性因垂直高差和地形梯度空间变异明显,快速物质运移和生物过程是控制山地生态系统P的生物有效性的关键因素。P的生物有效性可以影响山地生态系统物种多样性和初级生产力,其对初级生产力的限制存在于全球范围内的山地生态系统。当P的生物有效性发生改变时,山地生态系统的结构越复杂,其植物物种多样性和初级生产力的响应可能会越平缓。全球变化的重要驱动因子(如增温和N沉降增加)可以直接或间接地改变山地生态系统P的生物有效性,因此需要在山地生态系统中加强长期监测和养分控制实验,并结合新型P分析技术,以期认识山地生态系统P的生物有效性的现状、变化趋势和对生态系统的影响,从而为适应全球变化背景下山地生态系统养分状况的改变提供依据。  相似文献   

2.
C, N and P are three of the most important elements used to build living beings, and their uptake from the environment is consequently essential for all organisms. We have reviewed the available studies on water, soils and organism elemental content ratios (stoichiometry) with the aim of identifying the general links between stoichiometry and the structure and function of organisms and ecosystems, in both aquatic and terrestrial contexts. Oceans have variable C:N:P ratios in coastal areas and a narrow range approximating the Redfield ratio in deep water and inner oceanic areas. Terrestrial ecosystems have a general trend towards an increase in soil and plant N:P ratios from cool and temperate to tropical ecosystems, but with great variation within each climatic area. The C:N:P content ratio (from now on C:N:P ratio) is more constrained in organisms than in the water and soil environments they inhabit. The capacity to adjust this ratio involves several mechanisms, from leaf re-absorption in plants to the control of excretion in animals. Several differences in C:N:P ratios are observed when comparing different taxa and ecosystems. For freshwater ecosystems, the growth rate hypothesis (GRH), which has consistent experimental support, states that low N:P supply determines trophic web structures by favoring organisms with a high growth rate. For terrestrial organisms, however, evidence not yet conclusive on the relevance of the GRH. Recent studies suggest that the N:P ratio could play a role, even in the evolution of the genomes of organisms. Further research is warranted to study the stoichiometry of different trophic levels under different C:N:P environment ratios in long-term ecosystem-scale studies. Other nutrients such as K or Fe should also be taken into account. Further assessment of the GRH requires more studies on the effects of C:N:P ratios on anabolic (growth), catabolic (respiration), storage and/or defensive allocation. Combining elemental stoichiometry with metabolomics and/or genomics should improve our understanding of the coupling of different levels of biological organization, from elemental composition to the structure and evolution of ecosystems, via cellular metabolism and nutrient cycling.  相似文献   

3.
陆地生态系统磷素循环及其影响因素   总被引:36,自引:0,他引:36       下载免费PDF全文
 磷是生命系统的重要组成成分,其在生态系统内的迁移转化是生态系统结构和功能的决定性因素之一。近20年来,磷在陆地生态系统内的重要性受到越来越多的关注。该文总结了国内外磷循环研究的成果,从磷的来源、在土壤中的存在形态和固定特性、影响因素的复杂性等方面分析了磷素循环的特点;系统阐述了磷在陆地生态系统各库之间及其内部,主要是植被-土壤亚系统内的迁移转化规律及影响因素。陆地生态系统磷素循环主要是系统内部的生物化学循环,由植物自身的遗传特性和土壤的生物、理化性质共同控制,不同控制因素的相对重要性因生态系统类型、时间和空间尺度而异。文章简述了磷循环研究方法的发展及存在的局限性;另外,分析了干旱、半干旱地区磷循环研究的重要性和意义;干旱区生态系统的脆弱性及其植被、土壤特性决定了其磷素循环有其自身的特点及研究的必要性。最后指出了当前陆地生态系统磷循环研究的发展趋势。  相似文献   

4.
The cycles of the key nutrient elements nitrogen (N) and phosphorus (P) have been massively altered by anthropogenic activities. Thus, it is essential to understand how photosynthetic production across diverse ecosystems is, or is not, limited by N and P. Via a large-scale meta-analysis of experimental enrichments, we show that P limitation is equally strong across these major habitats and that N and P limitation are equivalent within both terrestrial and freshwater systems. Furthermore, simultaneous N and P enrichment produces strongly positive synergistic responses in all three environments. Thus, contrary to some prevailing paradigms, freshwater, marine and terrestrial ecosystems are surprisingly similar in terms of N and P limitation.  相似文献   

