首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Three monoclonal antibodies against human protamines were obtained by immunization with total human basic nuclear proteins or purified protamine HP3. The specificity of antibodies was assessed by enzyme-linked immunosorbent assay (ELISA) and Western blot. They recognized three distinct epitopes: One was specific for the protamine P1 family, another was specific for the protamine P2 family and the third was common to both families. All were specific for the human species. Antibodies were used to detect protamines in germ cells by indirect immunofluorescence and by immunoelectron microscopy. Protamines appeared in spermtid nuclei at steps 4–5 of spermiogenesis, i.e., during the chromatin condensation process, and were not accumulated in the cytoplasm before entering the nucleus. © 1993 Wiley-Liss, Inc.  相似文献   

2.
During the process of chromatin cndensation in the spermiogenesis of the neogastropod mollusc Murex brandaris, the nuclear protein complement undergoes a complex series of changes. These changes lead to the appearance of three small protamines in the ripe sperm nuclei. We have characterized this system electrophoretically and at the compositions with antibodies elicited against a specific spermatozoan protamine. Our results indicate that the complex pattern of chromatin condensation during spermiogenesis in this species (M. brandaris) may be modulated by a series of post-translational (and intranuclear) modifications of DNA-interacting proteins, such as precursors to the sperm protamines. The amino acid composition of each sperm protamine is remarkably simple (lys + arg + gly ≥96 mol%). This system of spermiogenic/spermatozoal proteins in the neogastropod M. brandaris clearly differs from that in patellogastropods and archaeogastropods, and it may be helpful in understanding evolutionary changes in the chromatin condensation pattern during the spermiogenesis of gastropod molluscs. © 1994 Wiley-Liss, Inc.  相似文献   

3.
Spermiogenesis in Chara algae, which has been divided into 10 phases (sp I-X), is similar to spermiogenesis in animals. The most important process during spermiogenesis in animals is remodeling of chromatin leading to "sleeping genome", being the result the exchange of histone proteins into protamine-like proteins. Cytochemical studies showed in both Chara species (C. vulgaris, C. tomentosa) that at spI-IV phases only histones were present, at spV-VIII phases--the amount of nuclear protamine-type proteins progressively increased and that of histones decreased while at spIX-X only pro-tamine-type proteins were present. This was also confirmed with capillar electrophoresis. In order to localize more precisely both histones and protamines the immunocytochemical studies with the use of anti-protamine antibodies (protamine-type proteins were obtained from C. tomentosa antheridia) and anti-histone H3 antibodies, have been carried out. More specific immunocytochemical studies confirmed cytochemical results including the exchange of histones into protamine-type during spermiogenesis (spV-VIII) in both Chara species. At phase V spermiogenesis these strong strand-like anti-protamine signals were observed in cytoplasm which might suggest that protamine synthesis took place in ER.  相似文献   

4.
In this article we study the proteins responsible for chromatin condensation during spermiogenesis in the cephalopod Octopus vulgaris. The DNA of ripe sperm nuclei in this species is condensed by a set of five different proteins. Four of these proteins are protamines. The main protamine (Po2), a protein of 44 amino acid residues, is extraordinarily simple (composed of only three different amino acid types: arginine (R), serine (S), and glycine (G). It is a basic molecule consisting of 79.5 mol% arginine residues. The rest of the protamines (Po3, Po4, Po5) are smaller molecules (33, 28, and 30 amino acid residues, respectively) that are homologous among themselves and probably with the main Po2 protamine. The ripe sperm nucleus of O. vulgaris also contains a small quantity of a molecule (Po1) that is similar to Po2 protamine. This protein could represent a Po2 protamine-precursor in a very advanced step of its processing. We discuss the characteristics of these proteins, as well as the relation between the complexity of chromatin condensation and the transitions of nuclear proteins during spermiogenesis in O. vulgaris.  相似文献   

