首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Some kinetic parameters of the β-d-glucosidase (cellobiase, β-d-glucoside glucohydrolase, EC 3.2.1.21) component of Sturge Enzymes CP cellulase [see 1,4-(1,3;1,4)-β-d-glucan 4-glucanohydrolase, EC 3.2.1.4] from Penicillium funiculosum have been determined. The Michaelis constants (Km) for 4-nitrophenyl β-d-glucopyranoside (4NPG) and cellobiose are 0.4 and 2.1 mM, respectively, at pH 4.0 and 50°C. d-Glucose is shown to be a competitive inhibitor with inhibitor constants (Ki) of 1.7 mM when 4NPG is the substrate and 1 mM when cellobiose is the substrate. Cellobiose, at high concentrations, exhibits a substrate inhibition effect on the enzyme. d-Glucono-1,5-lactone is shown to be a potent inhibitor (Ki = 8 μM; 4NPG as substrate) while d-fructose exhibits little inhibition. Cellulose hydrolysis progress curves using Avicel or Solka Floc as substrates and a range of commercial cellulase preparations show that CP cellulase gives the best performance, which can be attributed to the activity of the β-d-glucosidase in this preparation in maintaining the cellobiose at low concentrations during cellulose hydrolysis.  相似文献   

2.
The graphical determination of Km and Ki   总被引:1,自引:0,他引:1       下载免费PDF全文
The principle of Dixon (1965) has been extended to give rapid graphical methods for determining enzyme constants for substrates (Km) and inhibitors (Ki). It does away with the sometimes questionable assumption that the amounts of substrate or inhibitor bound by the enzyme are negligible in comparison with the total amount added, and is therefore valid even for cases of high affinity, where the usual methods fail. Besides doing away with the need for calculation, it enables the concentrations of the various components of the system to be read off directly for any point of the velocity curve.  相似文献   

3.
Reimers, J. M., Huang, Q., Albe, K. R., and Wright, B. E. 1993. Purification and kinetic characterization of glucose-6-phosphate dehydrogenase from Dictyostelium discoideum. Experimental Mycology 17, 1-6. Glucose-6-phosphate dehydrogenase from Dictyostelium discoideum was purified 650-fold and kinetically characterized. The enzyme catalyzed the conversion of G6P + NADP to 6PG + NADPH stoichiometrically and irreversibly in vitro . The purified enzyme is specific for NADP. Michaelis constants for G6P and NADP were 0.040 and 0.011 mM, respectively. NADPH was found to be a competitive inhibitor with respect to NADP with a Ki of 0.006 mM and a noncompetitive inhibitor with respect to G6P. The data from initial velocity and product inhibition studies were consistent with a sequential mechanism.  相似文献   

4.
The rate of formation of peroxidatically active reaction intermediate(s) via oxidation of the iron(III)-porphyrin complex, deuteroferriheme, with hydrogen peroxide decreases with increasing borate content of mixed borate-carbonate buffer solutions. Studies at pH = 9.25 in 0.035 M borate buffer and 0.035 M carbonate buffer suggest borate to function as an uncompetitive inhibitor. A comparison of slopes and intercepts of double reciprocal plots for inhibited and uninhbited reactions allows calculation of selected parameters for the deuteroferriheme-H2O2 reaction at pH = 9.25 in terms of a typical enzymatic stoichiometric mechanism for heme activity. This includes the Michaelis constant (Km = 8.1 × 10?5 M) and the first-order rate constant for conversion of heme-substrate complex to intermediate(s) (k3 = 7.4 sec?1). A tentative mechanistic model involving reversible interaction of borate inhibitor with heme-substrate complex is considered, and pseudo-first-order rate constants calculated on the basis of this scheme are in reasonable agreement with those obtained experimentally. It is suggested that comparable inhibitory action may be responsible for some previously reported cases of decreased catalase enzyme activity in borate buffer solutions  相似文献   