5.
Phosphorus (P) dynamics in urban landscapes may differ from that in natural landscapes due to different P sources and unique environmental conditions. However, many aspects of P cycles in urban areas, especially within engineered aquatic ecosystems, remain largely unknown. Through this work, we aim to contribute to better understanding of P cycling in urban aquatic ecosystems by investigating P fractions in sediment and their relationship with ambient chemistry in surface water from six urban stormwater management ponds located in Ontario, Canada. We found that organic P contributed up to 75% of total P in pond sediment, but this percentage decreased significantly between our two sampling events in June and September 2012. This decrease coincided with increased rates of extracellular enzyme (especially phosphatase) activities, which is indicative of fast mineralization processes in these ecosystems. Moreover, the decreased sediment organic P was matched by increased water column P concentration. This inverse relationship suggests that the large organic P pool in pond sediment, and its fast decomposition, contributed to internal release of P from sediment and increased water column P concentrations. The dominance of organic P in sediment and the putative role of relevant biological processes (i.e., decomposition and productivity) in urban ponds found in this study strongly contrast with classic water management expectations of physicochemically controlled P dynamics and long-term P storage in sediment of aquatic ecosystems. This difference suggests that urban stormwater ponds may perform poorly in terms of P retention and thereby contribute to poor water quality in terms of P pollution to downstream urban watersheds. Thus, stormwater pond design and future management strategies should consider these biogeochemical features of urban ponds, including internal P release, to help prevent eutrophication of downstream ecosystems.  相似文献   

6.
Marine nitrogen: Phosphorus stoichiometry and the global N:P cycle   总被引:8,自引:0,他引:8  
Nitrogen supply is often assumed to limitmarine primary production. A global analysis of totalnitrogen (N) to phosphorus (P) molar ratios shows thattotal N:P is low (<16:1) in some estuarine andcoastal ecosystems, but up to 100:1 in open oceans.This implies that elements other than N may limitmarine production, except in human impacted, estuarineor coastal ecosystems. This pattern may reconcileconflicting enrichment studies, because N additionfrequently increases phytoplankton growth where totalN:P is expected to be low, but P, Fe, or Si augmentphytoplankton growth in waters where total N:P ishigh. Comparison of total N:P stoichiometry betweenmarine and freshwaters yields a model of the form ofthe aquatic N:P cycle.  相似文献   

7.
辽西半干旱区几种人工林生态系统涵养水源功能研究   总被引:19,自引:4,他引:19  
从森林生态系统树冠截留降雨、枯落物持水及土壤蓄水3个层次对辽西半干旱区5种人工林生态系统的涵养水源功能进行了定量研究.结果表明,各人工林生态系统树冠对降雨的平均截留率为14.58%~37.19%,依次为沙棘林>油松沙棘混交林>杨树沙棘混交林>油松纯林>杨树纯林;枯落物层厚度为1.6~4.1cm,枯落物贮量为1890.4~6425.2kg·hm^-2,枯落物层厚度和贮量均为沙棘林>油松沙棘混交林>杨树沙棘混交林>油松纯林>杨树纯林,枯落物最大持水量取决于枯落物贮量及其最大持水率,枯落物最大持水量为5957.7~19332.9kg·hm^-2,依次为沙棘林>油松沙棘混交林>杨树沙棘混交林>油松纯林>杨树纯林;各人工林生态系统0~40cm土壤层非毛管蓄水量为23.70~37.85mm,依次为沙棘林>杨树沙棘混交林>油松沙棘混交林>杨树纯林>油松纯林.在5种人工林生态系统中,沙棘林的涵养水源功能最好,混交林较油松和杨树纯林有更好的涵养水源功能.  相似文献   