5.
A characteristic feature of the sperm P1 protamines of eutherian mammals is the constant presence of six to nine cysteine residues per molecule. During spermiogenesis these residues become oxidized to form a three-dimensional network of disulfide bridges between, and within, protamine molecules in the sperm chromatin. This covalent cross linking strongly stabilizes eutherian sperm nuclei. In contrast, protamines sequenced from teleost fish, birds, monotremes, and marsupials all lack cysteine residues and their sperm nuclei, without the stabilizing cross links, are easily decondensed in vitro. We have now found that one genus of tiny, shrewlike dasyurid marsupials, the Planigales, possess P1 protamines containing five to six cysteine residues. These residues appear to have evolved since the divergence of Planigales from other members of the family Dasyuridae, such as the marsupial mouse, Sminthopsis crassicaudata. We believe this constitutes a case of convergent evolution in a subfamily of dasyurid marsupials toward the cysteine-rich eutherian form of sperm protamine P1.   相似文献   

6.
7.
Fish protamines are highly specialized molecules which are responsible for chromatin condensation during the last stages of spermatogenesis (spermiogenesis). However, not all fish contain protamines in their sperm nuclei; rather, there seems to be a random distribution of protamines within this group. The origin of this sporadic presence of protamines in the sperm and its significance have not yet been precisely determined. In this paper we have conducted an exhaustive survey of the literature available on the different types of nuclear protein composition of the sperm of teleost fish in order to try to correlate these data with what is presently known about the taxonomy of this group. The results of this analysis have allowed us to make the following observations. The divergence between protamines and histones has occurred several times during the evolution of the bony fish. However, the relative frequency of this divergence is almost negligible during the differentiation of genera and species (intrafamily variation) and is very small during the differentiation of families (interfamily variation). Nevertheless, the divergence is very noticeable among the different orders. It is therefore possible to conclude from all this that the sporadic distribution of protamines in bony fish is not a random event as initially believed. Furthermore, such a heterogeneous distribution of protamines cannot be easily accounted for by a mechanism of horizontal retroviral transmission through repeated and independent acquisition of a prot amine gene as has been recently proposed (Jankowski, Stater, Dixon (1986) J Mol Evol 23:1–10). Rather, it could possibly be explained by a repeated and independent loss of the expression of the protamine gene (or loss of the gene itself) which mainly occurred during the diversification of the orders of this group.Correspondence to: J. Ausio  相似文献   

8.
During mouse spermiogenesis, two protamines, mP1 and mP2, are synthesized in replacement of histones. One of them (protamine mP2, 63 residues) appears at first in elongating spermatid nuclei as a pro-protamine of 106 residues (pmP2) with an amino-terminal extension that is progressively excised. The two protamines were previously described as the only proteins associated with DNA in sperm chromatin. This paper shows that the nuclear proteins of mouse spermatozoa are indeed heterogeneous: at least six minor polypeptides in addition to protamines can be identified. The primary structure of four of them has been established. They are intermediate in the maturation of the precursor of protamine mP2 and correspond to polypeptides pmP2/11, pmP2/16, pmP2/20, and pmP2/32, characterized previously in mouse testis. Therefore, these intermediates of proteolysis generated from pmP2 inside spermatid nuclei persist in mature sperm, whereas the largest precursors, pmP2 and pmP2/5, disappear. These findings clearly indicate that limited proteolysis events still occur outside of the testis. © 1995 Wiley-Liss, Inc.  相似文献   