5.
Phosphoenolpyruvate carboxylase (PEPC) was purified 40-fold from soybean (Glycine max L. Merr.) nodules to a specific activity of 5.2 units per milligram per protein and an estimated purity of 28%. Native and subunit molecular masses were determined to be 440 and 100 kilodaltons, respectively, indicating that the enzyme is a homotetramer. The response of enzyme activity to phosphoenolpyruvate (PEP) concentration and to various effectors was influenced by assay pH and glycerol addition to the assay. At pH 7 in the absence of glycerol, the Km (PEP) was about twofold greater than at pH 7 in the presence of glycerol or at pH 8. At pH 7 or pH 8 the Km (MgPEP) was found to be significantly lower than the respective Km (PEP) values. Glucose-6-phosphate, fructose-6-phosphate, glucose-1-phosphate, and dihydroxyacetone phosphate activated PEPC at pH 7 in the absence of glycerol, but had no effect under the other assay conditions. Malate, aspartate, glutamate, citrate, and 2-oxoglutarate were potent inhibitors of PEPC at pH 7 in the absence of glycerol, but their effectiveness was decreased by raising the pH to 8 and/or by adding glycerol. In contrast, 3-phosphoglycerate and 2-phosphoglycerate were less effective inhibitors at pH 7 in the absence of glycerol than under the other assay conditions. Inorganic phosphate (up to 20 millimolar) was an activator at pH 7 in the absence of glycerol but an inhibitor under the other assay conditions. The possible significance of metabolite regulation of PEPC is discussed in relation to the proposed functions of this enzyme in legume nodule metabolism.  相似文献   

6.
Rabbit muscle triosephosphate isomerase (EC 5.3.1.1) is inactivated by maleimides, Na2S4O6, organic mercurials, 5,5′-dithiobis (2-nitrobenzoic acid), Ag+, and Hg2+. Ag2+ and Hg2+ cause a decrease in the maximum velocity, and under specified conditions the other reagents induce an increase in the Michaelis constant.N-ethylmaleimide reacts with three sulfhydryl residues per mole of enzyme, and the maximum change in Km is about threefold. Mercurials cause a greater change in Km and react with more than three sulfhydryl groups, but subsequent precipitation prevents quantitative analysis after six residues have reacted (with p-hydroxymercuribenzoate).Experiments with several competitive inhibitors and the active-site affinity label, 3-chloroacetolphosphate, showed that the magnitude of the change in Michaelis constant was the same as the magnitude of the changes in the inhibition constants.The rabbit muscle and liver enzyme appear to have similar properties, but the chicken muscle enzyme is much less reactive, and the yeast enzyme does not become inactivated.Evidence is presented to show that the effects cannot be explained by assuming the hydrated substrates are bound to the enzyme as a result of sulfhydryl modification.  相似文献   

7.
The method of kinetic analysis is developed to obtain the maximum velocity (Vm), the Michaelis constant (Km) and the parameters characterizing the inhibitors in an impure enzyme reaction, contaminated with one of four types of inhibitor (competitive, noncompetitive, uncompetitive and mixed-type). Although the reaction rate decreases with the increasing concentration of the enzyme sample containing an inhibitor, the double-reciprocal plot of the rate against the sample concentration becomes linear. The slopes of these linear plots at several different concentrations of substrate provide Km and the specific enzyme activity, which is proportional to Vm, in the sample. These linear straight lines intersect in a point, of which the coordinates give the unique parameters for the inhibitor. To prove the validity of this kinetic method, the model experiments were carried out with acetylcholinesterase and its inhibitors, phenyltrimethylammonium and trimethylammonium. The present method was applied to the measurement of the specific activity of galactosylceramide galactosidase in the mouse cerebral homogenate. In addition, a kinetic method is indicated for the inhibition of an enzymatic reaction by a contaminant which binds the substrate to reduce the fraction available to the enzyme.  相似文献   

8.
The non-thermal effects of ceramics heater radiation on xanthine oxidase activity have been investigated using the enzyme, substrate, and competitive inhibitors which were irradiated on cooling. The Km and Vmax in the irradiated enzyme system were reduced to 51% and 85%, of the non-irradiated control, respectively. The Ki for a competitive inhibitor, folic acid, in the irradiated enzyme system decreased to 22% of the non-irradiated control. A steady-state molecular kinetic analysis for the reaction estimates that the irradiated enzyme may be kept in a folding state, and the formation of a Michaelis complex has been accelerated, and the activated Michaelis complex has been stabilized, and that a solvation or an electrostriction of xanthine, folate, and an active center of the enzyme with water may be promoted by irradiating the components in an aqueous solution, by which modification of the enzyme activity has been regulated.  相似文献   