8.
李承义  何明珠  唐亮 《生态学报》2022,42(12):5115-5124
磷(P)循环在维持荒漠生态系统的生物多样性水平、结构和功能的稳定性、元素的动态平衡,以及荒漠自然资源的可持续利用方面有重要作用。通过查阅国内外有关P循环的文献资料,发现当前国内尚缺乏针对荒漠生态系统P循环的系统研究,特别是P循环的生物和非生物驱动机制。综述了荒漠生态系统P的输入-输出过程,植物对P的吸收转运机制以及对P循环的作用,生物土壤结皮(BSC)有机分泌物对P循环的贡献,以及荒漠生态系统P循环过程对气候变化的响应机制等。文末展望了荒漠生态系统P循环的一些重要研究方向和亟需解决的科学问题,包括(1)P在荒漠生态系统中的存在形态、分配及动态平衡;(2)土壤微生物对荒漠植物获取土壤有效P的驱动作用;(3)入侵植物对P循环的影响与潜在生态风险评估;(4)利用分子生物学和基因组学手段揭示真菌-荒漠植物根系系统P循环的基因调控机制;(5)微生物分泌物、土壤磷酸酶类(包括磷酸单酯酶、磷酸二酯酶和三磷酸单酯水解酶)和作用于含磷酸酐和N—P键的酶对土壤P循环的调控;(6)气候变化(干旱、高温和降水节律变化等)如何影响P的生物和非生物转化过程;(7)基于同位素示踪和生态化学计量学理论解释荒漠生态系统...  相似文献   

9.
Leachate from litter and vegetation penetrates permafrost surface soils during thaw before being exported to aquatic systems. We know this leachate is critical to ecosystem function downstream and hypothesized that thaw leachate inputs would also drive terrestrial microbial activity and nutrient uptake. However, we recognized two potential endpoint scenarios: vegetation leachate is an important source of C for microbes in thawing soil; or vegetation leachate is irrelevant next to the large background C, N, and P pools in thaw soil solution. We assessed these potential outcomes by making vegetation leachate from frozen vegetation and litter in four Arctic ecosystems that have a variety of litter quality and soil C, N, and P contents; one of these ecosystems included a disturbance recovery chronosequence that allowed us to test our second hypothesis that thaw leachate response would be enhanced in disturbed ecosystems. We added water or vegetation leachate to intact, frozen, winter soil cores and incubated the cores through thaw. We measured soil respiration throughout, and soil solution and microbial biomass C, N, and P pools and gross N mineralization immediately after a thaw incubation (?10 to 2°C) lasting 6 days. Vegetation leachate varied strongly by ecosystem in C, N, and P quantity and stoichiometry. Regardless, all vegetated ecosystems responded to leachate additions at thaw with an increase in the microbial biomass phosphate flush and an increase in soil solution carbon and nitrogen, implying a selective microbial uptake of phosphate from plant and litter leachate at thaw. This response to leachate additions was absent in recently disturbed, exposed mineral soil but otherwise did not differ between disturbed and undisturbed ecosystems. The selective uptake of P by microbes implies either thaw microbial P limitation or thaw microbial P uptake opportunism, and that spring thaw is an important time for P retention in several Arctic ecosystems.  相似文献   

10.
Combined effects of cumulative nutrient inputs and biogeochemical processes that occur in freshwater under anthropogenic eutrophication could lead to myriad shifts in nitrogen (N):phosphorus (P) stoichiometry in global freshwater ecosystems, but this is not yet well‐assessed. Here we evaluated the characteristics of N and P stoichiometries in bodies of freshwater and their herbaceous macrophytes across human‐impact levels, regions and periods. Freshwater and its macrophytes had higher N and P concentrations and lower N : P ratios in heavily than lightly human‐impacted environments, further evidenced by spatiotemporal comparisons across eutrophication gradients. N and P concentrations in freshwater ecosystems were positively correlated and N : P was negatively correlated with population density in China. These results indicate a faster accumulation of P than N in human‐impacted freshwater ecosystems, which could have large effects on the trophic webs and biogeochemical cycles of estuaries and coastal areas by freshwater loadings, and reinforce the importance of rehabilitating these ecosystems.  相似文献   