9.
The molecular events associated with decondensation of human sperm nuclei were analyzed by incubating sperm with egg extracts from an amphibian, Bufo japonicus . Acid-urea-Triton polyacrylamide gel electrophoresis (AUT-PAGE) showed that the nuclear basic proteins of human sperm consist mainly of protamines (HPI, HPII) with minor amounts of nucleosomal histones. On incubation of lysolecithin (LC)- and dithiothreitol (DTT)-treated human sperm with the egg extract, the nuclei lost HPI and HPII within 15 min in association with extensive nuclear decondensation, and the acquirement of a whole set of nucleosomal histones. Incubation of LC-DTT-sperm with nucleoplasmin purified from Bufo eggs also induced nuclear decondensation and loss of protamines within 30 min. Native-PAGE and Western blot analyses of incubation medium indicated tight association of the released protamines to nucleoplasmin, strongly suggesting that protamines are removed from sperm nuclei not enzymatically but by their specific binding to nucleoplasmin. On incubation of LC-DTT-sperm with nucleoplasmin and exogenous nucleosomal core histones, micrococcal nuclease-protected DNA fragments were released, although their unit repeat length was slightly less than that of somatic nucleosomes. Thus remodeling of human sperm during fertilization can be mimicked under defined conditions with nucleoplasmin and exogenous histones.  相似文献   

10.
11.
12.
High purified nuclei were obtained from human sperm without protein loss through the use of CHAPS (3-[(3-cholamidopropyl)dimethylammonio]-1-propanesulfonate), a newly available detergent. The basic protein complement of these nuclei is highly heterogeneous and comprises histones (some of which are testis-specific), protamines and proteins of intermediate basicity and molecular size. The protamines belong to two different classes of protein. Microheterogeneity observed in some of these protamines originates from slight variations in their amino acid composition as well as from post-synthetic modifications. Two of these protamines previously considered as two different proteins as in fact the same protein with different degrees of phophorylation. All these protamines and intermediate basic proteins are characterized by high amounts of arginine and cysteine. Three of the protamines and all five intermediate basic proteins are also histidine-rich.  相似文献   

13.
During spermiogenesis in Eledone cirrhosa a single protamine substitutes for histones in nuclei of developing spermatids. This protein displays a peculiar primary structure. It contains 22.6 mol% cysteine residues (19 cysteines in 84 residues). This makes it the most cysteine-rich protamine known. The proportion of basic residues is relatively low (arginine 36.9 mol%, lysine 19.0 mol%). The protamine of E. cirrhosa condenses spermiogenic chromatin in a pattern which comprises fibres with a progressively larger diameter and lamellae that finally undergo definitive coalescence. We have also performed a study that estimates the number of interprotamine disulphide bonds formed during the process of spermiogenic chromatin condensation by means of sequential disappearance of MMNA (monomaleimido-nanogold) labelling. During the first step of spermiogenesis, protamines are found spread over very slightly condensed chromatin with their cysteines in a reactive state (protamine-cys-SH). From this stage the interprotamine disulphide bonds are established in a progressive way. First they are formed inside the chromatin fibres. Subsequently, they participate in the mechanism of fibre coalescence and finally, in the last step of spermiogenesis, the remaining free reactive -SH groups of cysteine form disulphide bonds, thus promoting a definitive stabilization of the nucleoprotein complex in the ripe sperm nucleus.  相似文献   

14.
15.
During early-to-middle spermiogenesis in multicellular, internally fertilizing charalean green algae (Chara fibrosa, Chara vulgaris, Chara tomentosa, Nitella missouriensis), patterning of chromatin/nucleoplasm in developing spermatid nuclei changes from granules  fibers  contorted lamellae  condensed chromatin. Cytochemical, immunocytochemical, electrophoretic studies on C. vulgaris and C. tomentosa spermatids (Kwiatkowska, Poplonska) and amino acid analysis of protamines in Chara corallina sperm (Reynolds, Wolfe), indicate that more positively charged protamines replace histones directly during spermiogenesis, not indirectly through other intermediate transitional proteins as in internally fertilizing neogastropods and sharks with more ordered spermatid lamellae. We hypothesize that such lamellar-mediated patterning is due to liquid–liquid phase separation by spinodal decomposition. This is a spontaneous thermodynamic process that involves diffusive instability of a lamellar chromatin network, a dominant pattern repeat distance and bicontinuity of chromatin/nucleoplasm phases. C. vulgaris sperm show contorted lamellae in the posterior region, whereas C. corallina sperm display contorted peripheral lamellae and interior fibrils. Among internally fertilizing liverworts, which may have evolved from Zygnematales, mid-spermatid nuclei lack lamellae. Instead they display self-coiled chromatin rods in Blasia pusilla, contain short chromatin tubules in Haplomitrium hookeri resembling those in internally fertilizing mosses and a hornwort and indirectly replace histones with protamines in Marchantia polymorpha.  相似文献   