9.
Purification and properties of esterase from Bacillus stearothermophilus   总被引:3,自引:0,他引:3  
An enzyme, which hydrolyzes p-nitrophenyl and m-carboxyphenyl esters of n-fatty acids, is purified from Bacillus stearothermophilus. The enzyme reaction obeys the Michaelis-Menten theory. The Michaelis constant (Km) decreases with increasing the length of carbon number of the acids, but the maximum velocity (V) is maximum for n-caproate. The enzyme is inhibited by diisopropyl fluorophosphate (DFP),2 and 1 mole of DFP reacts with 1 mole of the enzyme of the molecular weight of 42,000–47,000. The enzyme is considered to be carboxylic ester hydrolase (EC 3.1.1.1). The effects of temperature on Km or V for p-nitrophenyl n-caproate and on the inhibitor constant (Ki) for n-laurate suggest a thermal transition in the conformation of the enzyme protein at 55 °C. The enzyme is strongly inhibited by sulfhydryl reagents such as p-chloromercuribenzoate and 5,5′-dithiobis (2-nitrobenzoic acid) at 65 °C, but less at 30 °C. The relationship between the inhibition of the activity by p-chloromercuribenzoate and temperature may suggest that a thermal transition of the enzyme protein accompanies some structural change around sulfhydryl group.  相似文献   

10.
A detailed study of the pH dependence of the Michaelis-Menten constants (V and Km) of aryl sulfatase A (EC 3.1.6.1) from rabbit liver indicates that at least two functional groups (pK's ~4.3 and ~7 in the enzyme-substrate complex) participate in the enzymic degradation of substrate. Aryl sulfatase A is inactivated by diethyl pyrocarbonate (ethoxyformic anhydride). The enzyme that has been modified with this reagent can in turn be reactivated by treatment with hydroxylamine. The pH dependence of inactivation reveals a reactive group having a pK of 6.5–7.0. The results indicate that at least one histidine plays an important catalytic role in rabbit liver aryl sulfatase A, consistent with the results of earlier workers who employed diazotized sulfanilic acid. Phosphate ion, a competitive inhibitor, partially protects the enzyme from inactivation by diethyl pyrocarbonate whereas sulfate ion, also a competitive inhibitor, increases the rate of inactivation by diethyl pyrocarbonate. This result is of particular significance in view of the anomalous kinetics of aryl sulfatase A. The kinetic effects of even small amounts of sulfate ion impurities in many commercial sulfate ester substrate preparations is also discussed.  相似文献   

11.
L-929 cell surface membranes have been assayed in vitro and found to contain significant protein kinase activity. A steady-state kinetic analysis indicated that at least two distinct protein kinases were present. Plots of reaction velocity (v) against substrate (ATP) concentration were distinctly biphasic, as were Lineweaver-Burk plots of 1v versus 1ATP. Michaelis constants of the two enzymes were calculated to be 22 and 173 μm, respectively. Sodium dodecyl sulfate polyacrylamide gel analysis of the phosphorylated membrane proteins provided additional support for the existence of more than one protein kinase. Different endogenous proteins were phosphorylated at 1 μm ATP compared to 1 μm ATP. Further studies of the low Km (22 μm) enzyme suggested that it is a typical cyclic 3′,5′-AMP-independent protein kinase. Its activity was dependent on the presence of Mg2+, but it was not affected by cyclic 3′,5′-AMP, cyclic 3′,5′-GMP, or the heat-stable inhibitor of cyclic 3′,5′-AMP-dependent protein kinases. ATP and GTP, but not other nucleoside triphosphates, could serve as phosphoryl donor and maximum kinase activity was expressed at pH 7.0. Phosvitin and casein were superior to histones as exogenous substrates for the low Km enzyme.  相似文献   

12.
Enzymes, such as urease and uricase, were entrapped in three kinds of hollow fibers. The apparent Michaelis–Menten constants Km(app) obtained for these enzyme reactors were always larger than Km of free enzyme because of the permeation resistance of substrate across the hollow-fiber membrane. Km(app) increased with increasing degree of permeation resistance across the membrane by the increase in enzyme concentration. The half-life of the entrapped urease in the continuous reaction system was 60–80% of that of free enzyme. Activation energies of hollow-fiber enzyme reactors were always smaller than that of the free enzyme, because the activation energy of permeation was smaller than that of the enzyme reaction.  相似文献   