11.
Corals thrive in low nutrient environments and the conservation of these globally imperiled ecosystems is largely dependent on mitigating the effects of anthropogenic nutrient enrichment. However, to better understand the implications of anthropogenic nutrients requires a heightened understanding of baseline nutrient dynamics within these ecosystems. Here, we provide a novel perspective on coral reef nutrient dynamics by examining the role of fish communities in the supply and storage of nitrogen (N) and phosphorus (P). We quantified fish‐mediated nutrient storage and supply for 144 species and modeled these data onto 172 fish communities (71 729 individual fish), in four types of coral reefs, as well as seagrass and mangrove ecosystems, throughout the Northern Antilles. Fish communities supplied and stored large quantities of nutrients, with rates varying among ecosystem types. The size structure and diversity of the fish communities best predicted N and P supply and storage and N : P supply, suggesting that alterations to fish communities (e.g., overfishing) will have important implications for nutrient dynamics in these systems. The stoichiometric ratio (N : P) for storage in fish mass (~8 : 1) and supply (~20 : 1) was notably consistent across the four coral reef types (but not seagrass or mangrove ecosystems). Published nutrient enrichment studies on corals show that deviations from this N : P supply ratio may be associated with poor coral fitness, providing qualitative support for the hypothesis that corals and their symbionts may be adapted to specific ratios of nutrient supply. Consumer nutrient stoichiometry provides a baseline from which to better understand nutrient dynamics in coral reef and other coastal ecosystems, information that is greatly needed if we are to implement more effective measures to ensure the future health of the world's oceans.  相似文献   

12.
模拟增温对中亚热带杉木人工林土壤磷有效性的影响   总被引:1,自引:0,他引:1  
气候变暖改变与土壤磷循环相关的生物地球化学过程,对陆地生态系统磷循环产生直接或间接影响。为研究亚热带地区杉木人工林土壤磷有效性对增温的响应,开展了模拟增温实验。实验设置对照组及增温组(5℃),经过1.5a的短期增温,对杉木人工林的土壤全磷、有机磷、微生物量磷、有效磷、酸性磷酸酶活性及相关土壤理化性质进行测定,结果表明:增温处理下,土壤酸性磷酸酶活性提高约1.5倍,土壤全磷、微生物量磷以及有机磷含量分别减少了6%、34%和12%,土壤有效磷含量增加25%。可见,短期增温通过提高土壤磷酸酶活性进而促进土壤有机磷矿化和降低土壤微生物固磷量,从而增加土壤磷有效性,但是增温导致潜在可利用的土壤微生物量磷大幅度的降低,将有可能加剧亚热带杉木人工林土壤磷限制。  相似文献   

13.
The amounts of solar energy and materials are two of the chief factors determining ecosystem structure and process. Here, we examine the relative balance of light and phosphorus in a set of freshwater pelagic ecosystems. We calculated a ratio of light: phosphorus by putting mixed-layer mean light in the numerator and total P concentration in the denominator. This light: phosphorus ratio was a good predictor of the C:P ratio of particulate matter (seston), with a positive correlation demonstrated between these two ratios. We argue that the balance between light and nutrients controls "nutrient use efficiency" at the base of the food web in lakes. Thus, when light energy is high relative to nutrient availability, the base of the food web is carbon rich and phosphorus poor. In the opposite case, where light is relatively less available compared to nutrients, the base of the food web is relatively P rich. The significance of this relationship lies in the fact that the composition of sestonic material is known to influence a large number of ecosystem processes such as secondary production, nutrient cycling, and (we hypothesize) the relative strength of microbial versus grazing processes. Using the central result of increased C:P ratio with an increased light: phosphorus ratio, we make specific predictions of how ecosystem structure and process should vary with light and nutrient balance. Among these predictions, we suggest that lake ecosystems with low light: phosphorus ratios should have several trophic levels simultaneously carbon or energy limited, while ecosystems with high light: phosphorus ratios should have several trophic levels simultaneously limited by phosphorus. Our results provide an alternative perspective to the question of what determines nutrient use efficiency in ecosystems.  相似文献   

14.
Ecological stoichiometry has been widely applied in aquatic ecosystems, but has limited implications in terrestrial ecosystems. The pot experiments with Trifolium repens L. were conducted to demonstrate the relations between C: N: P, biological components and growth rate of clover colonized by arbuscular mycorrhizal (AM) fungi. The results showed that for mycorrhizal clover, N, P concentrations increased with increasing growth rate, in support of the Growth Rate Hypothesis (GRH). Mycorrhizal clover had higher P and RNA concentrations than non-mycorrhizal clover, indicating that the increase in P concentration would invest more RNA to meet the synthesis of protein. Results also indicated that the increase in N concentration with rapid growth rate may be attributed to the increase in the concentration of protein N. Underlying mechanisms driving the association of C: N: P with growth rate for symbiotic partners should help elucidate the allocation of major nutrients to cellular organs and trophic dynamics in terrestrial ecosystems.  相似文献   