16.
Transition proteins and protamines are highly basic sperm-specific nuclear proteins that serve to compact the DNA during late spermiogenesis. To understand their sequential role in this function, transition protein 1 (TP1), transition protein 2 (TP2), and protamine 1 (P1) were assayed by polyacrylamide gel electrophoresis in pools of microdissected, staged seminiferous tubule segments in the rat. The results were compared with immunocytochemical analyses of squash preparations from accurately identified stages of the epithelial cycle. TP2 was the first to appear as a faint band at stages IX–XI, followed by high levels at stages XII–XIV of the cycle. TP1 showed a low expression at stage XII of the cycle and peaked at stages XIII–I, whereas protamine 1 first appeared at stage I of the cycle and remained high throughout the rest of spermiogenesis. Immunocytochemical analyses and Western blots largely confirmed these results: TP2 in steps 9–14, TP1 in steps 12–15, and P1 from late step 11 to step 19 of spermiogenesis. We propose that TP2 is the first nucleoprotein that replaces histones from the spermatid nucleus, and its appearance is associated with the onset of nuclear elongation. TP1 shows up along with the compaction of the chromatin. The two transition proteins seem to have distinct roles during transformation of the nuclei and compaction of spermatid DNA.  相似文献   

17.
Chromatin condensation is a typical feature of sperm cells. During mammalian spermiogenesis, histones are first replaced by transition proteins and then by protamines, while little is known for Drosophila melanogaster. Here we characterize three genes in the fly genome, Mst35Ba, Mst35Bb, and Mst77F. The results indicate that Mst35Ba and Mst35Bb encode dProtA and dProtB, respectively. These are considerably larger than mammalian protamines, but, as in mammals, both protamines contain typical cysteine/arginine clusters. Mst77F encodes a linker histone-like protein showing significant similarity to mammalian HILS1 protein. ProtamineA-enhanced green fluorescent protein (eGFP), ProtamineB-eGFP, and Mst77F-eGFP carrying Drosophila lines show that these proteins become the important chromosomal protein components of elongating spermatids, and His2AvDGFP vanishes. Mst77F mutants [ms(3)nc3] are characterized by small round nuclei and are sterile as males. These data suggest the major features of chromatin condensation in Drosophila spermatogenesis correspond to those in mammals. During early fertilization steps, the paternal pronucleus still contains protamines and Mst77F but regains a nucleosomal conformation before zygote formation. In eggs laid by sesame-deficient females, the paternal pronucleus remains in a protamine-based chromatin status but Mst77F-eGFP is removed, suggesting that the sesame gene product is essential for removal of protamines while Mst77F removal is independent of Sesame.  相似文献   