13.
Glutamine synthetase from the plant cytosol fraction of lupin nodules was purified 89-fold to apparent homogeneity. The enzyme molecule is composed of eight subunits of Mr 44,700 ± 10%. Kinetic analysis indicates that the reaction mechanism is sequential and there is some evidence that Mg-ATP is the first substrate to bind to the enzyme. Michaelis constants for each substrate using the ammonium-dependent biosynthetic reaction are as follows: ATP, 0.24 mm; l-glutamate, 4.0–4.2 mm; ammonium, 0.16 mm. Using an hydroxamate-forming biosynthetic reaction the Km ATP is 1.1 mm but the Km for l-glutamate is not altered. The effect of pH on the Km for ammonium indicates that NH3 rather than NH4+ may be the true substrate. At 10 mm Mg2+, the pH optimum of the enzyme is between 7.5 and 8, but increasing Mg2+ concentrations produce progressively more acidic optima while lower Mg2+ concentrations raise the pH optimum. The rate-response curve for Mg2+ is sigmoidal becoming bell-shaped in alkaline conditions. The enzyme is inhibited by l-Asp (Ki, 1.4 mm) and less markedly by l-Gln and l-Asn. Inhibition by ADP and AMP is strong, both nucleotides exhibiting Ki values around 0.3 mM. Investigations of the probable physiological conditions within the nodule plant cytosol indicate that in situ glutamine synthetase has an activity greater than that required to support the efflux of amino acid nitrogen from the nodule. A possible role for glutamine synthetase in the control of nodule ammonium assimilation is suggested.  相似文献   

14.
Hack E  Kemp JD 《Plant physiology》1980,65(5):949-955
A single enzyme catalyzes the synthesis of all four N2-(1-carboxyethyl)-amino acid derivatives found in a crown gall tumor tissue induced by Agrobacterium tumefaciens (E. F. Sm. and Town.) Conn strain B6 on sunflower (Helianthus annuus L.). This enzyme, octopine synthase, has been purified by ammonium sulfate fractionation and chromatography on diethylaminoethylcellulose, blue agarose, and hydroxylapatite. The purified enzyme has all the N2-(1-carboxyethyl)-amino acid synthesizing activities found in crude preparations, and the relative activities with six amino acids remain nearly constant during purification. Although the maximum velocities (V) and Michaelis constants (Km) differ, the ratio V/Km is the same for all amino acid substrates. Thus an equimolar mixture of amino acids will give rise to an equimolar mixture of products. The kinetic properties of the enzyme are consistent with a partially ordered mechanism with arginine (NADPH, then arginine or pyruvate). Octopine synthase is a monomeric enzyme with a molecular weight of 39,000 by gel filtration and 38,000 by sodium dodecyl sulfate-polyacrylamide gel electrophoresis.  相似文献   

15.
The Michaelis constant KM describes the affinity of an enzyme for a specific substrate and is a central parameter in studies of enzyme kinetics and cellular physiology. As measurements of KM are often difficult and time-consuming, experimental estimates exist for only a minority of enzyme–substrate combinations even in model organisms. Here, we build and train an organism-independent model that successfully predicts KM values for natural enzyme–substrate combinations using machine and deep learning methods. Predictions are based on a task-specific molecular fingerprint of the substrate, generated using a graph neural network, and on a deep numerical representation of the enzyme’s amino acid sequence. We provide genome-scale KM predictions for 47 model organisms, which can be used to approximately relate metabolite concentrations to cellular physiology and to aid in the parameterization of kinetic models of cellular metabolism.

To understand the action of an enzyme, we need to know its affinity for its substrates, quantified by Michaelis constants, but these are difficult to measure experimentally. This study shows that a deep learning model that can predict them from structural features of the enzyme and substrate, providing KM predictions for all enzymes across 47 model organisms.  相似文献   

16.
1. Cerebral-cortex mitochondria, after purification by using high-density sucrose solutions, were extracted with Triton X-100. The total hexokinase activity of the intact mitochondria was increased by 50–80% in the Triton extracts. 2. Triton X-100 was removed from mitochondrial extracts by a combination of ammonium sulphate fractionation and DEAE-cellulose chromatography. Mitochondrial hexokinase remained soluble after removal of extractant. 3. The behaviour of solubilized mitochondrial hexokinase was compared with soluble cytoplasmic hexokinase from the same samples of cerebral cortex on identical columns of DEAE-cellulose. Two peaks were eluted from each source of hexokinase. The distribution between hexokinase peaks was similar for the two sources. Peak I (approx. 80% of the total hexokinase) from each was eluted at identical concentrations of potassium chloride and slight differences were observed in the elution profiles for peak II. 4. The purified mitochondrial hexokinase showed the following kinetic properties: peak I, Km(ATP) 0.60mm, Km(glucose) 0.042mm; peak II, Km(ATP) 0.66mm, Km(glucose) 0.043mm. The purified cytoplasmic hexokinase Michaelis constants were: peak I, Km(ATP) 0.56mm, Km(glucose) 0.048mm; peak II, Km(ATP) 0.68mm, Km(glucose) 0.062mm. 5. Although no significant differences between mitochondrial and cytoplasmic hexokinases were noted in chromatographic behaviour or in the kinetic properties studied, the purified mitochondrial enzyme was activated slightly (approx. 20%) by Triton X-100, in contrast with the cytoplasmic enzyme, which was not affected. 6. The results, taken to indicate basic similarity between mitochondrial and cytoplasmic hexokinases, are discussed in relation to the role of the two sources of enzyme in the metabolism of the tissue.  相似文献   