15.
Schmidt  I.K.  Jonasson  S.  Shaver  G. R.  Michelsen  A.  Nordin  A. 《Plant and Soil》2002,242(1):93-106
Mineralization and nutrient distribution in plants and microbes were studied in four arctic ecosystems at Abisko, Northern Sweden and Toolik Lake, Alaska, which have been subjected to long-term warming with plastic greenhouses. Net mineralization and microbial immobilization were studied by the buried bag method and ecosystem pool sizes of C, N and P were determined by harvest methods. The highest amounts of organic N and P were bound in the soil organic matter. Microbial N and P constituted the largest labile pools often equal to (N) or exceeding (P) the amounts stored in the vegetation. Despite large pools of N and P in the soil, net mineralization of N and P was generally low during the growing season, except in the wet sedge tundra, and in most cases lower than the plant uptake requirement. In contrast, the microorganisms immobilized high amounts of nutrients in the buried bags during incubation. The same high immobilization was not observed in the surrounding soil, where the microbial nutrient content in most cases remained constant or decreased over the growing season. This suggests that the low mineralization measured in many arctic ecosystems over the growing season is due to increased immobilization by soil microbes when competition from plant roots is prevented. Furthermore, it suggests that plants compete well with microbes for nutrients in these four ecosystems. Warming increased net mineralization in several cases, which led to increased assimilation of nutrients by plants but not by the microbes.  相似文献   

16.
Ecological stoichiometry uses the mass balance of elements to predict energy and elemental fluxes across different levels of ecological organization. A specific prediction of ecological stoichiometry is the growth rate hypothesis (GRH), which states that organisms with faster growth or reproductive rates will require higher phosphorus content for nucleic acid and protein synthesis. Although parasites are found ubiquitously throughout ecosystems, little is understood about how they affect nutrient imbalances in ecosystems. We (1) tested the GRH by determining the carbon (C), nitrogen (N), and phosphorus (P) content of parasitic trematodes and their intermediate host, the freshwater snail Elimia livescens, and (2) used this framework to determine the trematode effects on host nutrient excretion and metabolism. Snail and parasite tissues were analyzed for elemental content using a CHN analyzer and soluble reactive phosphorus (SRP) methods. Ammonium and SRP assays were used to estimate N and P excretion rates. A respirometer was used to calculate individual snail metabolism. Trematode tissues contained lower C:P and N:P (more P per unit C and N) than the snail tissues. Snail gonadal tissues more closely resembled the elemental content of parasite tissues, although P content was 13% higher in the gonad than the trematode tissues. Despite differences in elemental content, N and P excretion rates of snails were not affected by the presence of parasites. Parasitized snails maintained faster metabolic rates than nonparasitized snails. However, the species of parasite did not affect metabolic rate. Together, this elemental imbalance between parasite and host, and the altered metabolic rate of infected snails may lead to broader parasite effects in stream ecosystems.  相似文献   

17.
DN Menge  LO Hedin  SW Pacala 《PloS one》2012,7(8):e42045
Nutrient limitation to net primary production (NPP) displays a diversity of patterns as ecosystems develop over a range of timescales. For example, some ecosystems transition from N limitation on young soils to P limitation on geologically old soils, whereas others appear to remain N limited. Under what conditions should N limitation and P limitation prevail? When do transitions between N and P limitation occur? We analyzed transient dynamics of multiple timescales in an ecosystem model to investigate these questions. Post-disturbance dynamics in our model are controlled by a cascade of rates, from plant uptake (very fast) to litter turnover (fast) to plant mortality (intermediate) to plant-unavailable nutrient loss (slow) to weathering (very slow). Young ecosystems are N limited when symbiotic N fixation (SNF) is constrained and P weathering inputs are high relative to atmospheric N deposition and plant N:P demand, but P limited under opposite conditions. In the absence of SNF, N limitation is likely to worsen through succession (decades to centuries) because P is mineralized faster than N. Over long timescales (centuries and longer) this preferential P mineralization increases the N:P ratio of soil organic matter, leading to greater losses of plant-unavailable N versus P relative to plant N:P demand. These loss dynamics favor N limitation on older soils despite the rising organic matter N:P ratio. However, weathering depletion favors P limitation on older soils when continual P inputs (e.g., dust deposition) are low, so nutrient limitation at the terminal equilibrium depends on the balance of these input and loss effects. If NPP switches from N to P limitation over long time periods, the transition time depends most strongly on the P weathering rate. At all timescales SNF has the capacity to overcome N limitation, so nutrient limitation depends critically on limits to SNF.  相似文献   