18.
Chiva M  Saperas N  Ribes E 《Tissue & cell》2011,43(6):367-376
In this paper we review and analyze the chromatin condensation pattern during spermiogenesis in several species of mollusks. Previously, we had described the nuclear protein transitions during spermiogenesis in these species. The results of our study show two types of condensation pattern: simple patterns and complex patterns, with the following general characteristics: (a) When histones (always present in the early spermatid nucleus) are directly replaced by SNBP (sperm nuclear basic proteins) of the protamine type, the spermiogenic chromatin condensation pattern is simple. However, if the replacement is not direct but through intermediate proteins, the condensation pattern is complex. (b) The intermediate proteins found in mollusks are precursor molecules that are processed during spermiogenesis to the final protamine molecules. Some of these final protamines represent proteins with the highest basic amino acid content known to date, which results in the establishment of a very strong electrostatic interaction with DNA. (c) In some instances, the presence of complex patterns of chromatin condensation clearly correlates with the acquisition of specialized forms of the mature sperm nuclei. In contrast, simple condensation patterns always lead to rounded, oval or slightly cylindrical nuclei. (d) All known cases of complex spermiogenic chromatin condensation patterns are restricted to species with specialized sperm cells (introsperm). At the time of writing, we do not know of any report on complex condensation pattern in species with external fertilization and, therefore, with sperm cells of the primitive type (ect-aquasperm). (e) Some of the mollusk an spermiogenic chromatin condensation patterns of the complex type are very similar (almost identical) to those present in other groups of animals. Interestingly, the intermediate proteins involved in these cases can be very different.In this study, we discuss the biological significance of all these features and conclude that the appearance of precursor (intermediate) molecules facilitated the development of complex patterns of condensation and, as a consequence, a great diversity of forms in the sperm cell nuclei  相似文献   

19.
Male germ cells of the greater bandicoot rat, Bandicota indica, have recently been categorized into 12 spermiogenic steps based upon the morphological appearance of the acrosome and nucleus and the cell shape. In the present study, we have found that, in the Golgi and cap phases, round spermatid nuclei contain 10-nm to 30-nm chromatin fibers, and that the acrosomal granule forms a huge cap over the anterior pole of nucleus. In the acrosomal phase, many chromatin fibers are approximately 50 nm thick; these then thickened to 70-nm fibers and eventually became 90-nm chromatin cords that are tightly packed together into highly condensed chromatin, except where nuclear vacuoles occur. Immunocytochemistry and immunogold localization with anti-histones, anti-transition protein2, and anti-protamine antibodies suggest that histones remain throughout spermiogenesis, that transition proteins are present from step 7 spermatids and remain until the end of spermiogenesis, and that protamines appear at step 8. Spermatozoa from the cauda epididymidis have been analyzed by acid urea Triton X-100 polyacrylamide gel electrophoresis for basic nuclear proteins. The histones, H2A, H3, H2B, and H4, transitional protein2, and protamine are all present in sperm extracts. These findings suggest that, in these sperm of unusual morphology, both transition proteins and some histones are retained, a finding possibly related to the unusual nuclear form of sperm in this species.  相似文献   

20.
Despite their relatively arginine-rich composition, protamines exhibit a high degree of structural variation. Indeed, the primary structure of these histone H1-related sperm nuclear basic proteins (SNBPs) is not random and is the depository of important phylogenetic information. This appears to be the result of their fast rate of evolution driven by positive selection. The way by which the protein variability participates in the transitions that lead to the final highly condensed chromatin organization of spermatozoa at the end of spermiogenesis is not clearly understood. In this paper we focus on the transient chromatin/nucleoplasm patterning that occurs in either a lamellar step or an inversion step during early and mid-spermiogenesis. This takes place in a small subset of protamines in internally fertilizing species of vertebrates, invertebrates and plants. It involves "complex" protamines that are processed, replaced, or undergo side chain modification (such as phosphorylation or disulfide bond formation) during the histone-to-protamine transition. Characteristic features of such patterning, as observed in TEM photomicrographs, include: constancy of the dominant pattern repeat distance λ(m) despite dynamic changes in developmental morphology, bicontinuity of chromatin and nucleoplasm, and chromatin orientation either perpendicular or parallel to the nuclear envelope. This supports the hypothesis that liquid - liquid phase separation by the mechanism of spinodal decomposition may be occurring during spermiogenesis in these species. Spinodal decomposition involves long wave fluctuations of the local concentration with a low energy barrier and thus differs from the mechanism of nucleation and growth that is known to occur during spermiogenesis in internally fertilizing mammals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号