17.
A flat-membrane dialyzer was used as enzyme reactor by introducing enzyme solution into one of the membrane-separated chambers. The apparent Michaelis constant Km(app) of urease was always larger (ten times at [urease] = 1 mg/ml) than that of free enzyme because the permeation of substrate through the membrane was rate determining. Km(app) for urease decreased from 125 to 20mM with increasing flow rate of the substrate solution because of the turbulent flow near the membrane. In the case of glucose oxidase or creatine kinase, the reaction rate was limited by the permeation of less permeable substrates such as oxygen or ATP. Therefore, Km(app) of more permeable substrates such as glucose or creatine became smaller than that of free enzyme. The reaction amount calculated from the permeation data agreed well with experimental results. By designing spacers for the reactor to give turbulence to the solution, the effectiveness of the reactor was improved fivefold.  相似文献   

18.
Some kinetic parameters of the β- -glucosidase (cellobiase, β- -glucoside glucohydrolase, EC 3.2.1.21) component of Sturge Enzymes CP cellulase [see 1,4-(1,3;1,4)-β- -glucan 4-glucanohydrolase, EC 3.2.1.4] from Penicillium funiculosum have been determined. The Michaelis constants (Km) for 4-nitrophenyl β- -glucopyranoside (4NPG) and cellobiose are 0.4 and 2.1 mM, respectively, at pH 4.0 and 50°C. -Glucose is shown to be a competitive inhibitor with inhibitor constants (Ki) of 1.7 mM when 4NPG is the substrate and 1 mM when cellobiose is the substrate. Cellobiose, at high concentrations, exhibits a substrate inhibition effect on the enzyme. -Glucono-1,5-lactone is shown to be a potent inhibitor (Ki = 8 μM; 4NPG as substrate) while -fructose exhibits little inhibition. Cellulose hydrolysis progress curves using Avicel or Solka Floc as substrates and a range of commercial cellulase preparations show that CP cellulase gives the best performance, which can be attributed to the activity of the β- -glucosidase in this preparation in maintaining the cellobiose at low concentrations during cellulose hydrolysis.  相似文献   

19.
A model of heterogeneous biocatalysis, in which kinetics and partition effects are connected via the size-exclusion principle, was worked up experimentally and theoretically. The present paper shows that the maximum relative activity of trypsin (EC 3.4.21.4) immobilized on porous bead (spherical) cellulose is directly proportional to the available distribution coefficient of the substrate. Providing that the excess of substrate is not sufficient (e.g.S/Km ≈ 1) to safeguard saturated enzyme kinetics, the originally linear relationship of Ra versus Kav turns to an exponential one, without any dependence upon the manner of enzyme immobilization. It is suggested that the above may be a result of partition resistance and that the main factors determining the shape of the Ra versus Kav relation in conditions of substrate shortage are the size and geometry of the matrix. The physical characteristics of the porous carrier as well as the manner of covalent immobilization of the enzyme are all reflected in the constants applied in the derived equations.  相似文献   

20.
Tapan K. Biswas 《Phytochemistry》1985,24(12):2831-2833
The β-galactosidase activity in cotyledons of Vigna sinensis increases during seed germination and is inhibited by cycloheximide. The increasing activity may be due to the de novo synthesis of enzyme protein. The enzyme has been partially purified by gel filtration and characterized with respect to some biochemical parameters. The optimum pH and optimum temperature are 4.5 and 55°, respectively and the enzymes follows typical Michaelis kinetics with Km and Vmax of 4.5 x 10?4 M and 2.0 x 10?5 mol/hr respectively. Ki for galactose and lactose are 4.5 and 220 mM, respectively. The energy of activation of the enzyme for p-nitrophenyl β-D-galactoside is 9.83 kcal/mol. The apparent relative MW of the enzyme as determined by gel filtration was 56000.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号