18.
Fine root production is the largest component of belowground production and plays substantial roles in the biogeochemical cycles of terrestrial ecosystems. The increasing availability of nitrogen (N) and phosphorus (P) due to human activities is expected to increase aboveground net primary production (ANNP), but the response of fine root production to N and P remains unclear. If roots respond to nutrients as ANNP, fine root production is anticipated to increase with increasing soil N and P. Here, by synthesizing data along the nutrient gradient from 410 natural habitats and from 469 N and/or P addition experiments, we showed that fine root production increased in terrestrial ecosystems with an average increase along the natural N gradient of up to 0.5 per cent with increasing soil N. Fine root production also increased with soil P in natural conditions, particularly at P < 300 mg kg(-1). With N, P and combined N + P addition, fine root production increased by a global average of 27, 21 and 40 per cent, respectively. However, its responses differed among ecosystems and soil types. The global average increases in fine root production are lower than those of ANNP, indicating that above- and belowground counterparts are coupled, but production allocation shifts more to aboveground with higher soil nutrients. Our results suggest that the increasing fertilizer use and combined N deposition at present and in the future will stimulate fine root production, together with ANPP, probably providing a significant influence on atmospheric CO(2) emissions.  相似文献   

19.
青藏高原草地植物群落冠层叶片氮磷化学计量学分析   总被引:28,自引:1,他引:28       下载免费PDF全文
叶片氮(N)和磷(P)的化学计量学研究涉及到植物生态学的众多领域与多个尺度, 然而各个尺度上的化学计量学研究并未同步展开。通过对青藏高原47个草地样地连续3年的调查, 分析了当地群落水平上的植物叶片N、P含量及其化学计量学特征, 并结合温度和降水气候数据研究了N、P含量及N:P比值与这两个气候因子的相关关系。研究结果显示: 青藏高原草地群落水平的叶片N含量变化范围为14.8-36.7 mg·g-1, 平均为23.2 mg·g-1; P含量变化范围为0.8-2.8 mg·g-1, 平均为1.7 mg·g-1; N:P比值变化范围为6.8-25.6, 平均为13.5。群落叶片N含量与P含量呈显著正相关关系, 叶片的N:P比值与P含量呈显著负相关关系, N:P比值的变化主要由P含量变化决定。另外发现: 群落水平叶片N、P含量及N:P比值存在着显著的年际变化, 叶片的N、P含量及N:P比值与年平均气温之间存在着极显著的相关关系。通过该研究结果推测: P含量较高的变异系数及其与环境因子表现出的显著相关性, 在一定程度上体现了植物群落对当地气候条件的一种适应。  相似文献   

20.
Increased human‐derived nitrogen (N) deposition to terrestrial ecosystems has resulted in widespread phosphorus (P) limitation of net primary productivity. However, it remains unclear if and how N‐induced P limitation varies over time. Soil extracellular phosphatases catalyze the hydrolysis of P from soil organic matter, an important adaptive mechanism for ecosystems to cope with N‐induced P limitation. Here we show, using a meta‐analysis of 140 studies and 668 observations worldwide, that N stimulation of soil phosphatase activity diminishes over time. Whereas short‐term N loading (≤5 years) significantly increased soil phosphatase activity by 28%, long‐term N loading had no significant effect. Nitrogen loading did not affect soil available P and total P content in either short‐ or long‐term studies. Together, these results suggest that N‐induced P limitation in ecosystems is alleviated in the long‐term through the initial stimulation of soil phosphatase activity, thereby securing P supply to support plant growth. Our results suggest that increases in terrestrial carbon uptake due to ongoing anthropogenic N loading may be greater than previously thought.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号